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A CLASSIC HARD PROBLEM: MAXCUT

Goal: given a graph                   :

find a cut             that maximizes the number of crossing edges 

NP-hard to maximize exactly, one of [Karp, ‘72]‘s 21 problems

How well can we approximate MAXCUT?

Simple ½-approximation algorithm: Choose U randomly. But can
we do better? 
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MAXCUT AS A QUADRATIC PROGRAM

We can also formulate MAXCUT as optimizing a polynomial,
subject polynomial constraints:

Now we can leverage the Sum-of-Squares (SOS) Hierarchy…

counts the number of
edges crossing the cut

xi’s are 0/1 valued



SUM-OF-SQUARES HIERARCHY

� strengthens Sherali-Adams, Lovasz-Schrijver, LS+

� highly successful convex relaxation
sparsest cut [ARV ’04]
unique games [ABS ’10], [BRS ‘12], [GS ‘12]

[Barak et al, ‘12]� breaks integrality gaps for other hierarchies

� best known algorithm for several average-case problems 
planted sparse vector, dictionary learning [BKS ’14, ‘15]
noisy tensor completion [BM ’15], tensor PCA [HSS ‘15]

� optimal among all poly. sized SDPs for random CSPs [LRS ‘15]

Introduced by [Parrilo ‘00], [Lasserre ‘01]
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A DUAL VIEW

Goal: Find operator that behaves like the expectation over

a distribution on solutions

degree ≤ d polynomials in n variables 

Called a Pseudo-expectation

Let’s see what it looks like for MAXCUT…

(Usually introduced as proof system related to Hilbert’s 17th prob.)
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such that:

(1)

(2)

is linear (3) for all deg(p) ≤ d/2

Degree d relaxation for MAXCUT:

(1) – (3) are the usual constraints that say Ẽ behaves like it is
taking the expectation under some distribution on assignments
to the variables

(4) for all deg(p) ≤ d-2

(4) is because we want the distribution to be supported on 
0/1 valued assignments



such that:

(1)

(2)

is linear (3) for all deg(p) ≤ d/2

Degree d relaxation for MAXCUT:

(4) for all deg(p) ≤ d-2

But why is this a relaxation for MAXCUT?
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such that:

(1)

(2)

is linear (3) for all deg(p) ≤ d/2

Claim: If there is a cut that has at least k edges crossing, there
is a feasible solution to (1) – (4) with objective value ≥ k

Proof: if a1, a2, …, an is the indicator vector of the cut U, set

(4) for all deg(p) ≤ d-2

Degree d relaxation for MAXCUT:
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Can we efficiently solve this relaxation?

Theorem: There is an nO(d)-time algorithm for finding such an 
operator, if it exists

It is a semidefinite program on a nO(d) x nO(d) matrix whose entries
are the pseudo-expectation applied to monomials

How well does SOS approximate MAXCUT?
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APPROXIMATION ALGORITHMS FOR MAXCUT
Revolutionary work of [Goemans, Williamson]:

Theorem: There is a           -approximation algorithm for

for MAXCUT

We will give an alternate proof by rounding the degree two
Sum-of-Squares relaxation
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Main Idea: Use a sample from a Gaussian distribution whose 
moments match the pseudo-moments

Main Question: How do you round a pseudo-expectation to
find a cut? 

I.e. if I give you       how do you find a cut with at least

edges crossing (in expectation)?

Aside: Rounding higher degree relaxations is much harder b/c you
cannot necc. find a r.v. whose moments match the pseudo-moments
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Claim: Without loss of generality, can assume for all i

Intuition: You can always change U to V\U without changing the
value of the cut, so WLOG xi has probability 1/2 of being in U
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GAUSSIAN ROUNDING
Let y be a Gaussian vector with mean      and covariance      for 

and

Now set                  if                   and otherwise  

We will show that for each (i, j) we have

which, by linearity of expectation, will complete the proof



For each edge (i,j), calculate contribution to objective value:



For each edge (i,j), calculate contribution to objective value:



For each edge (i,j), calculate contribution to objective value:

for



For each edge (i,j), calculate contribution to objective value:

for

And its contribution to the expected number of edges crossing:



For each edge (i,j), calculate contribution to objective value:

for

And its contribution to the expected number of edges crossing:



For each edge (i,j), calculate contribution to objective value:

for

And its contribution to the expected number of edges crossing:

and



For each edge (i,j), calculate contribution to objective value:

for

And its contribution to the expected number of edges crossing:

and

Now we can compute:

independent std Gaussians



For each edge (i,j), calculate contribution to objective value:

for

And its contribution to the expected number of edges crossing:

and

Now we can compute:

independent std Gaussians



Putting it all together, we have for every edge (i, j):

which completes the proof
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PLANTED CLIQUE
Introduced by [Jerrum, ‘92], [Kucera, ’95]:

Step #1: Generate E-R
random graph G(n, ½)

Step #2: Add a clique on 
random set of ω vertices

Can we find the planted clique?

And how large does ω need to be?
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Fact: There is an nO(logn)-time algorithm (brute-force) that can
find planted cliques of size ω ≥ C logn, for any C > 2 

Quasi-polynomial time:

Fact: There is a polynomial time algorithm that succeeds (whp)
for ω ≥ C √n log n (degree counting)

Polynomial time:

Theorem [Alon, Krivelevich, Sudakov]: There is a polynomial time 
algorithm that succeeds (whp) for ω ≥ C √n (spectral)

Theorem [Deshpande, Montanari]: There is a nearly linear time 
algorithm that succeeds (whp) for ω ≥ √n/e 
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APPLICATIONS OF PLANTED CLIQUE

� Discovering motifs in biological networks [Milo et al ‘02] 

� Computing the best Nash Equilibrium [HK ‘11], [ABC ‘13]

� Property testing [Alon et al ’07]

� Sparse PCA [Berthet, Rigollet ‘13]

� Compressed sensing [Koiran, Zouzias ‘14]

� Cryptography [Juels, Peinado ‘00], [Applebaum et al ‘10]

� Mathematical finance [Arora et al ’10]

Planted Clique (and variants) are basic problems in average-case 
complexity, imply many other hardness results:
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LOWER BOUNDS?

Is it actually hard to find n1/2-ε-sized planted cliques?

Complexity-theoretic reasons lower bound are unlikely to be
based on P vs. NP

Our best evidence seems to Sum-of-Squares lower bounds

[Feigenbaum, Fortnow ’93] [Bogdanov, Trevisan ’06]e.g. ,
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general

(1)

(2)

is linear

(3)

(5)

(4)

for all deg(p) ≤ d/2

(clique size)

Sum-of-Squares for planted clique:
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Constraints on the pseudo-expectation:

general specific to planted clique

(1)

(2)

is linear

(3)

(5)

(4)

(6)

for all (i,j) not an edgefor all deg(p) ≤ d/2

Can SOS find nε-sized planted cliques in polynomial time?
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A STRONG LOWER BOUND

Theorem [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin]: 
The integrality gap of the level d Sum-of-Squares hierarchy is

for some constant c > 0

For any d = o(log n), the integrality gap is n1/2-o(1)

Builds on [Meka, Potechin, Wigderson ‘14], [Deshpande
Montanari ‘15], [Hopkins, Kothari, Potechin, Raghavendra,
Scrhamm ‘16]

Nearly optimal lower bound against SOS, for the planted clique 
problem (via pseudo-Bayesian techniques):
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A STRONG LOWER BOUND

New insights into what makes SOS powerful, and how to fool it

Our Approach: Pseudo-calibration

When our recipe fails, it often yields spectral algorithms
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How can we fool the SOS algorithm into thinking there is a n1/2-o(1)

sized clique in G(n, ½)?

Usual Approach: Adapt integrality gaps from weaker hierarchies

This works for random CSPs

Theorem [Feige, Krauthgamer]: The integrality gap of the level d 
LS+ hierarchy is
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Improved analysis due to [Deshpande, Montanari], for d = 4

And due to [Hopkins, Kothari, Potechin] for any d

But these bounds are tight (for these moments)

Theorem [Meka, Potechin, Wigderson]: The integrality gap of the 
level d Sum-of-Squares hierarchy is
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KELNER’S POLYNOMIAL

Set            = 
+1   if (i,j) an edge

-1    else

Do the MPW moments work beyond n1/(  d/2   + 1)?

If there is an ω-sized planted clique:

But if G is sampled from G(n, ½):

Need: otherwise something is wrong
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KELNER’S POLYNOMIAL

Do the MPW moments work beyond n1/(  d/2   + 1)?

This example can be used to find a squared polynomial whose 

pseudo-expectation is negative for ω > n1/(  d/2   + 1)

Intuition: A good pseudo-expectation attempts to hide info about

what vertices participate in the planted clique

But vertices with a standard deviation higher degree, should be

a constant factor more likely to be in the p.c. (soft constraint)
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FIXING THE MPW-MOMENTS

This family of polynomials is essentially the only thing that goes
wrong at d = 4

Approach: Add an explicit correction term of fix all PG,i’s, even
more dependent random matrix theory

Is there a fix for higher degrees?

It turns out for d = 6, even the fixes need fixes, and on and on…

36 pgs 40 pgs 26 pgs 69 pgs ??? pgs

Theorem [Hopkins et al.], [Raghavendra, Schramm]: The integrality 
gap of the level 4 Sum-of-Squares hierarchy is
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PSEUDO-CALIBRATION

Can we find pseudo-moments that satisfy the following:

for all polynomials f that are low-degree in Gi,j’s and xi’s?
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Consider the pseudo-expectation of some monomial:

We can write any such function in terms of its Fourier expansion

, and let

How should we set the Fourier coefficients?
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Utilizing the expression

pseudo-calibration

It turns out , we need to truncate but at what degree? 

vertices of T

The Fourier coefficients are chosen for us, by pseudo-calibration

we can calculate:
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Lemma: With high probability, 

(4) Similar bound holds (again by standard concentration) for
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Lemma: Let where deg(cA) ≤ τ, then
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Interestingly it is much easier to show that
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SPARSE PRINCIPAL COMPONENT ANALYSIS
Goal: Given samples                                              from

where v is k-sparse and its nonzero entries are ± 1/√k

spiked covariance model

How large does the signal parameter θ need to be to detect 
the spike?
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Theorem: There is a polynomial time algorithm that can detect
the spike  (with failure probability δ) when

Compute top eigenvalue of all k x k principal submatrices of the
empirical covariance

Theorem: There is a dO(k)-time algorithm (brute-force) that can
detect the spike (with failure probability δ) when

Select the k largest entries along the diagonal of the empirical
covariance matrix
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LOWER BOUNDS FROM PLANTED CLIQUE

Theorem: Assuming that there is no polynomial time algorithm

for finding a planted clique of size

In an influential paper, [Berthet, Rigollet] showed:

for any               then there is no polynomial time algorithm for 

subgaussian sparse PCA with 

for any                         that succeeds with constant probability 
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DISCUSSION

Is there a quasi-polynomial time algorithm for detecting a spike
in sparse PCA for much smaller values of θ? 

Their reduction leaves open the following possibility:

Evidence for average-case complexity without reductions!

But we can still hope to prove strong SOS lower bounds:

e.g. [Hopkins et al.] proved polynomial degree lower
bounds for the Wigner variant
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A SPECTRAL CHARACTERIZATION

Is SOS only as powerful as low degree polynomials?

E.g. if low degree subgraph counts fail, then so does SOS:

Theorem [Hopkins et al.]: Suppose degree d SOS can distinguish
between planted and unplanted instances and that the problem
is resilient to rerandomizing most coordinates.

Then there is an nO(d) x nO(d) matrix Q whose entries are degree 
O(d) polynomials in the instance variables where

(1)

(2)
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OPEN QUESTIONS
But how do you prove lower bounds against spectral methods
whose entries are polynomials?

i.e. no spectral method on low degree subgraph counts succeeds
would give new proof of SOS lower bound for planted clique

Can you prove SOS lower bounds for community detection
beneath the Kesten-Stigum bound?

Can tools from random graph theory/statistics (e.g. small subgraph
conditioning method, contiguity) be useful?
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� Upper bounds for MAXCUT and lower bounds
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