A Polynomial Time Algorithm for Lossy Population Recovery

Ankur Moitra
Massachusetts Institute of Technology

joint work with Mike Saks
A Story…
A Story
A Story…
A Story…
A Story...
Can you reconstruct a description of the population from these fragments?
Can you reconstruct a description of the population from these \textit{fragments}?

\text{features (n)}

\text{species (k)}
Can you reconstruct a description of the population from these **fragments**?

<table>
<thead>
<tr>
<th>species (k)</th>
<th>features (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 1 0 1 0 1 0 0</td>
<td>1 0 1 1 0 0 1 1 1 0 0</td>
</tr>
<tr>
<td>0 1 1 1 0 0 1 1 0 0</td>
<td>: : :</td>
</tr>
<tr>
<td>1 1 1 1 0 0 0 1 0 0</td>
<td>: : :</td>
</tr>
</tbody>
</table>
Can you reconstruct a description of the population from these fragments?

<table>
<thead>
<tr>
<th>species (k)</th>
<th>features (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₁</td>
<td>1 0 1 1 0 1 0 1 0 0 0</td>
</tr>
<tr>
<td>p₂</td>
<td>0 1 1 1 0 0 1 1 0 0 0</td>
</tr>
<tr>
<td>⋮</td>
<td>⋮</td>
</tr>
<tr>
<td>pₖ</td>
<td>1 1 1 1 0 0 0 0 1 0 0</td>
</tr>
</tbody>
</table>
Can you reconstruct a description of the population from these fragments?

<table>
<thead>
<tr>
<th>species (k)</th>
<th>features (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>1 0 1 1 1 0 1 0 1 0 0 0</td>
</tr>
<tr>
<td>p2</td>
<td>0 1 1 1 1 0 0 1 1 0 0 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>pₖ</td>
<td>1 1 1 1 1 0 0 0 1 0 0 0</td>
</tr>
</tbody>
</table>
Can you reconstruct a description of the population from these fragments?

<table>
<thead>
<tr>
<th>species (k)</th>
<th>features (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>1 0 1 1 1 0 1 0 1 0 0 0</td>
</tr>
<tr>
<td>p_2</td>
<td>0 1 1 1 1 0 0 1 1 0 0 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>p_k</td>
<td>1 1 1 1 1 0 0 0 1 0 0 0</td>
</tr>
</tbody>
</table>

The Model (Dvir, Rao, Wigderson, Yehudayoff)
The Model (Dvir, Rao, Wigderson, Yehudayoff)

Lossy Population Recovery:

- **Unknown** set of k strings, a_1, a_2, \ldots, a_k and probabilities p_1, p_2, \ldots, p_k
The Model (Dvir, Rao, Wigderson, Yehudayoff)

Lossy Population Recovery:

• **Unknown** set of k strings, a_1, a_2, \ldots, a_k and probabilities p_1, p_2, \ldots, p_k

• Given samples (chosen according to p_i), but every bit is deleted independently with probability $1-\mu$ and replaced with a ‘?’
The Model (Dvir, Rao, Wigderson, Yehudayoff)

Lossy Population Recovery:

• **Unknown** set of k strings, a_1, a_2, \ldots, a_k and probabilities p_1, p_2, \ldots, p_k

• Given samples (chosen according to p_i), but every bit is deleted independently with probability $1-\mu$ and replaced with a ‘?’

Is there a polynomial time algorithm for any fixed $\mu>0$?
Another Model (Wigderson, Yehudayoff)

Noisy Population Recovery:

• **Unknown** set of k strings, a_1, a_2, \ldots, a_k and probabilities p_1, p_2, \ldots, p_k
Another Model (Wigderson, Yehudayoff)

Noisy Population Recovery:

- **Unknown** set of k strings, a_1, a_2, \ldots, a_k and probabilities p_1, p_2, \ldots, p_k

- Given samples (chosen according to p_i), but every bit is flipped independently with probability $1/2-\eta$
Another Model (Wigderson, Yehudayoff)

Noisy Population Recovery:

- **Unknown** set of k strings, a_1, a_2, \ldots, a_k and probabilities p_1, p_2, \ldots, p_k

- Given samples (chosen according to p_i), but every bit is flipped independently with probability $1/2 - \eta$

Is there a polynomial time algorithm for any fixed $\eta > 0$?
Theorem [Dvir et al ITCS 2012]: There is a polynomial time algorithm for any $\mu > 0.36$ (lossy)
Theorem [Dvir et al ITCS 2012]: There is a polynomial time algorithm for any $\mu > 0.36$ (lossy)

Theorem [Wigderson, Yehudayoff FOCS 2012]: There is a quasi-polynomial time algorithm for any $\mu, \eta > 0$ (lossy, noisy)
Theorem [Dvir et al ITCS 2012]: There is a polynomial time algorithm for any $\mu > 0.36$ (lossy)

Theorem [Wigderson, Yehudayoff FOCS 2012]: There is a quasi-polynomial time algorithm for any $\mu, \eta > 0$ (lossy, noisy)

However, their framework provably cannot yield a polynomial time algorithm!
Theorem [Dvir et al ITCS 2012]: There is a polynomial time algorithm for any $\mu > 0.36$ (lossy)

Theorem [Wigderson, Yehudayoff FOCS 2012]: There is a quasi-polynomial time algorithm for any $\mu, \eta > 0$ (lossy, noisy)

However, their framework provably cannot yield a polynomial time algorithm!

Theorem [Batman et al RANDOM 2013]: There is a polynomial time algorithm for any $\mu > 0.30$ (lossy)
Theorem [Dvir et al ITCS 2012]: There is a polynomial time algorithm for any $\mu > 0.36$ (lossy)

Theorem [Wigderson, Yehudayoff FOCS 2012]: There is a quasi-polynomial time algorithm for any $\mu, \eta > 0$ (lossy, noisy)

However, their framework provably cannot yield a polynomial time algorithm!

Theorem [Batman et al RANDOM 2013]: There is a polynomial time algorithm for any $\mu > 0.30$ (lossy)

Theorem [Moitra, Saks FOCS 2013]: There is a polynomial time algorithm for any $\mu > 0$ (lossy)
An Application
An Application

DNF: \((x_1 \land x_3 \land \bar{x}_5) \lor (\bar{x}_2 \land \bar{x}_3 \land x_8)\) ...
An Application

DNF: \((x_1 \land x_3 \land \overline{x}_5) \lor (\overline{x}_2 \land \overline{x}_3 \land x_8)\)...

PAC Model: distribution \(D\) on examples, given the example and its evaluation
An Application

DNF: \((x_1 \land x_3 \land \bar{x}_5) \lor (\bar{x}_2 \land \bar{x}_3 \land x_8)\)...

PAC Model: distribution \(D\) on examples, given the example and its evaluation

Theorem [Klivans, Servedio STOC 2001]: There is a \(2^{O(n^{1/3})}\) time algorithm to PAC learn DNFs
An Application

DNF: \((x_1 \land x_3 \land \overline{x}_5) \lor (\overline{x}_2 \land \overline{x}_3 \land x_8)\)…

PAC Model: distribution \(D\) on examples, given the example and its evaluation

Theorem [Klivans, Servedio STOC 2001]: There is a \(2^{O(n^{1/3})}\) time algorithm to PAC learn DNFs

Theorem [folk]: There is a quasi-polynomial time algorithm to PAC learn DNFs under the uniform distribution
An Application

DNF: \((x_1 \land x_3 \land \bar{x}_5) \lor (\bar{x}_2 \land \bar{x}_3 \land x_8)\)...

PAC Model: distribution \(D\) on examples, given the example and its evaluation

This is **black-box** access to the formula
An Application

DNF: \((x_1 \land x_3 \land \overline{x}_5) \lor (\overline{x}_2 \land \overline{x}_3 \land x_8)\) …

PAC Model: distribution **D** on examples, given the example and its evaluation

This is **black-box** access to the formula

Is there a natural **grey-box** model? Can we design better algorithms?
Restriction Access (Dvir et al)

DNF: \((x_1 \land x_3 \land \overline{x}_5) \lor (\overline{x}_2 \land \overline{x}_3 \land x_8)\)…
Restriction Access (Dvir et al)

DNF: \((x_1 \land x_3 \land \overline{x}_5) \lor (\overline{x}_2 \land \overline{x}_3 \land x_8)\)...

New Model: Set each bit independently with prob 1-\(\mu\), given the restricted formula
Restriction Access (Dvir et al)

DNF: \((x_1 \land x_3 \land \bar{x}_5) \lor (\bar{x}_2 \land \bar{x}_3 \land x_8) \ldots\)

New Model: Set each bit independently with prob 1-\(\mu\), given the restricted formula

Each clause that survives, we get a fragment of its variables
Restriction Access (Dvir et al)

DNF: \((x_1 \land x_3 \land \overline{x}_5) \lor (\overline{x}_2 \land \overline{x}_3 \land x_8)\)…

New Model: Set each bit independently with prob 1-\(\mu\), given the restricted formula

Each clause that survives, we get a fragment of its variables

Population Recovery → Learning DNFs in Restriction Access
Restriction Access (Dvir et al)

DNF: \((x_1 \land x_3 \land \bar{x}_5) \lor (\bar{x}_2 \land \bar{x}_3 \land x_8)\) …

New Model: Set each bit independently with prob 1-\(\mu\), given the restricted formula

Each clause that survives, we get a fragment of its variables
Restriction Access (Dvir et al)

\[\text{DNF: } (x_1 \land x_3 \land \overline{x}_5) \lor (\overline{x}_2 \land \overline{x}_3 \land x_8) \ldots \]

\[\text{New Model: } \text{Set each bit independently with prob } 1-\mu, \text{ given the restricted formula} \]

Each clause that survives, we get a fragment of its variables

\[\text{Corollary: There is a polynomial time algorithm for learning DNFs in the Restriction Access Model for any } \mu > 0. \]
What is this talk about?
What is this talk about?

Inverse Problems:
What is this talk about?

Inverse Problems:

Complex Analysis:
What is this talk about?

Inverse Problems:

Given $Ax \approx b$, can we do better than $x \approx A^{-1}b$?

Complex Analysis:
What is this talk about?

Inverse Problems:

Given \(Ax \approx b\), can we do better than \(x \approx A^{-1}b\)?

Even though the condition number of \(A\) is **exponentially** large, we will find ways around it...

Complex Analysis:
What is this talk about?

Inverse Problems:

Given $Ax \approx b$, can we do better than $x \approx A^{-1}b$?

Even though the condition number of A is exponentially large, we will find ways around it...

Complex Analysis:

uncertainty principles...
What is this talk about?

Inverse Problems:

Given $Ax \approx b$, can we do better than $x \approx A^{-1}b$?

Even though the condition number of A is exponentially large, we will find ways around it…

Complex Analysis:

uncertainty principles…
Two Reductions (Dvir et al)

Claim: We can assume we know the strings a_1, a_2, ..., a_k (all we need is to find p_1, p_2, ..., p_k)
Two Reductions (Dvir et al)

Suppose we had an algorithm for population recovery when the strings a_1, a_2, \ldots, a_k are known:
Suppose we had an algorithm for population recovery when the strings a_1, a_2, \ldots, a_k are known:

<table>
<thead>
<tr>
<th>p_1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_2</td>
<td>0</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>p_k</td>
<td>1</td>
</tr>
</tbody>
</table>
Two Reductions (Dvir et al)

Suppose we had an algorithm for population recovery when the strings a_1, a_2, \ldots, a_k are known:

\[
\begin{array}{c}
p_1 & 1 \\
p_2 & 0 \\
\vdots & \vdots \\
p_k & 1 \\
\end{array}
\]

merged
Two Reductions (Dvir et al)

Suppose we had an algorithm for population recovery when the strings a_1, a_2, \ldots, a_k are known:

\[\begin{array}{c|c}
 p'_1 & 1 \\
 p'_2 & 0 \\
\end{array} \]
Two Reductions (Dvir et al)

Suppose we had an algorithm for population recovery when the strings a_1, a_2, \ldots, a_k are known:

\[p_1' \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \\
\]

\[p_2' \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \]
Two Reductions (Dvir et al)

Suppose we had an algorithm for population recovery when the strings $a_1, a_2, ..., a_k$ are known:

\[
\begin{array}{c|c|c}
\hline
p_1 & 1 & 0 \\
\hline
p_2 & 0 & 1 \\
\vdots & \vdots & \vdots \\
\hline
p_k & 1 & 1 \\
\hline
\end{array}
\]
Two Reductions (Dvir et al)

Suppose we had an algorithm for population recovery when the strings a_1, a_2, \ldots, a_k are known:

<table>
<thead>
<tr>
<th>p_1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>p_k</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

and so on…
Two Reductions (Dvir et al)

<table>
<thead>
<tr>
<th></th>
<th>p₁</th>
<th>p₂</th>
<th>...</th>
<th>pₖ</th>
</tr>
</thead>
<tbody>
<tr>
<td>₁</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>₂</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>₃</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>₄</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>₅</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>₆</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>₇</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>₈</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>₉</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>₁₀</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>₁₁</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Two Reductions (Dvir et al)

Claim: We just need to learn p_i for the all zero string

<table>
<thead>
<tr>
<th>p_1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>p_k</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Two Reductions (Dvir et al)

Claim: We just need to learn p_i for the all zero string

- p_1
 - 1 0 1 1 1 0 1 0 1 0 0
- p_2
 - 0 1 1 1 1 0 0 1 1 0 0
- \vdots
- p_k
 - 1 1 1 1 1 0 0 0 1 0 0

E.g. we can **XOR** with a_1
Claim: We just need to learn p_i for the all zero string

<table>
<thead>
<tr>
<th></th>
<th>p_1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>p_k</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

E.g. we can **XOR** with a_1
The Setup
The Setup

probability of all zero string
The Setup

probability of all zero string

total probability of strings with one ‘1’

i.e. \(q_1 = \sum_{i \in S} p_i \) for \(S = \{i \mid a_i \text{ has one ‘1’} \} \)
The Setup

"probability that if there are i ones, j remain"
The Setup

probability of all zero string

combined prob. of strings with one ‘1’

"probability that if there are i ones, j remain"
The Setup

\[A \begin{array}{c} q_0 \\ q_1 \\ \vdots \\ q_n \end{array} = \begin{array}{c} b_0 \\ b_1 \\ \vdots \\ b_n \end{array} \]
The Setup

\[q_0 q_1 \ldots q_n = b_0 b_1 \ldots b_n \]

probability of all ‘0’s and ‘?’s in the sample
The Setup

A

\[q_0 \quad q_1 \quad \ldots \quad q_n \]

\[b_0 \quad b_1 \quad \ldots \quad b_n \]

probability of all ‘0’s and ‘?’s in the sample

e.g. ??0??0???
The Setup

\[
A = \begin{array}{c}
q_0 \\
q_1 \\
\vdots \\
q_n \\
\end{array} = \begin{array}{c}
b_0 \\
b_1 \\
\vdots \\
b_n \\
\end{array}
\]

probability of one ‘1’ in the sample
The Setup

\[A = \begin{bmatrix} q_0 & q_1 & \cdots & q_n \end{bmatrix} = \begin{bmatrix} b_0 & b_1 & \cdots & b_n \end{bmatrix} \]

probability of one ‘1’ in the sample

E.g. 0 ? 0 ? ? ? ? 1 ? 0
The Issue...

\[A \]

\[
\begin{array}{c}
q_0 \\
q_1 \\
\vdots \\
q_n
\end{array}
\]

=

\[
\begin{array}{c}
b_0 \\
b_1 \\
\vdots \\
b_n
\end{array}
\]
If we are given an approx \overline{b}, can we just compute $A^{-1}\overline{b}$ and take its first coordinate? (i.e. $e_0A^{-1}\overline{b}$)
If we are given an approx \overline{b}, can we just compute $A^{-1}\overline{b}$ and take its first coordinate? (i.e. $e_0A^{-1}\overline{b}$)

No, condition number of A is exponentially large!
Robust Local Inverse (Dvir et al)
Robust Local Inverse (Dvir et al)

Set $x = e_0A^{-1}$, then $xb = e_0A^{-1}Aq = q_0$
Robust Local Inverse (Dvir et al)

Set $x = e_0 A^{-1}$, then $xb = e_0 A^{-1} Aq = q_0$

But x has exponentially large norm, so we’d need to know b within exponentially small error.
Robust Local Inverse (Dvir et al)

Set \(x = e_0A^{-1} \), then \(xb = e_0A^{-1}Aq = q_0 \)

But \(x \) has exponentially large norm, so we’d need to know \(b \) within exponentially small error

Idea: Add a perturbation (vector) \(\eta \) so that
Robust Local Inverse (Dvir et al)

Set $x = e_0A^{-1}$, then $xb = e_0A^{-1}Aq = q_0$

But x has exponentially large norm, so we’d need to know b within exponentially small error

Idea: Add a perturbation (vector) η so that

Set $\bar{x} = (e_0 + \eta)A^{-1}$, then $\bar{x}b = (e_0 + \eta)A^{-1}Aq = q_0 + \eta q$
Robust Local Inverse (Dvir et al)

Set $x = e_0 A^{-1}$, then $xb = e_0 A^{-1} Aq = q_0$

But x has exponentially large norm, so we’d need to know b within exponentially small error

Idea: Add a perturbation (vector) η so that

Set $\bar{x} = (e_0 + \eta)A^{-1}$, then $\bar{x} b = (e_0 + \eta)A^{-1} Aq = q_0 + \eta q$

Can we perturb e_0 s.t. $(e_0 + \eta)A^{-1}$ has bdd norm?
Theorem [Dvir et al]: There is a robust local inverse for any $\mu > 0.36$
Theorem [Dvir et al]: There is a robust local inverse for any \(\mu > 0.36 \)

Theorem [Batman et al]: The same robust local inverse works for any \(\mu > 0.30 \), conjectured it doesn’t work for \(\mu < 1/4 \)
Theorem [Dvir et al]: There is a robust local inverse for any $\mu > 0.36$

Theorem [Batman et al]: The same robust local inverse works for any $\mu > 0.30$, conjectured it doesn’t work for $\mu < 1/4$

Theorem [Moitra, Saks]: There is a robust local inverse for any $\mu > 0$
Theorem [Dvir et al]: There is a robust local inverse for any $\mu > 0.36$

Theorem [Batman et al]: The same robust local inverse works for any $\mu > 0.30$, conjectured it doesn’t work for $\mu < 1/4$

Theorem [Moitra, Saks]: There is a robust local inverse for any $\mu > 0$

What does this robust local inverse look like??
Theorem [Dvir et al]: There is a robust local inverse for any $\mu > 0.36$

Theorem [Batman et al]: The same robust local inverse works for any $\mu > 0.30$, conjectured it doesn’t work for $\mu < 1/4$

Theorem [Moitra, Saks]: There is a robust local inverse for any $\mu > 0$

What does this robust local inverse look like??

Idea: Write a linear program for computing a good RLI, and prove that the dual has no solution
We can write an LP for finding a RLI:
We can write an LP for finding a RLI:

(accuracy) \[\| x A - e_0 \|_\infty \leq \varepsilon \]
We can write an LP for finding a RLI:

(accuracy) \[\| x A - e_0 \|_\infty \leq \varepsilon \]

(insensitivity) \[\| x \|_\infty \leq C = \text{poly}(n,1/\varepsilon) \]
We can write an LP for finding a RLI:

(accuracy) \[\|x A - e_0\|_\infty \leq \varepsilon \]

(insensitivity) \[\|x\|_\infty \leq C = \text{poly}(n,1/\varepsilon) \]

Instead, use a natural **basis** of estimators:
We can write an LP for finding a RLI:

(accuracy) \[\|x \, A - e_0\|_\infty \leq \varepsilon \]

(insensitivity) \[\|x\|_\infty \leq C = \text{poly}(n, 1/\varepsilon) \]

Instead, use a natural **basis** of estimators:

i.e. can we find a good RLI as a linear combination of estimators of the form:

\[[1, \alpha, \alpha^2, \alpha^3, \ldots \alpha^{n-1}] \]
We can write an LP for finding a RLI:

\[(\text{accuracy}) \quad \| \mathbf{x} A - \mathbf{e}_0 \|_\infty \leq \varepsilon \]

\[(\text{insensitivity}) \quad \| \mathbf{x} \|_\infty \leq C = \text{poly}(n, 1/\varepsilon) \]

Instead, use a natural \textbf{basis} of estimators:

i.e. can we find a good RLI as a linear combination of estimators of the form:

\[[1, \alpha, \alpha^2, \alpha^3, \ldots, \alpha^{n-1}]\]

Why is this basis natural for population recovery?
Basis: $[1, \alpha, \alpha^2, \alpha^3, \ldots \alpha^{n-1}]$
Basis: $[1, \alpha, \alpha^2, \alpha^3, \ldots \alpha^{n-1}]$

This transforms the constraints of the LP to be monomials of a polynomial.
Basis: \([1, \alpha, \alpha^2, \alpha^3, \ldots \alpha^{n-1}]\)

This transforms the constraints of the LP to be monomials of a polynomial.

Hence the dual program wants to construct a certain type of polynomial.
Basis: \([1, \alpha, \alpha^2, \alpha^3, \ldots, \alpha^{n-1}]\)

This transforms the constraints of the LP to be monomials of a polynomial

Hence the dual program wants to construct a certain type of polynomial

If we can prove no such polynomial exists

There is a good RLI, which we can find via an LP
An Uncertainty Principle?
An Uncertainty Principle?

The dual program wants to construct $p(x)$ s.t.

$$p(0) \geq \varepsilon \|p\|_{\text{coeff}} + C \|q\|_{\text{coeff}}$$

where $\|p\|_{\text{coeff}} = \sum_i |p_i|$ for $p(x) = \sum_i p_i x^i$
An Uncertainty Principle?

The dual program wants to construct \(p(x) \) s.t.

\[
p(0) \geq \varepsilon \|p\|_{\text{coeff}} + C \|q\|_{\text{coeff}}
\]

where \(\|p\|_{\text{coeff}} = \sum_i |p_i| \) for \(p(x) = \sum_i p_i x^i \)

and \(q(x) \approx p(1-\mu + \mu x) \)
An Uncertainty Principle?

The dual program wants to construct $p(x)$ s.t.

$$p(0) \geq \varepsilon \|p\|_{\text{coeff}} + C \|q\|_{\text{coeff}}$$

where $\|p\|_{\text{coeff}} = \sum_i |p_i|$ for $p(x) = \sum_i p_i x^i$

and $q(x) \approx p(1-\mu + \mu x)$

Conversely, for a polynomial are its coefficients large in at least one of the two representations?
Relaxation #1
Relaxation #1

Claim: \(\|p\|_{\text{coeff}} \geq \sup_{x \text{ in } [-1,1]} |p(x)| \)
Relaxation #1

Claim: \[||p||_{\text{coeff}} \geq \sup_{x \in [-1,1]} |p(x)| \]

Proof: Consider \(x \) in \([-1,1]\):

\[
|p(x)| \leq \sum |p_i| |x^i| \leq \sum |p_i| = ||p||_{\text{coeff}}
\]
Relaxation #1

Claim: \(\|p\|_{\text{coeff}} \geq \sup_{x \in [-1,1]} |p(x)| \)

Proof: Consider \(x \in [-1,1] \):

\[
|p(x)| \leq \sum_i |p_i| |x^i| \leq \sum_i |p_i| = \|p\|_{\text{coeff}}
\]

New Question:

For all polynomials is it true that:

\[
p(0) < \epsilon \sup_{x \in [-1,1]} |p(x)| + C \sup_{x \in [-1,1]} |p(1 - \mu + \mu x)|
\]
For all polynomials with $p(0) = 1$ is it true that:

$$1 < \varepsilon \sup_{x \in [-1,1]} |p(x)| + C \sup_{x \in [-1,1]} |p(1 - \mu + \mu x)| ?$$
For all polynomials with \(p(0) = 1 \) is it true that:

\[
1 < \varepsilon \sup_{x \in [-1,1]} |p(x)| + C \sup_{x \in [-1,1]} |p(1 - \mu + \mu x)|
\]
For all polynomials with \(p(0) = 1 \) is it true that:

\[
1 < \varepsilon \sup_{x \in [-1, 1]} |p(x)| + C \sup_{x \in [-1, 1]} |p(1 - \mu + \mu x)| \ ?
\]

Try:

\[
|p(x)| \leq 1/\varepsilon \text{ on } [-1, 1]
\]
For all polynomials with $p(0) = 1$ is it true that:

$$1 < \varepsilon \sup_{x \in [-1, 1]} |p(x)| + C \sup_{x \in [-1, 1]} |p(1 - \mu + \mu x)|$$

Try:

$$|p(x)| \leq \frac{1}{\varepsilon} \text{ on } [-1, 1]$$

at most $1/\varepsilon$ one at the origin
For all polynomials with $p(0) = 1$ is it true that:

$$1 < \varepsilon \sup_{x \in [-1,1]} |p(x)| + C \sup_{x \in [-1,1]} |p(1-\mu+\mu x)|$$

Try:

- $|p(x)| \leq \frac{1}{\varepsilon}$ on $[-1,1]$
- $|p(x)| \leq \frac{1}{C}$ on $[1-2\mu,1]$

at most $\frac{1}{\varepsilon}$ one at the origin
For all polynomials with \(p(0) = 1 \) is it true that:

\[
1 < \varepsilon \sup_{x \in [-1,1]} |p(x)| + C \sup_{x \in [-1,1]} |p(1 - \mu + \mu x)| ?
\]

Try:

- \(|p(x)| \leq 1/\varepsilon \) on \([-1,1]\)
- \(|p(x)| \leq 1/C \) on \([1-2\mu, 1]\)

at most \(1/\varepsilon\)

at most \(1/C\)

one at the origin
For all polynomials with $p(0) = 1$ is it true that:

$$1 < \varepsilon \sup_{x \in [-1,1]} |p(x)| + C \sup_{x \in [-1,1]} |p(1 - \mu + \mu x)|$$

Try:

- $|p(x)| \leq 1/\varepsilon$ on $[-1,1]$
- $|p(x)| \leq 1/C$ on $[1-2\mu,1]$

No, set $p(x) = (1-x^2)^{n/2}$
For all polynomials with \(p(0) = 1 \) is it true that:

\[
1 < \varepsilon \sup_{x \in [-1,1]} |p(x)| + C \sup_{x \in [-1,1]} |p(1 - \mu + \mu x)|
\]

Try:

\[
|p(x)| \leq 1/\varepsilon \text{ on } [-1,1]
\]

\[
|p(x)| \leq 1/C \text{ on } [1-2\mu,1]
\]

No, set \(p(x) = (1-x^2)^{n/2} \)
Does this $p(x)$ refute our original conjecture too?
Does this $p(x)$ refute our original conjecture too?

$$p(x) = (1-x^2)^{n/2}$$
Does this $p(x)$ refute our original conjecture too?

$$p(x) = (1-x^2)^{n/2}$$

Is $\|p\|_{\text{coeff}}$ too small?
Does this $p(x)$ refute our original conjecture too?

$$p(x) = (1-x^2)^{n/2}$$

Is $\|p\|_{\text{coeff}}$ too small?

No, it is **exponentially** large!
Does this $p(x)$ refute our original conjecture too?

$$p(x) = (1-x^2)^{n/2}$$

Is $\|p\|_{\text{coeff}}$ too small?

No, it is **exponentially** large! Substitute $x = i$

$$p(i) = 2^{n/2}$$
Does this $p(x)$ refute our original conjecture too?

$$p(x) = (1-x^2)^{n/2}$$

Is $\|p\|_{\text{coeff}}$ too small?

No, it is \textit{exponentially} large! Substitute $x = i$

$$p(i) = 2^{n/2}$$

\textbf{Claim:} $\|p\|_{\text{coeff}} \geq \sup_{x \in D} |p(x)|$, where D is the unit complex disk
Relaxation #2
Relaxation #2

Claim: $\|p\|_{\text{coeff}} \geq \sup_{x \text{ in } D} |p(x)|$
Relaxation #2

Claim: $\|p\|_{\text{coeff}} \geq \sup_{x \in D} |p(x)|$

Proof: Consider x in D:

$$|p(x)| \leq \sum_i |p_i| |x^i| \leq \sum_i |p_i| = \|p\|_{\text{coeff}}$$
Relaxation #2

Claim: \(\|p\|_{\text{coeff}} \geq \sup_{x \in D} |p(x)| \)

Proof: Consider \(x \) in \(D \):
\[
|p(x)| \leq \sum_{i} |p_i| |x^i| \leq \sum_{i} |p_i| = \|p\|_{\text{coeff}}
\]

New Question:

For all polynomials is it true that:
\[
p(0) < \varepsilon \sup_{x \in D} |p(x)| + C \sup_{x \in D} |p(1- \mu + \mu x)|
\]
For all polynomials with $p(0) = 1$ is it true that:

$$1 < \varepsilon \sup_{x \in D} |p(x)| + C \sup_{x \in D} |p(1 - \mu + \mu x)|?$$

Try:

- $|p(x)| \leq 1/\varepsilon$ on D
- $|p(x)| \leq 1/C$ on $D(1-\mu, \mu)$
For all polynomials with \(p(0) = 1 \) is it true that:

\[
1 < \varepsilon \sup_{x \in D} |p(x)| + C \sup_{x \in D} |p(1-\mu+\mu x)|
\]

Try:

- \(|p(x)| \leq 1/\varepsilon \) on \(D \)
- \(|p(x)| \leq 1/C \) on \(D(1-\mu, \mu) \)

at most \(1/\varepsilon \)

one at the origin

at most \(1/C \)
Hadamard Three Circle Theorem
Hadamard Three Circle Theorem

How can we bound the rate of growth of **holomorphic** functions in the complex plane?
Hadamard Three Circle Theorem

How can we bound the rate of growth of holomorphic functions in the complex plane?

radius R_1, max value M_1

radius R_2, max value M_2

radius R_3, max value M_3
Hadamard Three Circle Theorem

\[\log \frac{R_3}{R_1} \log M_2 \leq \log \frac{R_2}{R_1} \log M_3 + \log \frac{R_3}{R_2} \log M_1 \]

radius R_3, max value M_3 radius R_2, max value M_2

radius R_1, max value M_1
Hadamard Three Circle Theorem

Hence M_2 is bounded by a geometric average of M_1 and M_3 (that depends on the radii)!

radius R_1, max value M_1

radius R_2, max value M_2

radius R_3, max value M_3
For all polynomials with $p(0) = 1$ is it true that:

$$1 < \varepsilon \sup_{x \in D} |p(x)| + C \sup_{x \in D} |p(1-\mu+\mu x)| ?$$

Try:

- $|p(x)| \leq 1/\varepsilon$ on D
- $|p(x)| \leq 1/C$ on $D(1-\mu, \mu)$

at most $1/\varepsilon$

one at the origin

at most $1/C$
For all polynomials with $p(0) = 1$ is it true that:

$$1 < \varepsilon \sup_{x \in D} |p(x)| + C \sup_{x \in D} |p(1 - \mu + \mu x)| ?$$

Try:

- $|p(x)| \leq 1/\varepsilon$ on D
- $|p(x)| \leq 1/C$ on $D(1-\mu, \mu)$

at most $1/\varepsilon$

one at the origin

at most $1/C$
Is there a holomorphic map between these two pictures?
Is there a holomorphic map between these two pictures?

Three Circle Thm
Is there a holomorphic map between these two pictures?

Can we analyze this?

Three Circle Thm
Is there a holomorphic map between these two pictures?

Yes! And it is called the Mobius Transform

Can we analyze this? Three Circle Thm
Outline
Outline

Uncertainty Principle (via complex analysis)
Outline

- Is the Linear Program feasible?
- Uncertainty Principle (via complex analysis)
Outline

Robust Local Inverse

Is the Linear Program feasible?

Uncertainty Principle (via complex analysis)
Outline

- Population Recovery
- Robust Local Inverse
- Is the Linear Program feasible?
- Uncertainty Principle (via complex analysis)
Summary and Open Questions
Summary and Open Questions

We solved an inverse problem, despite exponentially large condition number!
Summary and Open Questions

We solved an inverse problem, despite exponentially large condition number!

...using tools from complex analysis
Summary and Open Questions

We solved an inverse problem, despite exponentially large condition number!

...using tools from complex analysis

Can RLIs be useful for other problems in statistical inference?
We solved an inverse problem, despite exponentially large condition number!

...using tools from complex analysis

Can RLIs be useful for other problems in statistical inference?

Is there a polynomial time algorithm for noisy population recovery?
Thanks!

Any Questions?