
Approximate	Counting	and	the	
Lovasz Local	Lemma	

Ankur	Moitra	(MIT)

Fundamental	tool	in	the	probabilistic	method:

Lovasz Local	Lemma	(informal):	A	collection	of	events	with	bdded
dependence	has	positive	probability	that	no	event	occurs

BACKGROUND

Fundamental	tool	in	the	probabilistic	method:

Lovasz Local	Lemma	(informal):	A	collection	of	events	with	bdded
dependence	has	positive	probability	that	no	event	occurs

In	this	talk,	we’ll	focus	on	a	well-known	corollary	for	CNFs

BACKGROUND

Fundamental	tool	in	the	probabilistic	method:

Lovasz Local	Lemma	(informal):	A	collection	of	events	with	bdded
dependence	has	positive	probability	that	no	event	occurs

In	this	talk,	we’ll	focus	on	a	well-known	corollary	for	CNFs

(1)	At	least	k	variables	per	clause (width)

(2)	Every	clause	intersects	at	most	D	others (dependency	degree)

and	eD ≤	2k has	a	satisfying	solution	

Corollary:	Any	CNF	formula	with

BACKGROUND

x1 ∧∨x3 x8∨() x2∨x3 x7∨(∧).	.	.x1 ∧∨x6 x7∨()Ex:

(1)	At	least	k	variables	per	clause (width)

and	eD ≤	2k has	a	satisfying	solution	

Corollary:	Any	CNF	formula	with

(2)	Every	clause	intersects	at	most	D	others (dependency	degree)

(1)	At	least	k	variables	per	clause (width)

and	eD ≤	2k has	a	satisfying	solution	

Corollary:	Any	CNF	formula	with

Some	remarkable	facts:

(1) This	is	tight	– i.e.	when	the	condition	is	violated,	there	
are	CNF	formulas	with	no	satisfying	assignment

(2)	Every	clause	intersects	at	most	D	others (dependency	degree)

(1)	At	least	k	variables	per	clause (width)

and	eD ≤	2k has	a	satisfying	solution	

Corollary:	Any	CNF	formula	with

Some	remarkable	facts:

(1) This	is	tight	– i.e.	when	the	condition	is	violated,	there	
are	CNF	formulas	with	no	satisfying	assignment

(2)		A	random	assignment	can	be	exponentially	unlikely	to	
satisfy	the	formula

(2)	Every	clause	intersects	at	most	D	others (dependency	degree)

(1)	At	least	k	variables	per	clause (width)

and	eD ≤	2k has	a	satisfying	solution	

Corollary:	Any	CNF	formula	with

Some	remarkable	facts:

(1) This	is	tight	– i.e.	when	the	condition	is	violated,	there	
are	CNF	formulas	with	no	satisfying	assignment

(2)		A	random	assignment	can	be	exponentially	unlikely	to	
satisfy	the	formula

(3) There	is	an	efficient	algorithm	to	find	a	satisfying	
assignment	due	to	[Moser,	Tardos ‘10]

(2)	Every	clause	intersects	at	most	D	others (dependency	degree)

THE	CONSTRUCTIVE	LOCAL	LEMMA

[Beck	‘91]	gave	an	algorithm	that	works	under	the	stronger	
precondition	D	≤	2k/8/poly(k)	

THE	CONSTRUCTIVE	LOCAL	LEMMA

[Beck	‘91]	gave	an	algorithm	that	works	under	the	stronger	
precondition	D	≤	2k/8/poly(k)	

Theorem	[Moser,	Tardos ‘10]:	There	is	an	efficient	algorithm	for	
finding	a	satisfying	assignment	if	eD ≤	2k

THE	CONSTRUCTIVE	LOCAL	LEMMA

[Beck	‘91]	gave	an	algorithm	that	works	under	the	stronger	
precondition	D	≤	2k/8/poly(k)	

Simplest,	most	elegant	algorithm	you	can	think	of:	while	there	is
an	unsatisfied	clause,	re-randomize	its	variables

Theorem	[Moser,	Tardos ‘10]:	There	is	an	efficient	algorithm	for	
finding	a	satisfying	assignment	if	eD	≤	2k

THE	CONSTRUCTIVE	LOCAL	LEMMA

[Beck	‘91]	gave	an	algorithm	that	works	under	the	stronger	
precondition	D	≤	2k/8/poly(k)	

Simplest,	most	elegant	algorithm	you	can	think	of:	while	there	is
an	unsatisfied	clause,	re-randomize	its	variables

Moser-Tardos works	under	some	constraints	on	how	events
are	described,	many	improventsand	generalizations:

[Haeupler,	Saha,	Srinivasan	‘11]	
[Achlioptas,	Iliopoulis ‘14]	[Harvey,	Vondrak ‘15]	

[Harris,	Srinivasan	‘14]	
[Kolmogorov	‘16]	

Theorem	[Moser,	Tardos ‘10]:	There	is	an	efficient	algorithm	for	
finding	a	satisfying	assignment	if	eD	≤	2k

When	the	LLL	guarantees	a	solution	exists,	we	can	find	it

Constructive	Local	Lemma:		

When	the	LLL	guarantees	a	solution	exists,	we	can	find	it

Constructive	Local	Lemma:		

When	the	LLL	guarantees	a	solution	exists,	can	we	sample	
from	the	set	of	satisfying	assignments	uniformly	at	random?	

Sampling	Local	Lemma:		

When	the	LLL	guarantees	a	solution	exists,	we	can	find	it

Constructive	Local	Lemma:		

When	the	LLL	guarantees	a	solution	exists,	can	we	sample	
from	the	set	of	satisfying	assignments	uniformly	at	random?	

Sampling	Local	Lemma:		

A	canonical	example	of	finding	a	needle	in	a	haystack

When	the	LLL	guarantees	a	solution	exists,	we	can	find	it

Constructive	Local	Lemma:		

When	the	LLL	guarantees	a	solution	exists,	can	we	sample	
from	the	set	of	satisfying	assignments	uniformly	at	random?	

Sampling	Local	Lemma:		

Can	we	sample	a	needle	uniformly	at	random?

A	canonical	example	of	finding	a	needle	in	a	haystack

When	the	LLL	guarantees	a	solution	exists,	we	can	find	it

Constructive	Local	Lemma:		

When	the	LLL	guarantees	a	solution	exists,	can	we	sample	
from	the	set	of	satisfying	assignments	uniformly	at	random?	

Sampling	Local	Lemma:		

Can	we	sample	a	needle	uniformly	at	random?

The	Moser-Tardos algorithm	can	be	thought	of	as	a	random	walk
that	terminates	when	it	finds	a	solution

A	canonical	example	of	finding	a	needle	in	a	haystack

When	the	LLL	guarantees	a	solution	exists,	we	can	find	it

Constructive	Local	Lemma:		

When	the	LLL	guarantees	a	solution	exists,	can	we	sample	
from	the	set	of	satisfying	assignments	uniformly	at	random?	

Sampling	Local	Lemma:		

Can	we	sample	a	needle	uniformly	at	random?

The	Moser-Tardos algorithm	can	be	thought	of	as	a	random	walk
that	terminates	when	it	finds	a	solution

But	the	distribution	on	solutions	it	finds	can	be	far	from	uniform!

A	canonical	example	of	finding	a	needle	in	a	haystack

When	the	LLL	guarantees	a	solution	exists,	we	can	find	it

Constructive	Local	Lemma:		

A	canonical	example	of	finding	a	needle	in	a	haystack

When	the	LLL	guarantees	a	solution	exists,	we	can	find	it

Constructive	Local	Lemma:		

When	the	LLL	guarantees	a	solution	exists,	can	we	count	
the	number	of	satisfying	assignments?	

Approximate	Counting	Local	Lemma:		

Can	we	count	the	number	of	needles?

A	canonical	example	of	finding	a	needle	in	a	haystack

When	the	LLL	guarantees	a	solution	exists,	we	can	find	it

Constructive	Local	Lemma:		

When	the	LLL	guarantees	a	solution	exists,	can	we	count	
the	number	of	satisfying	assignments?	

Approximate	Counting	Local	Lemma:		

Can	we	count	the	number	of	needles?

Counting	under	the	LLL	conditions	is	not	self-reducible,	but	
nevertheless	we’ll	solve	both	problems	simultaneously!

A	canonical	example	of	finding	a	needle	in	a	haystack

A	FORAY	INTO	APPROXIMATE	COUNTING

Many	tight	thresholds	known	for	specific	problems

A	FORAY	INTO	APPROXIMATE	COUNTING

Many	tight	thresholds	known	for	specific	problems,	e.g.

I:	independent	 set

|I|

Counting	independent	sets	in	the	hard-core	model:	Given	a	graph	
G	=	(V,	E)	with	max	degree	d,	approximate

Z() =

A	FORAY	INTO	APPROXIMATE	COUNTING

Many	tight	thresholds	known	for	specific	problems,	e.g.

I:	independent	 set

|I|

Counting	independent	sets	in	the	hard-core	model:	Given	a	graph	
G	=	(V,	E)	with	max	degree	d,	approximate

Z() =

[Weitz ‘06]	gave	an	algorithm	that	works	whenever

≤
(d-1)d-1

(d-2)d

A	FORAY	INTO	APPROXIMATE	COUNTING

Many	tight	thresholds	known	for	specific	problems,	e.g.

I:	independent	 set

|I|

Counting	independent	sets	in	the	hard-core	model:	Given	a	graph	
G	=	(V,	E)	with	max	degree	d,	approximate

Z() =

[Weitz ‘06]	gave	an	algorithm	that	works	whenever

≤
(d-1)d-1

(d-2)d

[Sly	‘10]	showed	that	approximate	counting	is	NP-hard	above	this

CONFLUENCE	OF	THRESHOLDS

All	of	the	following	happen	together,	for	independent	set:

(1)		Correlation	decay:	When	does	fixing	states	of	nodes	far	away
from	u	have	negligible	effect	of	u’s	state?

CONFLUENCE	OF	THRESHOLDS

All	of	the	following	happen	together,	for	independent	set:

(1)		Correlation	decay:	When	does	fixing	states	of	nodes	far	away
from	u	have	negligible	effect	of	u’s	state?

(2)		Uniqueness:	When	is	the	Gibbs	measure	on	the	infinite	tree
unique?

CONFLUENCE	OF	THRESHOLDS

(3)		Temporal	mixing:	When	does	Gibbs	sampling	mix	quickly?

All	of	the	following	happen	together,	for	independent	set:

(1)		Correlation	decay:	When	does	fixing	states	of	nodes	far	away
from	u	have	negligible	effect	of	u’s	state?

(2)		Uniqueness:	When	is	the	Gibbs	measure	on	the	infinite	tree
unique?

CONFLUENCE	OF	THRESHOLDS

(3)		Temporal	mixing:	When	does	Gibbs	sampling	mix	quickly?

(4)		Computational:	When	does	approximate	counting	go	from
easy	to	hard?

All	of	the	following	happen	together,	for	independent	set:

(1)		Correlation	decay:	When	does	fixing	states	of	nodes	far	away
from	u	have	negligible	effect	of	u’s	state?

(2)		Uniqueness:	When	is	the	Gibbs	measure	on	the	infinite	tree
unique?

The	trouble	is	our	problem	is	really	about	hypergraphs,	where	we
have	wide	gaps	in	our	understanding	

The	trouble	is	our	problem	is	really	about	hypergraphs,	where	we
have	wide	gaps	in	our	understanding	

Special	Case:	no	variable	is	negated,	e.g.

x1 ∧∨x3 x8∨() x2∨x3 x4∨(∧).	.	.x4 ∧∨x6 x7∨()

The	trouble	is	our	problem	is	really	about	hypergraphs,	where	we
have	wide	gaps	in	our	understanding	

Special	Case:	no	variable	is	negated,	e.g.

x1 ∧∨x3 x8∨() x2∨x3 x4∨(∧).	.	.
we	get	the	hypergraph independent	set	problem:

x1

x2 x3 x8

x4 x6 x7

x4 ∧∨x6 x7∨()

clauses

hyperedges

variables

nodes

The	trouble	is	our	problem	is	really	about	hypergraphs,	where	we
have	wide	gaps	in	our	understanding	

Special	Case:	no	variable	is	negated,	e.g.

x1 ∧∨x3 x8∨() x2∨x3 x4∨(∧).	.	.
we	get	the	hypergraph independent	set	problem:

x1

x2 x3 x8

x4 x6 x7

x4 ∧∨x6 x7∨()

clauses

hyperedges

variables

Definition:	An	independent	set	(in	a	hypergraph)	is	a	set	of	nodes
with	no	induced	hyperedge

nodes

The	trouble	is	our	problem	is	really	about	hypergraphs,	where	we
have	wide	gaps	in	our	understanding	

Special	Case:	no	variable	is	negated,	e.g.

x1 ∧∨x3 x8∨() x2∨x3 x4∨(∧).	.	.
we	get	the	hypergraph independent	set	problem:

x1

x2 x3 x8

x4 x6 x7

x4 ∧∨x6 x7∨()

clauses

hyperedges

variables

nodes

The	trouble	is	our	problem	is	really	about	hypergraphs,	where	we
have	wide	gaps	in	our	understanding	

Special	Case:	no	variable	is	negated,	e.g.

x1 ∧∨x3 x8∨() x2∨x3 x4∨(∧).	.	.
we	get	the	hypergraph independent	set	problem:

x1

x2 x3 x8

x4 x6 x7

x4 ∧∨x6 x7∨()

clauses

hyperedges

variables

Claim:	The	number	of	satisfying	assignments	is	equal	to	the	number
of	independent	sets

nodes

The	trouble	is	our	problem	is	really	about	hypergraphs,	where	we
have	wide	gaps	in	our	understanding	

Special	Case:	no	variable	is	negated,	e.g.

x1 ∧∨x3 x8∨() x2∨x3 x4∨(∧).	.	.
we	get	the	hypergraph independent	set	problem:

x1

x2 x3 x8

x4 x6 x7

x4 ∧∨x6 x7∨()

clauses

hyperedges

variables

nodes

The	trouble	is	our	problem	is	really	about	hypergraphs,	where	we
have	wide	gaps	in	our	understanding	

Special	Case:	no	variable	is	negated,	e.g.

x1 ∧∨x3 x8∨() x2∨x3 x4∨(∧).	.	.
we	get	the	hypergraph independent	set	problem:

x1

x2 x3 x8

x4 x6 x7

x4 ∧∨x6 x7∨()

clauses

hyperedges

variables

Comment:	Let	d	be	maximum	degree,	then	d	≤	D	≤	2kd	if	at	most
2k	variables	per	clause	

nodes

COMPLEXITY	OF	HYPERGRAPH INDEP.	SET

Theorem	[Bezakova et	al.	‘16]:	It	is	NP-hard	to	approximately
count	the	number	of	hypergraph independent	sets	within	an
exponential	factor	if	d	>	5		2k/2·

COMPLEXITY	OF	HYPERGRAPH INDEP.	SET

Theorem	[Bezakova et	al.	‘16]:	It	is	NP-hard	to	approximately
count	the	number	of	hypergraph independent	sets	within	an
exponential	factor	if	d	>	5		2k/2·
If	you	can	approximately	sample	you	can	approximately	count:

“It	is	NP-hard	to	approximately	count/sample
under	the	sharp	Lovasz Local	Lemma	conditions”

COMPLEXITY	OF	HYPERGRAPH INDEP.	SET

Theorem	[Bezakova et	al.	‘16]:	It	is	NP-hard	to	approximately
count	the	number	of	hypergraph independent	sets	within	an
exponential	factor	if	d	>	5		2k/2·
If	you	can	approximately	sample	you	can	approximately	count:

“It	is	NP-hard	to	approximately	count/sample
under	the	sharp	Lovasz Local	Lemma	conditions”

Theorem	[Bordewich,	Dyer,	Karpinski ‘06]:	There	is	a	randomized
algorithm	to	approximately	count	if	d	≤ k	– 2

Best	known	algorithm:

COMPLEXITY	OF	HYPERGRAPH INDEP.	SET

Theorem	[Bezakova et	al.	‘16]:	It	is	NP-hard	to	approximately
count	the	number	of	hypergraph independent	sets	within	an
exponential	factor	if	d	>	5		2k/2·
If	you	can	approximately	sample	you	can	approximately	count:

“It	is	NP-hard	to	approximately	count/sample
under	the	sharp	Lovasz Local	Lemma	conditions”

Theorem	[Bordewich,	Dyer,	Karpinski ‘06]:	There	is	a	randomized
algorithm	to	approximately	count	if	d	≤ k	– 2

Best	known	algorithm:

[Bezakova et	al.]	gave	a	deterministic	algorithm	under	same	conds.

STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

(1)		Correlation	decay:	There	can	be	long-range	correlations	

STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

(1)		Correlation	decay:	There	can	be	long-range	correlations	

Green	clause:	
wants	at	least	one	green

Red	clause:	
wants	at	least	one	red

.	.	.

STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

Green	clause:	
wants	at	least	one	green

Red	clause:	
wants	at	least	one	red

.	.	.

(1)		Correlation	decay:	There	can	be	long-range	correlations	

STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

Green	clause:	
wants	at	least	one	green

Red	clause:	
wants	at	least	one	red

.	.	.

(1)		Correlation	decay:	There	can	be	long-range	correlations	

STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

Green	clause:	
wants	at	least	one	green

Red	clause:	
wants	at	least	one	red

.	.	.

(1)		Correlation	decay:	There	can	be	long-range	correlations	

STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

(1)		Correlation	decay:	There	can	be	long-range	correlations	

STRATIFICATION	OF	THRESHOLDS

For	approximate	counting	in	bounded	degree	CNFs:

(2)		Uniqueness:	Approximate	counting	is	NP-hard	even	when	the
Gibbs	measure	is	unique,	see	[Bezakova et	al.	’16]

(1)		Correlation	decay:	There	can	be	long-range	correlations	

STRATIFICATION	OF	THRESHOLDS

(3)		Temporal	mixing:	Uhhh,	in	non-monotone	case	the	solution
space	is	disconnected

For	approximate	counting	in	bounded	degree	CNFs:

(2)		Uniqueness:	Approximate	counting	is	NP-hard	even	when	the
Gibbs	measure	is	unique,	see	[Bezakova et	al.	’16]

(1)		Correlation	decay:	There	can	be	long-range	correlations	

STRATIFICATION	OF	THRESHOLDS

(3)		Temporal	mixing:	Uhhh,	in	non-monotone	case	the	solution
space	is	disconnected

(4)		Computational:	Can	we	approximately	count	when	the	degree
is	exponential	in	the	width?

For	approximate	counting	in	bounded	degree	CNFs:

(2)		Uniqueness:	Approximate	counting	is	NP-hard	even	when	the
Gibbs	measure	is	unique,	see	[Bezakova et	al.	’16]

(1)		Correlation	decay:	There	can	be	long-range	correlations	

OUR	RESULTS	(COUNTING)

Theorem:	There	is	a	deterministic	algorithm	to	approximately	
count	the	number	of	satisfying	assignments	if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

·C		k5 ≤	D	≤	c		2k/60·

OUR	RESULTS	(COUNTING)

Theorem:	There	is	a	deterministic	algorithm	to	approximately	
count	the	number	of	satisfying	assignments	if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

·C		k5 ≤	D	≤	c		2k/60

i.e.	the	algorithm	outputs	Z	that	satisfies:

Z	≤ # satisfying
assignments ≤	(1+n

-T)	Z

·

OUR	RESULTS	(COUNTING)

Theorem:	There	is	a	deterministic	algorithm	to	approximately	
count	the	number	of	satisfying	assignments	if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

·C		k5 ≤	D	≤	c		2k/60

i.e.	the	algorithm	outputs	Z	that	satisfies:

Z	≤ # satisfying
assignments ≤	(1+n

-T)	Z

The	degree	of	the	polynomial	depends	polynomially on	D	and	T

·

OUR	RESULTS	(COUNTING)

Theorem:	There	is	a	deterministic	algorithm	to	approximately	
count	the	number	of	satisfying	assignments	if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

·C		k5 ≤	D	≤	c		2k/60

i.e.	the	algorithm	outputs	Z	that	satisfies:

Z	≤ # satisfying
assignments ≤	(1+n

-T)	Z

The	degree	of	the	polynomial	depends	polynomially on	D	and	T

This	is	typical	for	deterministic	algorithms,	open:	Can	randomized
algorithms	do	much	better?

·

OUR	RESULTS	(COUNTING)

For	general	CNFs	with	between	k	and	2k	variables	per	clause

Z	≤ # satisfying
assignments ≤	(1+n

-T)	Z

The	technique	is	rather	bizarre	(even	to	me)

Theorem:	There	is	a	deterministic	algorithm	to	approximately	
count	the	number	of	satisfying	assignments	if ·C		k5 ≤	D	≤	c		2k/60

i.e.	the	algorithm	outputs	Z	that	satisfies:

·

OUR	RESULTS	(COUNTING)

For	general	CNFs	with	between	k	and	2k	variables	per	clause

Z	≤ # satisfying
assignments ≤	(1+n

-T)	Z

The	technique	is	rather	bizarre	(even	to	me)

Also	extends	to	non-binary	counting	problems

e.g.	red,	green,	blue assignments	with	NAE	constraints

Theorem:	There	is	a	deterministic	algorithm	to	approximately	
count	the	number	of	satisfying	assignments	if ·C		k5 ≤	D	≤	c		2k/60

i.e.	the	algorithm	outputs	Z	that	satisfies:

·

OUR	RESULTS	(SAMPLING)

Theorem:	There	is	a	randomized	algorithm	to	approximately	
sample	from	the	set	of	satisfying	assigs if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

·C		k5 ≤	D	≤	c		2k/60·

OUR	RESULTS	(SAMPLING)

Theorem:	There	is	a	randomized	algorithm	to	approximately	
sample	from	the	set	of	satisfying	assigs if

For	general	CNFs	with	between	k	and	2k	variables	per	clause

i.e.	the	output	of	the	algorithm	is	n-T-close	in	total	variation
distance	to	the	uniform	distribution	on	satisfying	assignments	

·C		k5 ≤	D	≤	c		2k/60·

Theorem	[Hermon,	Sly,	Zhang]:	In	the	monotone	case,	there	is
a	randomized	algorithm	to	approx.	count/sample	if D	≤	c		2k/2·

Concurrently	and	independently:

Concurrently	and	independently:

Theorem	[Hermon,	Sly,	Zhang]:	In	the	monotone	case,	there	is
a	randomized	algorithm	to	approx.	count/sample	if d ≤	c		2k/2·
Theorem	[Guo,	Jerrum,	Liu]:	If	every	pair	of	intersecting	clauses
shares	at	least	min(log(dk),	k/2)	variables,	there	is	a	randomzed
algorithm	to	approx.	count/sample	if d ≤	c		2k/2·

Concurrently	and	independently:

Theorem	[Hermon,	Sly,	Zhang]:	In	the	monotone	case,	there	is
a	randomized	algorithm	to	approx.	count/sample	if d ≤	c		2k/2·
Theorem	[Guo,	Jerrum,	Liu]:	If	every	pair	of	intersecting	clauses
shares	at	least	min(log(dk),	k/2)	variables,	there	is	a	randomzed
algorithm	to	approx.	count/sample	if d ≤	c		2k/2·
Both	of	these	results	are	tight	– it	is	NP-hard	for	larger	d	even	for
the	types	of	restricted	instances	they	consider			

OUR	APPROACH

OUR	APPROACH

(1)	Start	with	an	oracle	that	can	answer	queries	about	the	
probability	x=T/F	under	the	uniform	distribution	on	assignments
given	the	current	partial	assignment	(thought	experiment)

OUR	APPROACH

(1)	Start	with	an	oracle	that	can	answer	queries	about	the	
probability	x=T/F	under	the	uniform	distribution	on	assignments
given	the	current	partial	assignment	(thought	experiment)

(2)	Use	the	oracle	to	build	out	a	coupling	between	the	satisfying
solutions	with	x=T	and	with	x=F

OUR	APPROACH

(1)	Start	with	an	oracle	that	can	answer	queries	about	the	
probability	x=T/F	under	the	uniform	distribution	on	assignments
given	the	current	partial	assignment	(thought	experiment)

(2)	Use	the	oracle	to	build	out	a	coupling	between	the	satisfying
solutions	with	x=T	and	with	x=F

This	coupling	is	very	special	in	how	it	is	concise/avoids	double	
counting,	so	that	if	I	gave	you	it	you	could	verify	the	coupling
and	compute	the	ratio	Pr[x=T]/Pr[x=F]

OUR	APPROACH

(1)	Start	with	an	oracle	that	can	answer	queries	about	the	
probability	x=T/F	under	the	uniform	distribution	on	assignments
given	the	current	partial	assignment	(thought	experiment)

(2)	Use	the	oracle	to	build	out	a	coupling	between	the	satisfying
solutions	with	x=T	and	with	x=F

This	coupling	is	very	special	in	how	it	is	concise/avoids	double	
counting,	so	that	if	I	gave	you	it	you	could	verify	the	coupling
and	compute	the	ratio	Pr[x=T]/Pr[x=F]

(3)	Use	linear	programming	to	find	this	special	type	of	coupling
that	we	now	know	exists

Thanks!	
Main	Open	Question:

Is																				the	true	threshold	for	algorithmically	
counting	and	sampling	in	k-CNFs?

D	≤	c		2k/2·

Any	Questions?

