Learning from Dynamics

Ankur Moitra (MIT)

von Neumann Lecture, January 3rd
based on joint work with Ainesh Bakshi (MIT),
Allen Liu (MIT) and Morris Yau (MIT)

LINEAR DYNAMICAL SYSTEMS

Canonical model for time series data

$$
\underbrace{y_{t}}_{\text {bservation }}=C x_{t}+D u_{t}+z_{t}
$$

LINEAR DYNAMICAL SYSTEMS

Canonical model for time series data

$$
\begin{aligned}
& x_{t+1}=\underbrace{A}_{\text {transition matrix control matrix }} x_{t}
\end{aligned}+\underbrace{B u_{t}}_{\text {cent }}+w_{t}
$$

LINEAR DYNAMICAL SYSTEMS

Canonical model for time series data

$$
\begin{aligned}
x_{t+1} & =A x_{t}+B u_{t}+\underbrace{w_{t}}_{\text {process noise }} \\
y_{t} & =C x_{t}+D u_{t}+\underbrace{z_{t}}_{\text {observation noise }}
\end{aligned}
$$

APPLICATIONS

Robotics/Navigation/Tracking

APPLICATIONS

Robotics/Navigation/Tracking

APPLICATIONS

Robotics/Navigation/Tracking

In particular

$$
x_{t}=\left[\begin{array}{c}
\text { position } \\
\text { velocity } \\
\text { acceleration }
\end{array}\right] \quad A=\left[\begin{array}{c}
\text { Laws of } \\
\text { Motion }
\end{array}\right]
$$

APPLICATIONS

Biology/Epidemiology

APPLICATIONS

Biology/Epidemiology

APPLICATIONS

Biology/Epidemiology

In particular

$$
x_{t}=\left[\begin{array}{c}
\text { susceptible } \\
\text { exposed } \\
\text { infected } \\
\text { recovered }
\end{array}\right] \quad A=\left[\begin{array}{c}
\text { State } \\
\text { Machine }
\end{array}\right]
$$

APPLICATIONS

Medicine

APPLICATIONS

Medicine

APPLICATIONS

Medicine

APPLICATIONS

Medicine

Speech Processing/Econometrics/Finance/etc

LINEAR DYNAMICAL SYSTEMS

Canonical model for time series data

$$
\underbrace{y_{t}}_{\text {bservation }}=C x_{t}+D u_{t}+z_{t}
$$

LINEAR DYNAMICAL SYSTEMS

Canonical model for time series data

$$
\underset{\text { observation }}{y_{t}}=C x_{t}+D u_{t}+z_{t}
$$

When the parameters are known, making predictions and inferences is easy!

LINEAR DYNAMICAL SYSTEMS

Canonical model for time series data

$$
\underset{\text { observation }}{y_{t}}=C x_{t}+D u_{t}+z_{t}
$$

When the parameters are known, making predictions and inferences is easy!
? But how do you learn its parameters?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

MAIN PROBLEM (INFORMAL)

Given one long trajectory
Inputs/Controls: $u_{1}, u_{2}, \ldots, u_{T}$
Outputs: $y_{1}, y_{2}, \ldots, y_{T}$
can we estimate A, B, C and D ?

MAIN PROBLEM (INFORMAL)

Given one long trajectory
Inputs/Controls: $u_{1}, u_{2}, \ldots, u_{T}$
Outputs: $y_{1}, y_{2}, \ldots, y_{T}$
can we estimate A, B, C and D ?
How do you measure closeness of the parameters?

AN ASIDE

Definition: We say that two linear dynamical systems are equivalent if for any sequence of adaptively chosen inputs

$$
u_{t+1}=f\left(y_{1}, \ldots, y_{t}, u_{1}, \ldots, u_{t}\right)
$$

they generate same distribution on outputs, up to a transformation of the noise

AN ASIDE

Definition: We say that two linear dynamical systems are equivalent if for any sequence of adaptively chosen inputs

$$
u_{t+1}=f\left(y_{1}, \ldots, y_{t}, u_{1}, \ldots, u_{t}\right)
$$

they generate same distribution on outputs, up to a transformation of the noise

Proposition: Two linear dynamical systems with Gaussian noise are equivalent iff $\exists U$

$$
A=U^{-1} \widehat{A} U, B=U^{-1} \widehat{B}, C=\widehat{C} U \text { and } D=\widehat{D}
$$

AN ASIDE

Definition: We say that two linear dynamical systems are equivalent if for any sequence of adaptively chosen inputs

$$
u_{t+1}=f\left(y_{1}, \ldots, y_{t}, u_{1}, \ldots, u_{t}\right)
$$

they generate same distribution on outputs, up to a transformation of the noise

Proposition: Two linear dynamical systems with Gaussian noise are equivalent iff $\exists U$

$$
A=U^{-1} \widehat{A} U, B=U^{-1} \widehat{B}, C=\widehat{C} U \text { and } D=\widehat{D}
$$

i.e. they differ by a reparameterization of the hidden state

AN ASIDE

Definition: We say that two linear dynamical systems are equivalent if for any sequence of adaptively chosen inputs

$$
u_{t+1}=f\left(y_{1}, \ldots, y_{t}, u_{1}, \ldots, u_{t}\right)
$$

they generate same distribution on outputs, up to a transformation of the noise

Proposition: Two linear dynamical systems with Gaussian noise are equivalent iff $\exists U$

$$
A=U^{-1} \widehat{A} U, B=U^{-1} \widehat{B}, C=\widehat{C} U \text { and } D=\widehat{D}
$$

This defines a natural parameter distance

MAIN PROBLEM (FORMAL)

Given one long trajectory

Inputs/Controls: $u_{1}, u_{2}, \ldots, u_{T}$

Outputs: $y_{1}, y_{2}, \ldots, y_{T}$
can we find $\widehat{A}, \widehat{B}, \widehat{C}$ and \widehat{D} such that $\exists U$

$$
\begin{gathered}
\left\|A-U^{-1} \widehat{A} U\right\|_{F} \leq \epsilon, \quad\left\|B-U^{-1} \widehat{B}\right\|_{F} \leq \epsilon \\
\|C-\widehat{C} U\|_{F} \leq \epsilon \text { and }\|D-\widehat{D}\|_{F} \leq \epsilon ?
\end{gathered}
$$

MAIN PROBLEM (FORMAL)

Given one long trajectory
Inputs/Controls: $u_{1}, u_{2}, \ldots, u_{T}$
Outputs: $y_{1}, y_{2}, \ldots, y_{T}$
can we find $\widehat{A}, \widehat{B}, \widehat{C}$ and \widehat{D} such that $\exists U$

$$
\begin{gathered}
\left\|A-U^{-1} \widehat{A} U\right\|_{F} \leq \epsilon, \quad\left\|B-U^{-1} \widehat{B}\right\|_{F} \leq \epsilon \\
\|C-\widehat{C} U\|_{F} \leq \epsilon \text { and }\|D-\widehat{D}\|_{F} \leq \epsilon ?
\end{gathered}
$$

Is there a polynomial time/sample algorithm for learning?

PRIOR WORK

Widespread assumption on spectral radius, often unreasonable:

PRIOR WORK

Widespread assumption on spectral radius, often unreasonable:

PRIOR WORK

Widespread assumption on spectral radius, often unreasonable:

PRIOR WORK

Widespread assumption on spectral radius, often unreasonable:

strict stability $\rho(A)<1$	marginal stability $\rho(A) \leq 1$
fails even in simple cases	
no long-range correlations	
get fresh samples	

PRIOR WORK

Widespread assumption on spectral radius, often unreasonable:

strict stability $\rho(A)<1$	marginal stability $\rho(A) \leq 1$
fails even in simple cases	
no long-range correlations get fresh samples	would explode

PRIOR WORK

Widespread assumption on spectral radius, often unreasonable:

Bounds depend on $\frac{1}{1-\rho(A)}$, degrade as $\rho(A) \rightarrow 1$

PRIOR WORK

Widespread assumption on spectral radius, often unreasonable:

Bounds depend on $\frac{1}{1-\rho(A)}$, degrade as $\rho(A) \rightarrow 1$
Do long-range correlations actually obstruct learning?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

OBSERVABILITY AND CONTROLLABILITY

Definition: The observability matrix of order s is

$$
O_{s}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{s-1}
\end{array}\right]
$$

OBSERVABILITY AND CONTROLLABILITY

Definition: The observability matrix of order s is

$$
O_{s}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{s-1}
\end{array}\right]
$$

Proposition [informal]: If it doesn't have full column rank, there is some portion of the state space we miss even over s steps

OBSERVABILITY AND CONTROLLABILITY

Definition: The observability matrix of order s is

$$
O_{s}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{s-1}
\end{array}\right]
$$

Proposition [informal]: If it doesn't have full column rank, there is some portion of the state space we miss even over steps

Proof: If we move the state x_{t} in some direction z then...

OBSERVABILITY AND CONTROLLABILITY

Definition: The observability matrix of order s is

$$
O_{s}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{s-1}
\end{array}\right]
$$

Proposition [informal]: If it doesn't have full column rank, there is some portion of the state space we miss even over s steps

Proof: If we move the state x_{t} in some direction z then

$$
C x_{t}=C\left(x_{t}+z\right)
$$

OBSERVABILITY AND CONTROLLABILITY

Definition: The observability matrix of order s is

$$
O_{s}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{s-1}
\end{array}\right]
$$

Proposition [informal]: If it doesn't have full column rank, there is some portion of the state space we miss even over s steps

Proof: If we move the state x_{t} in some direction z then

$$
C x_{t}=C\left(x_{t}+z\right) \Longrightarrow \text { no effect on } \mathrm{y}_{\mathrm{t}}
$$

OBSERVABILITY AND CONTROLLABILITY

Definition: The observability matrix of order s is

$$
O_{s}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{s-1}
\end{array}\right]
$$

Proposition [informal]: If it doesn't have full column rank, there is some portion of the state space we miss even over steps

Proof: If we move the state x_{t} in some direction z then

$$
C A x_{t}=C A\left(x_{t}+z\right)
$$

OBSERVABILITY AND CONTROLLABILITY

Definition: The observability matrix of order s is

$$
O_{s}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{s-1}
\end{array}\right]
$$

Proposition [informal]: If it doesn't have full column rank, there is some portion of the state space we miss even over s steps

Proof: If we move the state x_{t} in some direction z then

$$
C A x_{t}=C A\left(x_{t}+z\right) \Longrightarrow \text { no effect on } \mathrm{y}_{\mathrm{t}+1} \text {, etc }
$$

OBSERVABILITY AND CONTROLLABILITY

Similarly:
Definition: The controllability matrix of order s is

$$
Q_{s}=\left[B, A B, \cdots, A^{s-1} B\right]
$$

OBSERVABILITY AND CONTROLLABILITY

Similarly:
Definition: The controllability matrix of order s is

$$
Q_{s}=\left[B, A B, \cdots, A^{s-1} B\right]
$$

Proposition [informal]: If it doesn't have full row rank, there is some portion of the state space that cannot be reached by appropriate inputs

OBSERVABILITY AND CONTROLLABILITY

Similarly:
Definition: The controllability matrix of order s is

$$
Q_{s}=\left[B, A B, \cdots, A^{s-1} B\right]
$$

Proposition [informal]: If it doesn't have full row rank, there is some portion of the state space that cannot be reached by appropriate inputs

Necessity of these assumptions goes back to Kalman in 1960

MAIN RESULTS

Theorem [Bakshi, Liu, Moitra, Yau]: There is a polynomial time algorithm for learning any marginally stable linear dynamical system from one long trajectory under quantitative observability and controllability*

*i.e. condition number bounds

MAIN RESULTS

Theorem [Bakshi, Liu, Moitra, Yau]: There is a polynomial time algorithm for learning any marginally stable linear dynamical system from one long trajectory under quantitative observability and controllability*

*i.e. condition number bounds

Moreover these conditions are essentially minimal
Theorem [Bakshi, Liu, Moitra, Yau]: If the observability and controllability matrices are ill-conditioned for all s then learning is information-theoretically impossible

COMMENTS

[Simchowitz, Boczar, Recht] also gave algorithms under marginal stability, but unspecified dependence on system parameters*
*i.e. can be exponential

COMMENTS

[Simchowitz, Boczar, Recht] also gave algorithms under marginal stability, but unspecified dependence on system parameters*
*i.e. can be exponential
Also, renewed interest because of connections to recurrent neural networks (RNNs)

COMMENTS

[Simchowitz, Boczar, Recht] also gave algorithms under marginal stability, but unspecified dependence on system parameters*
*i.e. can be exponential
Also, renewed interest because of connections to recurrent neural networks (RNNs)

Before using LDS's as a prototype for reasoning about RNNs, need to understand their fundamental limits --- e.g. what are minimal assumptions for learnability?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

METHOD OF MOMENTS

Introduced by Karl Pearson in 1894

- Estimate moments of the distribution from samples
- Setup system of equations in unknown parameters
- Solve to compute estimates

METHOD OF MOMENTS

Introduced by Karl Pearson in 1894

- Estimate moments of the distribution from samples
- Setup system of equations in unknown parameters
- Solve to compute estimates

Many successes in unsupervised learning, e.g. HMMs, mixtures of gaussians, topic modeling, robust estimation, etc

METHOD OF MOMENTS

Introduced by Karl Pearson in 1894

- Estimate moments of the distribution from samples
- Setup system of equations in unknown parameters
- Solve to compute estimates

Many successes in unsupervised learning, e.g. HMMs, mixtures of gaussians, topic modeling, robust estimation, etc

Is there a recipe for non-stationary data?

A BLUEPRINT

Definition: The Markov parameters up to order $2 \mathrm{~s}+1$ are

$$
G=\left[D, C B, C A B, \cdots, C A^{2 s} B\right]
$$

- Estimate the Markov parameters from samples
- Solve for the estimates using the Ho-Kalman algorithm

A BLUEPRINT

Definition: The Markov parameters up to order $2 \mathrm{~s}+1$ are

$$
G=\left[D, C B, C A B, \cdots, C A^{2 s} B\right]
$$

- Estimate the Markov parameters from samples
- Solve for the estimates using the Ho-Kalman algorithm

Proposition: Can find good estimates from just the Markov parameters

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

THE HO-KALMAN ALGORITHM

Step \#1: Form the Hankel matrix

$$
H=\left[\begin{array}{cccc}
C B & C A B & \cdots & C A^{s} B \\
C A B & C A^{2} B & \vdots \\
\vdots & & \ddots & \\
C A^{s} B & \cdots & & C A^{2 s} B
\end{array}\right]
$$

THE HO-KALMAN ALGORITHM

Step \#1: Form the Hankel matrix

$$
\left.H_{1}: \begin{array}{cc:c}
C B & C A B \ldots! & C A^{s} B \\
C A B & C A^{2} B & \vdots \\
\vdots & \ddots & \ddots
\end{array}\right]
$$

THE HO-KALMAN ALGORITHM

Step \#1: Form the Hankel matrix

$$
\left.H_{1}: \begin{array}{cc:ccc}
C B & C A B & \ldots & C A^{s} B \\
C A B & C A^{2} B & \vdots \\
\vdots & & \ddots & \vdots \\
C A^{s} B & \ldots & & C A^{2 s} B
\end{array}\right]
$$

Claim: $H=O_{s+1} Q_{s+1}$

THE HO-KALMAN ALGORITHM

Step \#1: Form the Hankel matrix

Claim: $H=O_{s+1} Q_{s+1}$

This is the hidden factorization we are looking for

Can we compute another factorization, and show equivalence?

Can we compute another factorization, and show equivalence?

Step \#2: Compute the SVD

$$
H_{1}=U \Sigma V^{T}=\left(U \Sigma^{1 / 2}\right)\left(\Sigma^{1 / 2} V^{\top}\right)
$$

Can we compute another factorization, and show equivalence?

Step \#2: Compute the SVD

$$
H_{1}=U \Sigma V^{T}=\underbrace{\left(U \Sigma^{1 / 2}\right)}_{\widehat{O}} \underbrace{\left(\Sigma^{1 / 2} V^{\top}\right)}_{\widehat{Q}}
$$

Can we compute another factorization, and show equivalence?

Step \#2: Compute the SVD

$$
\begin{aligned}
H_{1} & =U \Sigma V^{T}=\underbrace{\left(U \Sigma^{1 / 2}\right)}_{\widehat{O}} \underbrace{\left(\Sigma^{1 / 2} V^{\top}\right)}_{\widehat{Q}} \\
& =O_{s+1} Q_{s}
\end{aligned}
$$

Can we compute another factorization, and show equivalence?

Step \#2: Compute the SVD

$$
\begin{aligned}
H_{1} & =U \Sigma V^{T}=\underbrace{\left(U \Sigma^{1 / 2}\right)}_{\widehat{O}} \underbrace{\left(\Sigma^{1 / 2} V^{\top}\right)}_{\widehat{Q}} \\
& =O_{s+1} Q_{s}
\end{aligned}
$$

Lemma: If O_{s+1} and Q_{s} have full column and row rank resp. then

$$
O_{s+1}=\widehat{O} T \text { and } Q_{s}=T^{-1} \widehat{Q}
$$

for some invertible transformation T

Now how do we estimate A ?

Now how do we estimate A ?

Step \#3: Using what we know already

$$
H_{2}=O_{s+1} A Q_{s}
$$

Now how do we estimate A ?

Step \#3: Using what we know already

$$
\begin{aligned}
H_{2} & =O_{s+1} A Q_{s} \\
& \left.=\widehat{O} T A T^{-1} \widehat{Q} \quad \text { (from Step \#2) }\right)
\end{aligned}
$$

Now how do we estimate A ?

Step \#3: Using what we know already

$$
\begin{aligned}
H_{2} & =O_{s+1} A Q_{s} \\
& \left.=\widehat{O} T A T^{-1} \widehat{Q} \quad \text { (from Step \#2) }\right)
\end{aligned}
$$

So if we set $\widehat{A}=\widehat{O}^{+} H_{2} \widehat{Q}^{+} \ldots$

Now how do we estimate A ?

Step \#3: Using what we know already

$$
\begin{aligned}
H_{2} & =O_{s+1} A Q_{s} \\
& =\widehat{O} T A T^{-1} \widehat{Q} \quad \text { (from Step \#2) }
\end{aligned}
$$

So if we set $\widehat{A}=\widehat{O}^{+} H_{2} \widehat{Q}^{+}$we get

$$
\Rightarrow \widehat{A}=T A T^{-1}
$$

A BLUEPRINT

Definition: The Markov parameters up to order $2 \mathrm{~s}+1$ are

$$
G=\left[D, C B, C A B, \cdots, C A^{2 s} B\right]
$$

- Estimate the Markov parameters from samples
- Solve for the estimates using the Ho-Kalman algorithm

Proposition: Can find good estimates from just the Markov parameters

A BLUEPRINT

Definition: The Markov parameters up to order $2 \mathrm{~s}+1$ are

$$
G=\left[D, C B, C A B, \cdots, C A^{2 s} B\right]
$$

- Estimate the Markov parameters from samples
- Solve for the estimates using the Ho-Kalman algorithm

Proposition: Can find good estimates from just the Markov parameters
[Oymak, Ozay] gave stability analysis, if condition number is bdd

A BLUEPRINT

Definition: The Markov parameters up to order $2 \mathrm{~s}+1$ are

$$
G=\left[D, C B, C A B, \cdots, C A^{2 s} B\right]
$$

- Estimate the Markov parameters from samples
- Solve for the estimates using the Ho-Kalman algorithm

Main Challenge: How do we estimate the Markov parameters?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

A NAÏVE APPROACH

Observation: If the control and noises are independent and have identity covariance, then

$$
\mathbb{E}\left[y_{t+j} u_{t}^{\top}\right]=\left\{\begin{array}{cl}
D & \text { if } j=0 \\
C A^{j-1} B & \text { else }
\end{array}\right.
$$

A NAÏVE APPROACH

Observation: If the control and noises are independent and have identity covariance, then

$$
\mathbb{E}\left[y_{t+j} u_{t}^{\top}\right]=\left\{\begin{array}{cl}
D & \text { if } j=0 \\
C A^{j-1} B & \text { else }
\end{array}\right.
$$

Proof: Expand the recurrence, e.g. if $j=1$

$$
y_{t+1}=C x_{t+1}+D u_{t+1}+z_{t+1}
$$

A NAÏVE APPROACH

Observation: If the control and noises are independent and have identity covariance, then

$$
\mathbb{E}\left[y_{t+j} u_{t}^{\top}\right]=\left\{\begin{array}{cl}
D & \text { if } j=0 \\
C A^{j-1} B & \text { else }
\end{array}\right.
$$

Proof: Expand the recurrence, e.g. if $j=1$

$$
\begin{aligned}
y_{t+1} & =C x_{t+1}+D u_{t+1}+z_{t+1} \\
& =C A x_{t}+C B u_{t}+C w_{t}+D u_{t+1}+z_{t+1}
\end{aligned}
$$

A NAÏVE APPROACH

Observation: If the control and noises are independent and have identity covariance, then

$$
\mathbb{E}\left[y_{t+j} u_{t}^{\top}\right]=\left\{\begin{array}{cl}
D & \text { if } j=0 \\
C A^{j-1} B & \text { else }
\end{array}\right.
$$

Proof: Expand the recurrence, e.g. if $j=1$

$$
\begin{aligned}
y_{t+1} & =C x_{t+1}+D u_{t+1}+z_{t+1} \\
& =C A x_{t}+C B u_{t}+C w_{t}+D u_{t+1}+z_{t+1} \\
& \Rightarrow \mathbb{E}\left[y_{t+1} u_{t}^{\top}\right]=C B \mathbb{E}\left[u_{t} u_{t}^{\top}\right]=C B
\end{aligned}
$$

A MAJOR COMPLICATION

So why aren't we done?

A MAJOR COMPLICATION

So why aren't we done?

We could try to estimate $C A^{j-1} B$ using

$$
\frac{1}{T} \sum_{t=1}^{T} y_{t+j} u_{t}^{\top}
$$

A MAJOR COMPLICATION

So why aren't we done?

We could try to estimate $C A^{j-1} B$ using

$$
\frac{1}{T} \sum_{t=1}^{T} y_{t+j} u_{t}^{\top}
$$

But there is dependence across timesteps and this estimator can have unbounded variance

A MAJOR COMPLICATION

So why aren't we done?

We could try to estimate $C A^{j-1} B$ using

$$
\frac{1}{T} \sum_{t=1}^{T} y_{t+j} u_{t}^{\top}
$$

But there is dependence across timesteps and this estimator can have unbounded variance

Aside: This is why strict stability trivializes the problem: Otherwise just wait long enough to get almost independent samples

STABILIZING THE MOMENTS

Main Idea: Form a new time series

$$
\widehat{y}_{t} \triangleq y_{t}-\sum_{j=1}^{n} c_{j} y_{t-j} \text { such that... }
$$

STABILIZING THE MOMENTS

Main Idea: Form a new time series

$$
\widehat{y}_{t} \triangleq y_{t}-\sum_{j=1}^{n} c_{j} y_{t-j} \text { such that }
$$

(1) Expectation is unchanged i.e. $\mathbb{E}\left[\widehat{y}_{t+j} u_{t}^{\top}\right]=\mathbb{E}\left[y_{t+j} u_{t}^{\top}\right]$

STABILIZING THE MOMENTS

Main Idea: Form a new time series

$$
\widehat{y}_{t} \triangleq y_{t}-\sum_{j=1}^{n} c_{j} y_{t-j} \text { such that }
$$

(1) Expectation is unchanged i.e. $\mathbb{E}\left[\widehat{y}_{t+j} u_{t}^{\top}\right]=\mathbb{E}\left[y_{t+j} u_{t}^{\top}\right]$
(2) Its variance is bounded, independently of t

First Attempt: Take the $c j^{\prime}$ s = coefficients of the characteristic poly

First Attempt: Take the $c j^{\prime} s=$ coefficients of the characteristic poly
Then the Cayley-Hamilton Theorem tells us

$$
A^{n}-\sum_{j=1}^{n} c_{j} A^{n-j}=0
$$

First Attempt: Take the $c j^{\prime}$ s = coefficients of the characteristic poly
Then the Cayley-Hamilton Theorem tells us

$$
A^{n}-\sum_{j=1}^{n} c_{j} A^{n-j}=0
$$

And can cancel all but the transient terms (proof by picture)

For simplicity suppose $x_{t+1}=A x_{t}+B u_{t}$ and $y_{t}=C x_{t}$
Then we have

$$
\widehat{y}_{t+1}=y_{t+1} \quad-c_{1} y_{t} \quad-c_{2} y_{t-1} \quad \cdots
$$

For simplicity suppose $x_{t+1}=A x_{t}+B u_{t}$ and $y_{t}=C x_{t}$
Then we have

$$
\widehat{y}_{t+1}=C x_{t+1} \quad-c_{1} C x_{t} \quad-c_{2} C x_{t-1} \ldots
$$

For simplicity suppose $x_{t+1}=A x_{t}+B u_{t}$ and $y_{t}=C x_{t}$
Then we have

$$
\begin{array}{l|l|l}
\widehat{y}_{t+1}= & & \\
\hline & -x_{1+1} C x_{t} & \\
\hline & & -c_{2} C x_{t-1} \\
\hline & &
\end{array}
$$

For simplicity suppose $x_{t+1}=A x_{t}+B u_{t}$ and $y_{t}=C x_{t}$
Then we have

$$
\begin{array}{l|l|l}
\widehat{y}_{t+1}= & C x_{t+1} & \\
\hline & -c_{1} C x_{t} & \\
\hline & & -c_{2} C x_{t-1} \\
\hline & &
\end{array}
$$

For simplicity suppose $x_{t+1}=A x_{t}+B u_{t}$ and $y_{t}=C x_{t}$
Then we have

$$
\widehat{y}_{t+1}=\begin{array}{l|l|l}
C B u_{t} & & \\
\hline C A x_{t} & -c_{1} C x_{t} & \\
\hline & & -c_{2} C x_{t-1} \\
\hline & &
\end{array}
$$

For simplicity suppose $x_{t+1}=A x_{t}+B u_{t}$ and $y_{t}=C x_{t}$
Then we have

$$
\begin{array}{l|l|l}
\widehat{y}_{t+1}=C B u_{t} & & \\
\hline C A x_{t} & -c_{1} C x_{t} & \\
\hline & & -c_{2} C x_{t-1} \\
\hline & &
\end{array}
$$

For simplicity suppose $x_{t+1}=A x_{t}+B u_{t}$ and $y_{t}=C x_{t}$
Then we have

$$
\begin{array}{r|r|l}
\widehat{y}_{t+1}= & & \\
\hline C B u_{t} & & \\
\hline C A^{2} x_{t-1} & -c_{1} C A x_{t-1} & -c_{2} C x_{t-1} \\
\hline & &
\end{array}
$$

For simplicity suppose $x_{t+1}=A x_{t}+B u_{t}$ and $y_{t}=C x_{t}$
Then we have

$$
\begin{array}{r|r|r}
\widehat{y}_{t+1}= & & \\
\hline C B u_{t} & & \\
\hline C A^{2} x_{t-1} & -c_{1} C A x_{t-1} & -c_{2} C x_{t-1} \\
\hline & & \\
\hline & &
\end{array}
$$

For simplicity suppose $x_{t+1}=A x_{t}+B u_{t}$ and $y_{t}=C x_{t}$
Then we have

$$
\begin{array}{r|r|r}
\widehat{y}_{t+1}= & C B u_{t} & \\
\hline C A B u_{t-1} & -c_{1} C B u_{t-1} & \\
\hline C A^{2} B u_{t-2} & -c_{1} C A B u_{t-2} & -c_{2} C B u_{t-2} \\
\hline C A^{3} x_{t-2} & -c_{1} C A^{2} x_{t-2} & -c_{2} C A x_{t-2}
\end{array}
$$

For simplicity suppose $x_{t+1}=A x_{t}+B u_{t}$ and $y_{t}=C x_{t}$
Then we have

$$
\begin{array}{r|r|r}
\widehat{y}_{t+1}= & \\
\hline C B u_{t} & & \\
\hline C A^{2} B u_{t-2} & -c_{1} C A B u_{t-2} & -c_{2} C B u_{t-2} \\
\hline C A^{3} x_{t-2} & -c_{1} C A^{2} x_{t-2} & -c_{2} C A x_{t-2} \\
\\
\text { Eventually get cancellation! }
\end{array}
$$

First Attempt: Take the $c j^{\prime}$ s = coefficients of the characteristic poly
Then the Cayley-Hamilton Theorem tells us

$$
A^{n}-\sum_{j=1}^{n} c_{j} A^{n-j}=0
$$

And can cancel all but the transient terms (proof by picture)

First Attempt: Take the $c j^{\prime} s=$ coefficients of the characteristic poly Then the Cayley-Hamilton Theorem tells us

$$
A^{n}-\sum_{j=1}^{n} c_{j} A^{n-j}=0
$$

And can cancel all but the transient terms (proof by picture)

$$
\widehat{y}_{t}=\sum_{i=1}^{n}\left(C A^{i-1} B-\sum_{j=1}^{i-1} c_{j} C A^{i-j-1} B\right) u_{t-i}
$$

zero

$$
+\sum_{i=n+1}^{t}\left(C A^{i-n-1}\left(A^{n}-\sum_{j=1}^{n} j^{n-j}\right) B\right) u_{t-i}
$$

First Attempt: Take the $c j^{\prime}$ s = coefficients of the characteristic poly Then the Cayley-Hamilton Theorem tells us

$$
A^{n}-\sum_{j=1}^{n} c_{j} A^{n-j}=0
$$

And can cancel all but the transient terms (proof by picture)

$$
\widehat{y}_{t}=\sum_{i=1}^{n}\left(C A^{i-1} B-\sum_{j=1}^{i-1} c_{j} C A^{i-j-1} B\right) u_{t-i}
$$

First Attempt: Take the $c j^{\prime}$ s = coefficients of the characteristic poly Then the Cayley-Hamilton Theorem tells us

$$
A^{n}-\sum_{j=1}^{n} c_{j} A^{n-j}=0
$$

And can cancel all but the transient terms (proof by picture)

$$
\widehat{y}_{t}=\sum_{i=1}^{n}\left(C A^{i-1} B-\sum_{j=1}^{i-1} c_{j} C A^{i-j-1} B\right) u_{t-i}
$$

Thus the variance is bounded independently of t

First Attempt: Take the $c j^{\prime}$ s = coefficients of the characteristic poly
And so direct computation shows the new time series satisfies
(2) Its variance is bounded, independently of t

First Attempt: Take the $c j^{\prime}$ s = coefficients of the characteristic poly
And so direct computation shows the new time series satisfies
(2) Its variance is bounded, independently of t

Unfortunately
X (1) Expectation is unchanged i.e. $\mathbb{E}\left[\widehat{y}_{t+j} u_{t}^{\top}\right]=\mathbb{E}\left[y_{t+j} u_{t}^{\top}\right]$

First Attempt: Take the $c j^{\prime}$ s = coefficients of the characteristic poly
And so direct computation shows the new time series satisfies
(2) Its variance is bounded, independently of t

Unfortunately
X (1) Expectation is unchanged i.e. $\mathbb{E}\left[\widehat{y}_{t+j} u_{t}^{\top}\right]=\mathbb{E}\left[y_{t+j} u_{t}^{\top}\right]$
because we pick up extra terms

$$
\widehat{y}_{t}=\sum_{i=1}^{n}\left(C A^{i-1} B-\sum_{j=1}^{i-1} c_{j} C A^{i-j-1} B\right) u_{t-i}
$$

Second Attempt: Same strategy, but using lag

$$
\widehat{y}_{t}=y_{t}-\sum_{j=1}^{n} \alpha_{j} y_{t-j-r}
$$

Second Attempt: Same strategy, but using lag

$$
\begin{aligned}
& \widehat{y}_{t}=y_{t}-\sum_{j=1}^{n} \alpha_{j} y_{t-j-r} \\
& \text { Claim: If } r>k \text { there is no } u_{t-1}, u_{t-2} \ldots, u_{t-k}
\end{aligned}
$$

Second Attempt: Same strategy, but using lag

$$
\begin{aligned}
& \widehat{y}_{t}=y_{t}-\sum_{j=1}^{n} \alpha_{j} y_{t-j-r} \\
& \text { Claim: If } r>k \text { there is no } u_{t-1}, u_{t-2} \ldots, u_{t-k}
\end{aligned}
$$

Hence we now have
(1) Expectation is unchanged i.e. $\mathbb{E}\left[\widehat{y}_{t+j} u_{t}^{\top}\right]=\mathbb{E}\left[y_{t+j} u_{t}^{\top}\right]$

Second Attempt: Same strategy, but using lag

$$
\begin{aligned}
& \widehat{y}_{t}=y_{t}-\sum_{j=1}^{n} \alpha_{j} y_{t-j-r} \\
& \text { Claim: If } r>k \text { there is no } u_{t-1}, u_{t-2} \ldots, u_{t-k}
\end{aligned}
$$

Hence we now have
(1) Expectation is unchanged i.e. $\mathbb{E}\left[\widehat{y}_{t+j} u_{t}^{\top}\right]=\mathbb{E}\left[y_{t+j} u_{t}^{\top}\right]$

But we still cancel out long-range dependencies, so the variance stays bounded

Third Attempt: ...

Third Attempt: ...

(I lied)

Third Attempt: ...

(I lied)

Problem: The coefficients of the characteristic poly can be exponentially large

Third Attempt: ...

(I lied)

Problem: The coefficients of the characteristic poly can be exponentially large

Proposition [informal]: Can show good, bounded C_{j} 's exist by appealing to condition number bds on O_{s} / Q_{s} instead

Third Attempt: ...

(I lied)

Problem: The coefficients of the characteristic poly can be exponentially large

Proposition [informal]: Can show good, bounded c_{j} 's exist by appealing to condition number bds on O_{s} / Q_{s} instead

Third Attempt: ...

(I lied)

Problem: The coefficients of the characteristic poly can be exponentially large

Proposition [informal]: Can show good, bounded c_{j} 's exist by appealing to condition number bds on O_{s} / Q_{s} instead

Isn't this all circular?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

A CONVEX PROGRAM

Can write a convex program to search for the c_{j} 's, now that we know they exist

A CONVEX PROGRAM

Can write a convex program to search for the c_{j} 's, now that we know they exist

Find $\left(c_{1}, c_{2}, \ldots, c_{S}\right)$
such that $\left|c_{j}\right| \leq \varepsilon_{1}$ for all j

$$
\text { and }\left\|y_{t}-\sum_{k=1}^{s} c_{j} y_{i-j-r}\right\|^{2} \leq \varepsilon_{2} \quad \text { for all } \mathrm{t}
$$

A CONVEX PROGRAM

Can write a convex program to search for the c_{j} 's, now that we know they exist

Find $\left(c_{1}, c_{2}, \ldots, c_{S}\right)$
such that $\left|c_{j}\right| \leq \varepsilon_{1}$ for all j

$$
\text { and }\left\|y_{t}-\sum_{k=1}^{s} c_{j} y_{i-j-r}\right\|^{2} \leq \varepsilon_{2} \text { for all } \mathrm{t}
$$

(1) Define a function Φ_{C} that captures the potential variance

A CONVEX PROGRAM

Can write a convex program to search for the c_{j} 's, now that we know they exist

Find $\left(c_{1}, c_{2}, \ldots, c_{S}\right)$
such that $\left|c_{j}\right| \leq \varepsilon_{1}$ for all j

$$
\text { and }\left\|y_{t}-\sum_{k=1}^{s} c_{j} y_{i-j-r}\right\|^{2} \leq \varepsilon_{2} \text { for all } \mathrm{t}
$$

(1) Define a function Φ_{C} that captures the potential variance
(2) If it's large, whp a constraint is violated via anticoncentration

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

OUTLINE

Part I: Introduction

- Linear Dynamical Systems and Applications
- Main Problem
- Well-Posedness and Our Results

Part II: A Method of Moments Approach

- The Ho-Kalman Algorithm
- Controlling the Variance?
- Convex Programming to the Rescue

Epilogue: Is This Just the Start?

LOOKING FORWARD

The method of moments saved the day (again)

LOOKING FORWARD

The method of moments saved the day (again)
More ambitiously, we can ask:

Is there a dictionary mapping algorithmic tools in unsupervised learning to their dynamical counterparts?

FURTHER DIRECTIONS

What if, at some time, we switch between different systems?

e.g. different variants of COVID

FURTHER DIRECTIONS

What if, at some time, we switch between different systems?

e.g. different variants of COVID

Generalization of the classic change point detection problem

FURTHER DIRECTIONS

What if, at some time, we switch between different systems?

e.g. different variants of COVID

Generalization of the classic change point detection problem

What about heterogeneity?

FURTHER DIRECTIONS

What if, at some time, we switch between different systems?

e.g. different variants of COVID

Generalization of the classic change point detection problem

What about heterogeneity?

Can learn mixture models even when the trajectories cannot be clustered, via tensor methods

FURTHER DIRECTIONS

What if, at some time, we switch between different systems?

e.g. different variants of COVID

Generalization of the classic change point detection problem

What about heterogeneity?

Can learn mixture models even when the trajectories cannot be clustered, via tensor methods

There is even more to say about reinforcement learning, but that is another topic for another time...

Summary:

- Linear dynamical systems have wide-ranging applications, but how do we learn them?
- New algorithm via the method of moments with essentially minimal assumptions
- Is there a dictionary for mapping tools from unsupervised learning to their dynamical counterpart?

Summary:

- Linear dynamical systems have wide-ranging applications, but how do we learn them?
- New algorithm via the method of moments with essentially minimal assumptions
- Is there a dictionary for mapping tools from unsupervised learning to their RL/dynamical counterpart?

Thanks! Any Questions?

