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Applications

Statistics and Machine Learning:
extract latent relationships in data

image segmentation, text classification, information retrieval,
collaborative filtering, ...
[Lee, Seung], [Xu et al], [Hofmann], [Kumar et al], [Kleinberg, Sandler]

Combinatorics:
extended formulation, log-rank conjecture
[Yannakakis], [Lovász, Saks]

Physical Modeling:
interaction of components is additive

visual recognition, environmetrics
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The Complexity of Nonnegative Rank

[Vavasis]: It is NP-hard to compute the nonnegative rank.

[Cohen and Rothblum]: The nonnegative rank can be computed in time
(nm)O(nr+mr).

[Arora, Ge, Kannan and Moitra]: The nonnegative rank can be computed in time
(nm)f (r) where f (r) = O(2r ) and any algorithm that runs in time (nm)o(r) would
yield a sub exponential time algorithm for 3-SAT.

Theorem

The nonnegative rank can be computed in time (nm)O(r2).

...these algorithms are about an algebraic question, about how to best encode
nonnegative rank as a systems of polynomial inequalities
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Is NMF Computable?

[Cohen, Rothblum]: Yes (DETOUR)

Variables: entries in A and W (nr + mr total)

Constraints: A,W ≥ 0 and AW = M (degree two)

Running time for a solver is exponential in the number of variables

Question

What is the smallest formulation, measured in the number of
variables? Can we use only f (r) variables?
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Semi-algebraic sets: s polynomials, k variables, Boolean function B

S = {x1, x2...xk |B(sgn(f1), sgn(f2), ...sgn(fs)) = ”true” }

Question

How many sign patterns arise (as x1, x2, ...xk range over Rk)?

Naive bound: 3s (all of {−1, 0, 1}s), [Milnor, Warren]: at most (ds)k ,
where d is the maximum degree

In fact, best known algorithms (e.g. [Renegar]) for finding a point in
S run in (ds)O(k) time
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Most interesting case in e.g. extended formulations:

#facets{conv(A)} � #vertices{conv(A)}

which can only happen if (say) rank(A) = r/2

Question

Can we still find the rows of W from many linear transformations of rows of M?

This could require exponentially many (2r ) linear transformations (e.g. covering
the cross polytope by simplices)

Key

These linear transformations can be defined using a common set of r2 variables!
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Goal

Encode nonnegative rank as a semi-algebraic set with 2r2 variables

(i.e. the set is non-empty iff rank+(M) ≤ r)

We give a new normal form for nonnegative matrix factorization (that uses
exponentially many r × r unknown linear transformations)

We use Cramer’s Rule to write all of these linear transformations using a
common set of r2 variables

These transformations recover the factorization A,W , and we can check that
it is a valid nonnegative matrix factorization

Theorem

The nonnegative rank can be computed in time (nm)O(r2).
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Concluding Remarks

This algorithm is based on answering a purely algebraic question: How many
variables do we need in a semi-algebraic set to encode nonnegative rank?

Question

Are there other examples of a better understanding of the expressive power of
semi-algebraic sets can lead to a new algorithm?

Similar: recent work [Anandkumar et al] on topic modeling is based on
understanding how many moments are needed to find the parameters.

Observation

The number of variables plays an analogous role to VC-dimension

Is there an elementary proof of the Milnor-Warren bound?
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