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Agnostic	Noise:	No	assumption	about	the	structure	of	the	noise,
still	want	to	find	approximately	best	agreement	in	the	class	

What	if	there	is	no	simple	hypothesis	that	fits	the	data	exactly?

Standard	frameworks:

Unfortunately,	agnostic	learning	is	generally	hard	without	further
assumptions!

[Daniely ‘16]:	Distribution-independent	weak agnostic	learning	
of	halfspaces is	hard

[Kalai et	al.	‘05], [Awasthi et	al.	‘18]:	There	is	a	polynomial	time	
algorithm	for	agnostic	learning	when	X	is	Gaussian
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Are	there	challenging	noise	models	where	we	can	learn	without	
making	distributional	assumptions	on	X?

MassartNoise:	The	label	of	each	point	x	is	flipped	independently
with	some	probability

In	this	talk,	we’ll	be	interested	in:

Interpretation	#1: Each	label	is	flipped	independently	with	prob.
but	an	adversary	can	choose	to	unflip it	

Interpretation	#2	(sort	of): An	adversary	can	arbitrarily	control	a
random fraction	of	the	data	

Are	there	distribution-independent	algorithms	for	learning	with
Massart noise?
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It	gets	error													,	rather	than	the	optimal	agreement	within
the	class	

Is	there	a	proper	learning	algorithm?

Can	we	achieve	OPT	efficiently?
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Theorem	[Chen,	Koehler,	Moitra,	Yau ‘20]:	There	is	a	polynomial	
time	algorithm	for	properly learning	halfspaces under	Massart
noise	with	error

General	framework,	independently	discovered	by	[Diakonikolas,	
Kontonis,	Tzamos,	Zarifis ‘20]	for	learning	with	Tsybakov noise

Theorem	[Chen,	Koehler,	Moitra,	Yau ‘20]:	There	is	a	polynomial	
time	algorithm	for	learning	generalized	linear	models	under	
Massart noise

i.e

link	function:	monotone,	Lipschitz

In	particular,	this	includes	noisy	logistic	regression	as	a	special	case
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In	particular,	we	show

Lower	bounds	
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Lower	bounds	for
learning	under
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Theorem	[Chen,	Koehler,	Moitra,	Yau ‘20]:	Any	statistical	query	
algorithm	for	learning	under	Massart noise	to	error																					must	
make	a	superpolynomial number	of	queries

Additionally	can	give	new	distribution-dependent	evolutionary
algorithms	that	are	resilient	to	drift	from	this	connection
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LOSS	FUNCTIONS
Typically	we	want	to	measure	the	0/1	Loss:

Now	we	can	visualize	what’s	happening

0/1	Loss

The	trouble	is,	the	loss	is	nonconvex as	a	function	of	w

Incorrectly	labeled	examplesCorrectly	labeled	examples
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CONVEX	SURROGATES
A	standard	approach	is	to	work	with	a	convex	surrogate

0/1	Loss

The	loss	function	is	convex,	and	achieving	zero	loss	is	equivalent
to	fitting	the	samples	exactly

For	example,	the ReLU Loss:	

ReLU
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What	happens	when	we	add	noise?

0/1	Loss
ReLU

The	ReLU loss	is	not	representative	of	how	many	examples	you
are	getting	wrong

You	could	incur	a	huge	loss	for	a	single	mistake,	if	it	is	far	from	the
decision	boundary,	or	incur	a	tiny	loss	for	many	mistakes	as	long
as	they	are	close
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CONVEX	SURROGATES,	CONTINUED

0/1	Loss

For	random	noise,	natural	approach	is	to	use	the	Leaky	ReLU:

Intuition:	For	examples	far	from	decision	boundary,	the	gain	when	
you	get	it	right	offsets the	loss	when	its	label	is	flipped	(on	average)

Leaky	ReLU
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Consider	the	following	two-player	game

Leaky	ReLU

min max
c

where	c	ranges	over	all	distributions

Claim: The	optimal	solution	for	the	min-player	is	w*

Unfortunately,	optimizing	over	the	max-players	strategies	is	both	
statistically	and	computationally	hard

Intuition: The	true	hypothesis	does	well	on	any	region	of	space,
and	the	max-player	looks	for	a	region	where	the	min-player	is
doing	the	worst
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A	GENERAL	FRAMEWORK,	CONTINUED
Instead	we	work	with	a	relaxation	where	the	max-player	can	only
restrict	the	distribution	to	slabs	along	the	current	w

min max
r	>	0

We	will	show	that	any	approximate	equilibrium	necessarily
corresponds	to	a	hypothesis	with	low	error
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Key	Lemma	#1	[Diakonikolas et	al.]:	In	the	Massart noise	model,
for	any															and	distribution	on	X	with	margin	

Leaky	ReLU loss	on	distribution

Definition:	The	margin is	the	smallest	distance	of	any	example
from	the	true	decision	boundary,	i.e.	
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Thus	the	true	direction	achieves	small	loss

Proof:	The	key	is	to	first	condition	on	X,	then	randomness	of	noise

Moreover,	this	is	true	even	if	we	change	the	distribution	by	
restricting	to	a	part	of	the	domain	– not	true	in	agnostic	learning
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Key	Lemma	#2	(simplified):	In	the	Massart noise	model,
suppose	that																									.	Then	there	is	some	slab																	with

If	the	current	direction	w	does	not	achieve	small	enough	error,
then	the	max-player	can	do	well	in	the	game	

Thus	doing	well,	with	respect	to	the	min-player,	is	equivalent	to	
achieving	small	error

Leaky	ReLU loss	on	distribution	conditioned	on	being	in	S(w,	r)	
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This	implies	that	for	all	r	there	is	s(r)	<	r	with

Rearranging	and	dividing	by	the	prob.	of	being	in	the	slab	gives

Now	chaining	together	these	regions,	disjointly,	implies

which	completes	the	proof	by	contradiction.	
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Now	how	do	we	find	a	good	strategy	for	the	min-player?

� Initializew	to	a	vector	in	the	unit	ball
� Repeat	

�Max-Player	finds	the	slab																		that	maximizes
the	loss																.	If	the	loss	is							then	returnw		

�Min-Player takes	a	step	in	the	direction								where

and	projects	back	into	the	unit	ball

Full	version	needs	to	use	the	empirical	loss,	and	restrict	the	
max-player	to	search	only	over	slabs	with	nonnegligible	mass
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So	whenever	we	incur	more	loss	than	the	true	direction	w*,
we	are	incurring	regret	in	the	sense	of	online	convex	optimization

Finally	[Zinkevich ‘03]	proved	that	projected	gradient	descent
achieves	low	regret,	so	this	cannot	happen	for	too	many	steps

*
* i.e.	in	each	step	we	play	a	point	x	from	a	known	convex	body,

an	adversary	plays	a	convex	function	f,	and	we	incur	loss	f(x)
and	the	goal	is	to	compete	with	the	best	point	in	hindsight
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When	is	this	noise	model	useful?

UCI	Adults	Dataset:	48.8k	individuals,	14	attributes,	goal	is	to	
predict	whether	income	is	above	or	below	$50k

We	added	noise	outside a	target	group,	and	ran	off-the-shelf
algorithms	whose	goal	is	to	maximize	overall	accuracy

Motivation:	Numerous	empirical	studies	about	how	the	level	of
noise	various	across	demographic	groups	e.g.	in	surveys

We	measure	overall	accuracy	and	accuracy	on	the	part	of	the	
target	group	that	is	above	$50k
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Many	natural	algorithms	(e.g.	logistic	regression)	amplify	bias	
in	the	data	– to	achieve	good	overall	accuracy	they	compromise
the	accuracy	on	various	demographic	groups
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Target	group:	Immigrant

In	contrast,	our	algorithm	does	just	as	well	in	overall	accuracy
minus	the	side	effects	– without	knowing	the	identity	of	these
protected	groups
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DISCUSSION

Many	definitions	(e.g.	equalized	odds,	calibration)	guarantee	
some	compelling	fairness	criteria

However	they	are	difficult	to	achieve

From	a	practical	standpoint,	is	there	a	sense	in	which	making
an	algorithm	more	robust	can	also	make	it	more	fair?	

e.g.	because	it	can	tolerate	heterogenous	noise

Differentially	private	algorithms	are	robust,	and	have	even	been
used	for	fairness,	but	our	notions	of	robustness	in	learning	theory
tend	to	be	quite	different	(not	worst-case)
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