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Corollary:	Any	CNF	formula	with

Some	remarkable	facts:

(1) This	is	tight	– i.e.	when	the	condition	is	violated,	there	
are	CNF	formulas	with	no	satisfying	assignment

(2)		A	random	assignment	can	be	exponentially	unlikely	to	
satisfy	the	formula

(3) There	is	an	efficient	algorithm	to	find	a	satisfying	
assignment	due	to	[Moser,	Tardos ‘10]

(2)	Every	clause	intersects	at	most	D	others (dependency	degree)
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[Beck	‘91]	gave	an	algorithm	that	works	under	the	stronger	
precondition	D	≤	2k/8/poly(k)	

Simplest,	most	elegant	algorithm	you	can	think	of:	while	there	is
an	unsatisfied	clause,	re-randomize	its	variables

Moser-Tardos works	under	some	constraints	on	how	events
are	described,	many	improventsand	generalizations:

[Haeupler,	Saha,	Srinivasan	‘11]	
[Achlioptas,	Iliopoulis ‘14]	[Harvey,	Vondrak ‘15]	

[Harris,	Srinivasan	‘14]	
[Kolmogorov	‘16]	

Theorem	[Moser,	Tardos ‘10]:	There	is	an	efficient	algorithm	for	
finding	a	satisfying	assignment	if	eD	≤	2k
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When	the	LLL	guarantees	a	solution	exists,	we	can	find	it

Constructive	Local	Lemma:		

When	the	LLL	guarantees	a	solution	exists,	can	we	count	
the	number	of	satisfying	assignments?	

Approximate	Counting	Local	Lemma:		

Can	we	count	the	number	of	needles?

Counting	under	the	LLL	conditions	is	not	self-reducible,	but	
nevertheless	we’ll	solve	both	problems	simultaneously!

A	canonical	example	of	finding	a	needle	in	a	haystack
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Many	tight	thresholds	known	for	specific	problems,	e.g.

I:	independent	 set

|I|

Counting	independent	sets	in	the	hard-core	model:	Given	a	graph	
G	=	(V,	E)	with	max	degree	d,	approximate

Z(			) =

[Weitz ‘06]	gave	an	algorithm	that	works	whenever

≤
(d-1)d-1

(d-2)d

[Sly	‘10]	showed	that	approximate	counting	is	NP-hard	above	this
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(3)		Temporal	mixing:	When	does	Gibbs	sampling	mix	quickly?

(4)		Computational:	When	does	approximate	counting	go	from
easy	to	hard?

All	of	the	following	happen	together,	for	independent	set:

(1)		Correlation	decay:	When	does	fixing	states	of	nodes	far	away
from	u	have	negligible	effect	of	u’s	state?

(2)		Uniqueness:	When	is	the	Gibbs	measure	on	the	infinite	tree
unique?
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The	trouble	is	our	problem	is	really	about	hypergraphs,	where	we
have	wide	gaps	in	our	understanding	

Special	Case:	no	variable	is	negated,	e.g.

x1 ∧∨x3 x8∨( ) x2∨x3 x4∨(∧ ).	.	.
we	get	the	hypergraph independent	set	problem:

x1

x2 x3 x8

x4 x6 x7

x4 ∧∨x6 x7∨( )

clauses

hyperedges

variables

Comment:	Let	d	be	maximum	degree,	then	d	≤	D	≤	2kd	if	at	most
2k	variables	per	clause	

nodes
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COMPLEXITY	OF	HYPERGRAPH INDEP.	SET

Theorem	[Bezakova et	al.	‘16]:	It	is	NP-hard	to	approximately
count	the	number	of	hypergraph independent	sets	within	an
exponential	factor	if	d	>	5		2k/2·
If	you	can	approximately	sample	you	can	approximately	count:

“It	is	NP-hard	to	approximately	count/sample
under	the	sharp	Lovasz Local	Lemma	conditions”

Theorem	[Bordewich,	Dyer,	Karpinski ‘06]:	There	is	a	randomized
algorithm	to	approximately	count	if	d	≤ k	– 2

Best	known	algorithm:

[Bezakova et	al.]	gave	a	deterministic	algorithm	under	same	conds.



STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

(1)		Correlation	decay:	There	can	be	long-range	correlations	



STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

(1)		Correlation	decay:	There	can	be	long-range	correlations	

Green	clause:	
wants	at	least	one	green

Red	clause:	
wants	at	least	one	red

.	.	.



STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

Green	clause:	
wants	at	least	one	green

Red	clause:	
wants	at	least	one	red

.	.	.

(1)		Correlation	decay:	There	can	be	long-range	correlations	



STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

Green	clause:	
wants	at	least	one	green

Red	clause:	
wants	at	least	one	red

.	.	.

(1)		Correlation	decay:	There	can	be	long-range	correlations	



STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

Green	clause:	
wants	at	least	one	green

Red	clause:	
wants	at	least	one	red

.	.	.

(1)		Correlation	decay:	There	can	be	long-range	correlations	



STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

(1)		Correlation	decay:	There	can	be	long-range	correlations	



STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

(2)		Uniqueness:	Approximate	counting	is	NP-hard	even	when	the
Gibbs	measure	is	unique,	see	[Bezakova et	al.	’16]

(1)		Correlation	decay:	There	can	be	long-range	correlations	



STRATIFICATION	OF	THRESHOLDS

(3)		Temporal	mixing:	Uhhh,	in	non-monotone	case	the	solution
space	is	disconnected

For	approximate	counting	in	bounded	degree	CNFs:

(2)		Uniqueness:	Approximate	counting	is	NP-hard	even	when	the
Gibbs	measure	is	unique,	see	[Bezakova et	al.	’16]

(1)		Correlation	decay:	There	can	be	long-range	correlations	



STRATIFICATION	OF	THRESHOLDS

(3)		Temporal	mixing:	Uhhh,	in	non-monotone	case	the	solution
space	is	disconnected

(4)		Computational:	Can	we	approximately	count	when	the	degree
is	exponential	in	the	width?

For	approximate	counting	in	bounded	degree	CNFs:

(2)		Uniqueness:	Approximate	counting	is	NP-hard	even	when	the
Gibbs	measure	is	unique,	see	[Bezakova et	al.	’16]

(1)		Correlation	decay:	There	can	be	long-range	correlations	



OUR	RESULTS	(COUNTING)

Theorem:	There	is	a	deterministic	algorithm	to	approximately	
count	the	number	of	satisfying	assignments	if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

·C		k5 ≤	D	≤	c		2k/60·



OUR	RESULTS	(COUNTING)

Theorem:	There	is	a	deterministic	algorithm	to	approximately	
count	the	number	of	satisfying	assignments	if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

·C		k5 ≤	D	≤	c		2k/60

i.e.	the	algorithm	outputs	Z	that	satisfies:

Z	≤ # satisfying
assignments ≤	(1+n

-T)	Z

·



OUR	RESULTS	(COUNTING)

Theorem:	There	is	a	deterministic	algorithm	to	approximately	
count	the	number	of	satisfying	assignments	if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

·C		k5 ≤	D	≤	c		2k/60

i.e.	the	algorithm	outputs	Z	that	satisfies:

Z	≤ # satisfying
assignments ≤	(1+n

-T)	Z

The	degree	of	the	polynomial	depends	polynomially on	D	and	T

·



OUR	RESULTS	(COUNTING)

Theorem:	There	is	a	deterministic	algorithm	to	approximately	
count	the	number	of	satisfying	assignments	if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

·C		k5 ≤	D	≤	c		2k/60

i.e.	the	algorithm	outputs	Z	that	satisfies:

Z	≤ # satisfying
assignments ≤	(1+n

-T)	Z

The	degree	of	the	polynomial	depends	polynomially on	D	and	T

This	is	typical	for	deterministic	algorithms,	open:	Can	randomized
algorithms	do	much	better?

·
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For	general	CNFs	with	between	k	and	2k	variables	per	clause

Z	≤ # satisfying
assignments ≤	(1+n

-T)	Z

The	technique	is	rather	bizarre	(even	to	me)

Also	extends	to	non-binary	counting	problems

e.g.	red,	green,	blue assignments	with	NAE	constraints

Theorem:	There	is	a	deterministic	algorithm	to	approximately	
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i.e.	the	algorithm	outputs	Z	that	satisfies:

·



OUR	RESULTS	(SAMPLING)

Theorem:	There	is	a	randomized	algorithm	to	approximately	
sample	from	the	set	of	satisfying	assigs if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

·C		k5 ≤	D	≤	c		2k/60·



OUR	RESULTS	(SAMPLING)

Theorem:	There	is	a	randomized	algorithm	to	approximately	
sample	from	the	set	of	satisfying	assigs if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

i.e.	the	output	of	the	algorithm	is	n-T-close	in	total	variation
distance	to	the	uniform	distribution	on	satisfying	assignments	

·C		k5 ≤	D	≤	c		2k/60·
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Theorem	[Hermon,	Sly,	Zhang]:	In	the	monotone	case,	there	is
a	randomized	algorithm	to	approx.	count/sample	if d ≤	c		2k/2·
Theorem	[Guo,	Jerrum,	Liu]:	If	every	pair	of	intersecting	clauses
shares	at	least	min(log(dk),	k/2)	variables,	there	is	a	randomzed
algorithm	to	approx.	count/sample	if d ≤	c		2k/2·
Both	of	these	results	are	tight	– it	is	NP-hard	for	larger	d	even	for
the	types	of	restricted	instances	they	consider			
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(1)	Start	with	an	oracle	that	can	answer	queries	about	the	
probability	x=T/F	under	the	uniform	distribution	on	assignments
given	the	current	partial	assignment	(thought	experiment)

(2)	Use	the	oracle	to	build	out	a	coupling	between	the	satisfying
solutions	with	x=T	and	with	x=F

This	coupling	is	very	special	in	how	it	is	concise/avoids	double	
counting,	so	that	if	I	gave	you	it	you	could	verify	the	coupling
and	compute	the	ratio	Pr[x=T]/Pr[x=F]

(3)	Use	linear	programming	to	find	this	special	type	of	coupling
that	we	now	know	exists



Thanks!	
Main	Open	Question:

Is																				the	true	threshold	for	algorithmically	
counting	and	sampling	in	k-CNFs?

D	≤	c		2k/2·

Any	Questions?


