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 known to fail on worst-case inputs (stuck in local optima) 
 

 highly sensitive to cost-function, update procedure,  
       regularization 

Can we give an efficient algorithm that works on all inputs? 

Are the instances we actually want to solve somehow easier? 

Focus of this talk: a natural condition so that a simple algorithm  
provably works, quickly 

Yes, if and only if r is constant 
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Theorem [Arora, Ge, Moitra, FOCS’12]: There is a polynomial time  
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Anchor words are extreme rows of the Gram matrix! 
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ALGORITHMS FOR TOPIC MODELS? 

What if documents are short; can we still find A? 

The crucial observation is, we can work with the Gram matrix 
(defined next…) 

The posterior distribution Pr[topic|word] is supported on 
just one topic, for an anchor word 

Given enough documents, we can still find the anchor words! 

How can we use the anchor words to find the rest of A? 

We can use the anchor words to find Pr[topic|word] for all the 
other words… 
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Bayes Rule 

Pr[topic|word #3]: (0.5, topic #2); (0.5, topic #3) 
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  Compute A using Bayes Rule: 

Pr[word|topic] =  
 

Pr[topic|word] Pr[word] 

Pr[topic|word’] Pr[word’] ∑   

word’ 

The Topic Model Algorithm: 
 

 form the Gram matrix and find the anchor words 
 

 write each word as a convex combination of the  
        anchor words to find Pr[topic|word] 
 

 compute A from the formula above 
 

This provably works for any topic model (LDA, CTM, PAM, etc …) 
provided A is separable and R is non-singular 
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METHODOLOGY: 

The previous algorithm was inspired by experiments! 

Our first attempt used matrix inversion, which is noisy and 
unstable and can produce small negative values 

We ran our algorithm on real and synthetic data: 
 

 synthetic data: train an LDA model on 1100 NIPS abstracts,  
       use this model to run experiments 
 

Our algorithm is fifty times faster and performs nearly the 
same on all metrics we tried (l_1, log-likelihood, coherence,…) 
when compared to MALLET 

 real data: UCI collection of 300,000 NYT articles, 10 minutes! 
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                                                    See  
also [Belkin, Sinha ’10] 
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f(x) f(y)

f(x+y) = f(x) + f(y)
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