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o Combinatorics:
o extended formulation, log-rank conjecture
[Yannakakis], [Lovasz, Saks]
o Physical Modeling:
o interaction of components is additive

o visual recognition, environmetrics
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[Vavasis]: It is NP-hard to compute the nonnegative rank.

[Cohen and Rothblum]: The nonnegative rank can be computed in time

(nm) O(nr+mr) )

[Arora, Ge, Kannan and Moitra]: The nonnegative rank can be computed in time
(nm)f(") where f(r) = O(2") and any algorithm that runs in time (nm)°(") would
yield a sub exponential time algorithm for 3-SAT.

Theorem

The nonnegative rank can be computed in time (nm)©°(").

...these algorithms are about an algebraic question, about how to best encode
nonnegative rank as a systems of polynomial inequalities
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Semi-algebraic sets: s polynomials, k variables, Boolean function B

S = {x1, x2...xc| B(sgn(f1), sgn(f2), ...sgn(fs)) = "true" }

Question

How many sign patterns arise (as x1, X2, ...xx range over R¥)?

Naive bound: 3% (all of {—1,0,1}*), [Milnor, Warren]: at most (ds)*,
where d is the maximum degree

In fact, best known algorithms (e.g. [Renegar]) for finding a point in
S run in (ds)°%) time
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Is NMF Computable?

[Cohen, Rothblum]: Yes (DETOUR)

o Variables: entries in A and W (nr + mr total)

o Constraints: A, W >0 and AW = M (degree two)

Running time for a solver is exponential in the number of variables

Question

What is the smallest formulation, measured in the number of
variables? Can we use only f(r) variables? O(r?) variables?
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Most interesting case in e.g. extended formulations:
#facets{conv(A)} > #vertices{conv(A)}
which can only happen if (say) rank(A) = r/2

Question J

Can we still find the rows of W from many linear transformations of rows of M?

This could require exponentially many (2) linear transformations (e.g. covering
the cross polytope by simplices)

Key
These linear transformations can be defined using a common set of r> variables! J
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This algorithm is based on answering a purely algebraic question: How many
variables do we need in a semi-algebraic set to encode nonnegative rank?
Question

Are there other examples of a better understanding of the expressive power of
semi-algebraic sets can lead to a new algorithm?

Similar: recent work [Anandkumar et al] on topic modeling is based on
understanding how many moments are needed to find the parameters.

Observation

The number of variables plays an analogous role to VC-dimension

Is there an elementary proof of the Milnor-Warren bound?
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