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Question

How can we automatically organize them by topic? (unsupervised
learning)

Challenge: Develop tools for automatic comprehension of data - e.g.
newspaper articles, webpages, images, genetic sequences, user
ratings...
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So Many Models!

CTM / Pachinko: structured correlations
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Algorithms

@ Maximum Likelihood: Find the parameters that maximize the
likelihood of generating the observed data.

Hard to compute!

@ Spectral: Compute the singular value decomposition of M.
[Papadimitriou et al], [Azar et al], ...

But the singular vectors are orthonormal!

Question

Can we use tools from nonnegative matrix factorization instead of
spectral methods?

[AGKM]: fixed parameter intractable but there are easy cases
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Our Results

Let E[WWT] = R be the topic-topic covariance matrix, let  be its

condition number and let a = max; % be the topic imbalance.
J

If the topic matrix A satisfies the “anchor word assumption” for
p>0:

Theorem

We can learn the topic matrix A and covariance matrix R to within
accuracy € in time and number of docs poly(logn,r,1/¢,1/p, K, a)
with n words and r topics

Suffices to have documents of size two!
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Each topic has an anchor word that occurs with probability > p
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Our Algorithm

M is far from M, but let's use MMT instead!

MMT — MMT and WWT — R as number of documents increase
Step

We can recover the anchor words from MM .

Step

We can recover A and R given MM and the anchor words.
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Our Algorithm

M is far from M, but let's use MMT instead!

MMT — MMT and WWT — R as number of documents increase
Step

We can recover the anchor words from MM .

Step

We can recover A and R given MM and the anchor words.

And we can use matrix perturbation bounds to quantify how error
accumulates
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joint work with Arora, Ge, Halpern, Mimno, Sontag, Wu and Zhu

We ran our algorithm on a database of 300,000 New York Times
articles (from the UCI database) with 30,000 distinct words

@ Run time: 12 minutes (compared to 10 hours for MALLET and
other state-of-the-art topic modeling tools)

@ Topics are high quality (Ask me if you want to see the results!)

Independently, [Anandkumar et al] gave an algorithm for LDA
without any assumptions!

Are there other trapdoors — like anchor words — that make machine
learning much easier?
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