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When can we find the factors           and           uniquely?

Claim: The factors           and           are not determined uniquely
unless we impose additional conditions on them

“correct” factors alternative factorization

This is called the rotation problem, and is a major issue in 
factor analysis and motivates the study of tensor methods…

e.g. if           and            are orthogonal, or 
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+ + 

TENSOR DECOMPOSITIONS

T = a1 ⌦ b1 ⌦ c1 + · · ·+ aR ⌦ bR ⌦ cR

(i, j, k) entry of x⌦ y ⌦ z is x(i)⇥ y(j)⇥ z(k)

MATRIX DECOMPOSITIONS
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When are tensor decompositions unique? 

Theorem [Jennrich 1970]: Suppose {ai} and {bi} are linearly
independent and no pair of vectors in {ci} is a scalar multiple
of each other. Then 

T = a1 ⌦ b1 ⌦ c1 + · · ·+ aR ⌦ bR ⌦ cR

is unique up to permuting the rank one terms and rescaling
the factors.

Equivalently, the rank one factors are unique

There is a simple algorithm to compute the factors too! 
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JENNRICH’S ALGORITHM

Match up the factors (their eigenvalues are
reciprocals) and find          by solving a linear syst.

Diagonalize

Diagonalize

Compute  

Compute
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“initial distribution”
x

a

b c

dz

y

Rz,b
“conditional

distribution”

=  extinct

=  extant

In each sample, we observe a symbol (Σ) at each extant

(      ) node where we sample from π for the root, and

propagate it using Rx,y, etc

=  alphabet

root:
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[Erdos, Steel, Szekely, Warnow, 1997]:  Used Steel’s distance

function and quartet tests 

to reconstruction the topology, from polynomially many samples

a b

cd

OR
a c

db

OR …

For many problems (e.g. HMMs) finding the transition matrices is

the main issue…

Can we reconstruct just the topology from random samples? 

Usually, we assume          , etc are full rank so that we can re-root

the tree arbitrarily 
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Joint distribution over (a, b, c):  

[Chang, 1996]: The model is identifiable (if R’s are full rank)

columns of Rz,b

Rz,b
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[Mossel, Roch, 2006]: There is an algorithm to PAC learn a
phylogenetic tree or an HMM (if its transition/output matrices
are full rank) from polynomially many samples

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the
parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n) 
samples suffice but the best algorithms run in time 2n/log(n)

Due to [Blum, Kalai, Wasserman, 2003]

(It’s now used as a hard problem to build cryptosystems!)

Is the full-rank assumption necessary?



THE POWER OF CONDITIONAL INDEPENDENCE
[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

following [Mossel, Roch, 2006]



Part I: Introduction
� The Rotation Problem
� Jennrich’s Algorithm

Part II: Applications
� Phylogenetic Reconstruction
� Mixtures of Gaussians
� Orbit Retrieval

OUTLINE



Part I: Introduction
� The Rotation Problem
� Jennrich’s Algorithm

Part II: Applications
� Phylogenetic Reconstruction
� Mixtures of Gaussians
� Orbit Retrieval

OUTLINE



MIXTURES OF SPHERICAL GAUSSIANS
Let’s see another powerful application of tensor methods to
learning mixtures of spherical Gaussians



MIXTURES OF SPHERICAL GAUSSIANS

Let’s see another powerful application of tensor methods to
learning mixtures of spherical Gaussians

Can we reconstruct the parameters in polynomial time? 



MIXTURES OF SPHERICAL GAUSSIANS

Let’s see another powerful application of tensor methods to
learning mixtures of spherical Gaussians

Can we reconstruct the parameters in polynomial time? 

Theorem [Hsu, Kakade, 2013]: There is an algorithm that has 
polynomial run time/sample complexity that works when the 

‘s have full rank

Running time and sample complexity depend on 

smallest singular value
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Main Lemma: If        is known then the tensor

Again, there is a low rank tensor that can be computed from
samples whose tensor decomposition reveals the parameters
we want to learn
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Case #2: If a = b ≠ c then we have

first moment
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Main Lemma: If        is known then the tensor

can be expressed through the empirical moments of the mixture

It can be written compactly as

with

Now use Jennrich’s Algorithm
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[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

[Mixtures of Spherical Gaussians]:

following [Mossel, Roch, 2006]

(corrections of third moment)

following [Hsu, Kakade, 2013]
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[Pure Topic Models/LDA]: (joint distribution on first three words)

following [Anandkumar, Hsu, Kakade, 2012]

[Community Detection]: (counting stars)

following [Anandkumar, Ge, Hsu, Kakade, 2014]
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Global Registration

Estimate positions from rigid motions
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ORBIT RETRIEVAL
What if we want to learn the parameters of generative model
with a continuous latent variable?

Cryo-electron microscopy
Determine 3D structure from random noisy 2D projections
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ORBIT RETRIEVAL
Definition: An orbit retrieval problem is specified by a group G
and a linear homomorphism

We get noisy observations under the group action

where g is chosen from the Haar measure on G and     is Gaussian
noise 

Goal: Recover some      that is close to the orbit
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ORBIT TENSOR DECOMPOSITION
In many settings we can estimate

Can we recover x up to its orbit?

Theorem [Moitra, Wein, 2019]: There is a polynomial time
algorithm that works for SO(2) when x is random

What about for non-abelian groups?
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TENSOR NETWORKS
Tensor networks are a graphical representation for tensors and 
operations on them, e.g.

T
i

j k

third order tensors have three legs

tensors can be attached by summing over connected indices

T U
a

c

i b

d



REVISITING PRIOR WORK
Prior work implicitly uses this framework

T

a

b d

T

T

T

c

T

T

T

T T
a c b d

See [Richard, Montanari], [Barak, Moitra], [Hopkins, Shi, Steurer], 
[Hopkins et al.], [Hopkins, Shi, Steurer] for applications to tensor
principal component analysis, tensor completion,  decomposing 
random overcomplete third order tensors, etc



SPECTRAL METHODS FROM TENSOR NETS

Given input tensor T

� Step #1: Build a new tensor B by connecting copies of T
according to the tensor network

� Step #2: Flatten B to form a symmetric matrix M 

� Step #3: Compute the leading eigenvector of M
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Smaller tensor networks fail for this problem
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THE TRACE METHOD

Main step in the analysis is to bound the largest eigenvalue of some
matrix build from a tensor network (after projecting out signal)

We do this through the trace method:

Applying Markov’s inequality we get the bound

With tensor networks, the trace method turns into a counting
problem,  let’s see some examples…
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and zeros along the diagonal

Lemma: is the number of ways of labeling the edges of

M
M

M

M

M
M

with labels from [n] so that any pair of labels (i,j) is adjacent to an
even number of M’s 
Proof: First, is a sum over length six walks. Then observe
that a term has expectation zero unless each edge is traversed an 
even number of times.
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Suppose M is an n x n symmetric matrix with iid Rademacher entries 
and zeros along the diagonal

More generally:

Lemma: is the number of ways of labeling the edges of
of a length 2k cycle so that any pair (i,j) is adjacent to an even
number of M’s

The natural way to double cover edges with a walk is to take the
depth first search of a tree

It turns out this is the dominant contribution:

Theorem [Furedi, Komlos]:  

This gives sharp bounds on            via the trace method 
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More challenging example: Suppose T is a symmetric tensor with 
iid Rademacher entries and we plug it into the tensor network

Now let M be the ({a, b}, {c, d})-flattenening

Natural Goal: Understand            via the trace method

For example, if we want to compute                        we can plug the
tensor network into the six cycle, and we get…

Note that the pair of indices {a,b} that index rows of M come from
from different copies of T, and this is important

T T
a

c
i b

d
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T T
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T

T

T

T

T

T

…we get:

And                        is the number of ways to label the edges of the 
diagram so that each triple {i, j, k} appears incident to an even 
number of T’s. 
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SIDE REMARK

The tensor network formalism gives a visual way to understand
some subtleties

What if we flattened the tensor network differently?

For example, if M is the ({a,b}, {c,d})-flattening of

then plugging it into the six cycle we would get something different
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SIDE REMARK
…we get:

T T T TT T ……
Informal Claim: There are now many more labellings where each
triple is incident to an even number of T’s, because the graph is
only 1-connected

Tensor networks are a convenient way to think about this trick,
and others that appear in the sum-of-squares literature



Part I: Jennrich’s Algorithm and its Applications

TUTORIAL OUTLINE

Part II: Provable Algorithms for Inverse Problems 
in the Sciences?
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