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Abstract
In every corner of machine learning and statistics, there 
is a need for estimators that work not just in an idealized 
model, but even when their assumptions are violated. 
Unfortunately, in high dimensions, being provably robust 
and being efficiently computable are often at odds with each 
other.

We give the first efficient algorithm for estimating the 
parameters of a high-dimensional Gaussian that is able to 
tolerate a constant fraction of corruptions that is indepen-
dent of the dimension. Prior to our work, all known estima-
tors either needed time exponential in the dimension to 
compute or could tolerate only an inverse-polynomial frac-
tion of corruptions. Not only does our algorithm bridge the 
gap between robustness and algorithms, but also it turns 
out to be highly practical in a variety of settings.

1. INTRODUCTION
Machine learning is filled with examples of estimators that 
work well in idealized settings but fail when their assump-
tions are violated. Consider the following illustrative exam-
ple: We are given samples X1, X2, …  , XN from a 
one-dimensional Gaussian

and our goal is to estimate its mean m and its variance σ2.  
It is well-known that the empirical mean  and empirical 
variance are effective, which are defined as

In fact, these are examples of a more general paradigm 
within statistics called maximum likelihood estimation: 
When we know the distribution comes from some paramet-
ric family, we choose the parameters that are the most likely 
to have generated the observed data. In 1922, Ronald Fisher12 
formulated the maximum likelihood principle. It has many 
wonderful properties (under various technical conditions), 
such as converging to the true parameters as the number of 
samples goes to infinity, a property called consistency. 
Moreover, it has asymptotically the smallest possible vari-
ance among all unbiased estimators, a property called 
asymptotic consistency.

In 1960, John Tukey24 challenged the conventional wis-
dom in parametric estimation by asking a simple question: 
Are there provably robust methods to estimate the parame-
ters of a one-dimensional Gaussian? He showed that various 
estimators that were not asymptotically consistent (and had 
thus fallen out of favor) outperformed the maximum likeli-
hood estimator when the data is not exactly Gaussian, but 
instead comes from a distribution that is close to being 
Gaussian. His paper launched the field of robust statistics15, 13 

The original version of this paper is entitled “Robust Es-
timators in High Dimensions without the Computa-
tional Intractability” and was published in Proceedings 
of the 57th Annual IEEE Symp. on Foundations in Computer 
Science. A version was also published in SIAM J. on 
Computing, 2019. 

that seeks to design estimators that behave well in a neigh-
borhood around the true model. In one dimension, robust 
statistics prescribes that it is better to use the empirical 
median than the empirical mean. Similarly, it is better to use 
the empirical median absolute deviation (or any number of 
other estimators based on quantiles) than the empirical 
standard deviation. See Section 3.1.

Although there is an urgent need for provably robust esti-
mators in virtually every application of machine learning, 
there is a major obstacle to directly applying ideas from 
robust statistics. The difficulty is that virtually all provably 
robust estimators are hard to compute in high dimensions. 
In this work, we are interested in the following family of 
questions:

Question 1.1. Let D be a family of distributions on Rd. Suppose 
we are given samples generated from the following process: 
First, m samples are drawn from some unknown distribution P 
in D. Then, an adversary is allowed to arbitrarily corrupt an 
e-fraction of the samples. Can we efficiently find a distribution 
P′ in D that is f(e, d)-close, in total variation distance, to P?

Our most important example is the direct generaliza-
tion of John Tukey’s challenge24 to higher dimensions: Is 
there a provably robust algorithm for estimating the param-
eters of a high-dimensional Gaussian? Without algorith-
mic considerations, robust statistics already provides 
prescriptions such as the Tukey median25 and the minimum 
volume enclosing ellipsoid23 for estimating the high-dimen-
sional mean and covariance, respectively. However, the 
best-known algorithms for computing these estimates run 
in time that is exponential in the dimension. In fact, we are 
not aware of any moderate-sized datasets with dimension 
larger than six where these estimates have been success-
fully computed!

In contrast, there are other techniques that one might try. 
For example, instead of computing the Tukey median, we 
could compute the coordinate-wise median. This can obvi-
ously be done in polynomial time but encounters a different 
sort of difficulty: It turns out that by adding corruptions 
along a direction that is not-axis aligned, an adversary can 
badly compromise the estimator. Quantitatively, even if an 
adversary is only allowed to corrupt only an e-fraction of the 
samples, they can force the estimator to find a Gaussian that 
is as far as  in l2-distance, implying total variation dis-
tance is close to one.

http://dx.doi.org/10.1145/3453935
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The main meta-question behind our work is: Is it possi-
ble to design estimators that are both provably robust in 
high dimensions (i.e., they do not lose dimension-depen-
dent factors in their robustness guarantees) and also effi-
ciently computable? We will give the first provably robust 
and computationally efficient methods for learning the 
parameters of a high-dimensional Gaussian, as well as vari-
ous other related models. In concurrent and independent 
work, Lai et al.20 gave alternative algorithms albeit with 
weaker guarantees. We discuss their work in Section 1.3.

The types of questions we study here also have roots in 
computational learning theory. They are related to the 
agnostic learning model of Kearns et al.17 where the goal is 
to learn a labeling function whose agreement with some 
underlying target function is close to the best possible, 
among all functions in some given class. In contrast, we 
are interested in an unsupervised learning problem, but 
it is also agnostic in the sense that we want to find the 
approximately closest fit from among our family of distri-
butions. Within machine learning, these types of prob-
lems are also called estimation under model 
misspecification. The usual prescription is to use the 
maximum likelihood estimator, which is unfortunately 
hard to compute in general. Even ignoring computa-
tional considerations, the maximum likelihood estima-
tor is only guaranteed to converge to the distribution P′ 
in D that is closest (in Kullback-Leibler divergence) to the 
distribution from which the observations are generated. 
This is problematic because such a distribution is not nec-
essarily close to P at all.

More broadly, in recent years, there has been consider-
able progress on a variety of problems in this domain, 
such as algorithms with provable guarantees for learning 
mixture models, phylogenetic trees, hidden Markov mod-
els, topic models and independent component analysis. 
These algorithms are based on the method of moments 
and crucially rely on the assumption that the observations 
were actually generated by a model in the family. However, 
this simplifying assumption is not meant to be exactly 
true, and it is an important direction to explore what hap-
pens when it holds only in an approximate sense. Our 
work can be thought of as a first step toward relaxing the 
distributional assumptions in these applications, and 
subsequent work in algorithmic robust statistics has given 
new methodologies for robustly estimating higher 
moments under weaker assumptions about the uncor-
rupted distribution.5, 10, 14, 19

1.1. Our techniques
All of our algorithms are based on a common recipe. The 
first step is to answer the following easier question: Even 
if we were given a candidate hypothesis P′, how could we 
tell if it is ε-close in total variation distance to P? The 
usual way to certify closeness is to exhibit a coupling 
between P and P′ that marginally samples from both dis-
tributions, with the property that the samples are the 
same with probability 1 − ε. However, we have no control 
over the process by which samples are generated from P, 
in order to produce such a coupling. And even then, the way 

that an adversary decides to corrupt samples can introduce 
complex statistical dependencies.

We circumvent this issue by working with an appropri-
ate notion of parameter distance, which we use as a proxy 
for the total variation distance between two distributions 
in the class D. See Section 2.2. Various notions of param-
eter distance underlie various efficient algorithms for dis-
tribution learning in the following sense. If θ and θ′ are 
two sets of parameters that define distributions Pθ and Pθ ′ 
in a given class D, a learning algorithm often relies on 
establishing the following type of relation between the 
total variation distance dTV (Pθ, Pθ ′) and the parameter dis-
tance dp(θ, θ′):

  (1)

Unfortunately, in our agnostic setting, we cannot afford for 
(1) to have any dependence on the dimension d at all. Any 
such dependence would appear in the error guarantee of our 
algorithm. Instead, the starting point of our algorithms is a 
notion of parameter distance that satisfies

  (2)

that allows us to reformulate our goal of designing robust 
estimators, with distribution-independent error guaran-
tees, as the goal of robustly estimating θ according to dp. In 
several settings, the choice of the parameter distance is 
rather straightforward. It is often the case that some variants 
of the l2-distance between the parameters work.

Given our notion of parameter distance satisfying (2), our 
main ingredient is an efficient method for robustly estimat-
ing the parameters. We provide two algorithmic approaches 
that are based on similar principles. Our first approach is 
fast and practical, requiring only approximate eigenvalue 
computations. Our second approach relies on convex pro-
gramming, which has the advantage that it is possible to mix 
in different types of constraints (such as those generated by 
the sum-of-squares hierarchy) to tackle more complicated 
settings. Notably, either approach can be used to give all of 
our concrete learning applications with nearly identical 
error guarantees. In what follows, we specialize to the prob-
lem of robustly learning the mean µ of a Gaussian whose 
covariance is promised to be the identity, which we will use 
to illustrate how both approaches operate. We emphasize 
that learning the parameters in more general settings 
requires many additional ideas.

Our first algorithmic approach is an iterative greedy 
method that, in each iteration, filters out some of the cor-
rupted samples. In particular, given a set of samples S′ that 
contains a large set S of uncorrupted samples, an iteration 
of our algorithm either returns the sample mean of S′ or 
finds a filter that allows us to efficiently compute a set S″⊂ 
S′ that is much closer to S. Note the sample mean 

 (even after we remove points that are obvi-
ously outliers) can be -far from the true mean in 
l2-distance. The filter approach shows that either the sam-
ple mean is already a good estimate for µ or else there is an 
elementary spectral test that rejects some of the corrupted 
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1.2. Our results
We give the first efficient algorithms for agnostically 
learning several important distribution classes with 
dimension- independent error guarantees. Our main result 
is an algorithm for robustly learning a high-dimensional 
Gaussian with an almost optimal error guarantee. 
Throughout this paper, we write  when 
referring to our sample complexity, to signify that our algo-
rithm works if N ≥ C f (d, ε, δ)polylog( f (d, ε, δ) ) for a large 
enough universal  constant C.

Theorem 1.2. Let µ, Σ be arbitrary and unknown, and let ε > 0 
be given. There is a polynomial time algorithm that given an 
ε-corrupted set of N samples from N(µ, Σ) with  pro-
duces  and  so that with probability 0.99, we have

In later work,5 we improved the sample complexity to 
,  

which is optimal up to constant factors even when there are 
no corruptions. Moreover, it was observed in Diakonikolas 
et al.6 that the error guarantee of these algorithms can be 
improved to O(ε log(1/ε)), which is the best possible for sta-
tistical query algorithms.9

Beyond robustly learning a high-dimensional Gaussian, 
we give the first efficient robust learning algorithms with 
dimension-independent error guarantees for various other 
statistical tasks, such as robust estimation of a binary prod-
uct distribution, robust density estimation for mixtures of 
any constant number of spherical Gaussians, and mixtures 
of two binary product distributions (under some natural 
 balanced-ness condition). We emphasize that obtaining 
these results requires additional conceptual and technical 
ingredients. We defer a description of these results to the full 
version of our paper.

1.3. Related work
In concurrent and independent work, Lai et al.20 also study 
high-dimensional robust estimation. Their results hold 
more generally for distributions with bounded moments, 
but our guarantees are stronger (and optimal up to polyloga-
rithmic factors) for the fundamental problem of robustly 
learning a Gaussian.

After both our and their work, there has been a flurry of 
activity in the area, such as algorithms for robust list learn-
ing when the fraction of corruptions is greater than a half,3 
algorithms for sparse mean estimation whose sample com-
plexity is sublinear in the dimension,2 lower bounds against 
statistical query algorithms,9 and extensions to other gener-
ative models with weaker moment conditions14, 19 and vari-
ous supervised learning problems.22, 7 An overview of recent 
developments in the area can be found in Diakonikolas and 
Kane.8 We also note that spectral techniques for robust 
learning, which are relatives of our algorithms, appeared in 
earlier work.18, 1 These works employed a “hard” filtering 
step (for a supervised learning problem), which only removes 
outliers and consequently leads to errors that scale logarith-
mically with the dimension.

points and almost none of the uncorrupted ones. The cru-
cial observation is that if a small number of corrupted 
points are responsible for a large change in the sample 
mean, it must be the case that many of the corrupted points 
are very far from the mean in some particular direction.

Our second algorithmic approach relies on convex pro-
gramming. Here, instead of rejecting corrupted samples, we 
compute appropriate weights wi for the samples Xi, so that  
the weighted empirical average is close to µ.  
We require the weights to be in the convex set Cτ, whose 
defining constraints are:

(a)   for all i and , and

(b) .

We prove that any set of weights in Cτ yields a good esti-
mate (w). The catch is that the set Cτ is defined based on µ, 
which is unknown. Nevertheless, it turns out that we can use 
the same types of spectral arguments that underlie the filter-
ing approach to design an approximate separation oracle for 
Cτ. Combined with standard results in convex optimization, 
this yields our second algorithm for robustly estimating µ.

The third and final ingredient is some new concentra-
tion bounds. In both of the approaches above, at best we 
hope that we can remove all of the corrupted points and be 
left with only the uncorrupted ones, and then use standard 
estimators (e.g., the empirical average) on them. However, 
an adversary could have removed an ε-fraction of the sam-
ples in a way that biases the empirical average of the 
remaining uncorrupted samples. What we need are con-
centration bounds that show for sufficiently large N, for 
samples X1, X2, …, XN from a Gaussian with mean µ and 
identity covariance, that every (1 − ε)N set of samples pro-
duces a good estimate for µ. In some cases, we can derive 
such concentration bounds by appealing to known con-
centration inequalities and taking a union bound. 
However, in other cases (e.g., concentration bounds for 
degree two polynomials of Gaussian random variables), 
the existing concentration bounds are not strong enough, 
and we need other arguments to prove what we need.

Finally, we briefly discuss how to adapt our techniques to 
robustly learn the covariance. Suppose the mean is zero and 
consider the following convex set Cτ, where Σ is the unknown 
covariance matrix:

(a)  for all i and , and

(b) .

Again, the constraints defining the convex set are based 
on the parameters of the distribution (this time, they use 
knowledge of Σ). We design an approximate separation ora-
cle for this unknown convex set by analyzing the spectral 
properties of the fourth moment tensor of a Gaussian. It 
turns out that our algorithms for robustly learning the mean 
when the covariance is the identity and robustly learning the 
covariance when the mean is zero can be combined to solve 
the general problem.
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2.2. Connections to parameter distance
In this paper, our focus is on robust Gaussian estimation, 
when P = N(µ, Σ) is a Gaussian distribution. That is, given a 
set of N ε-corrupted samples from some unknown Gaussian 
distribution P, the goal is to output a Gaussian distribution 

 such that  is small. As it turns out, learning a 
Gaussian in total variation distance is closely tied to learn-
ing the parameters of the distribution, in the natural affine-
invariant measure. This is captured by the following two 
lemmata. Throughout this paper, we will say that  
if f(x) ≤ Cg(x) for all x and some universal constant C. We also 
let AF denote the Frobenius norm of a matrix A.

Lemma 2.4. For any µ, µ′ ∈ Rd, we have

Lemma 2.5. For any full-rank positive semidefinite matrices Σ, 
Σ′, we have

where .

The first lemma states that if the covariances are both the 
identity, then the total variation distance between the two 
Gaussians is essentially the l2-distance between the means of 
the Gaussians, except when the means are far apart. Note that 
total variation distance is always at most 1, and so when the 
means are very far apart, we only get a constant lower bound.

The second lemma is similar: It says that if both means 
are zero, then the total variation distance is captured by the 
Frobenius norm distance between the covariances, but “pre-
conditioned” by one of the covariances. This is simply a 
high-dimensional analog of the fact that in one dimension, 
if we wish to get a meaningful approximation to the variance 
of a Gaussian, we need to learn it to multiplicative error.

3. ROBUST ESTIMATION

3.1. Univariate robust estimation
For the sake of exposition, we begin with robust univari-
ate Gaussian estimation. A first observation is that the 
empirical mean is not robust: even changing a single sam-
ple can move our estimate by an arbitrarily large amount. 
To see this, let  be the empirical mean of the dataset 
before corruptions, and let  be the empirical mean after 
increasing the value of the sample X1 by some amount t. 
Although standard concentration arguments imply that 

 is small, we have that , which we can 
make arbitrarily large with our choice of t. Fortunately, we 
describe a simple approach based on order statistics, 
which will allow us to estimate both the mean and the 
variance, even when a constant fraction of our dataset has 
been corrupted.

The most well-known robust estimator for the mean of a 
Gaussian is the median. More precisely, we let

2. PRELIMINARIES

2.1. Problem setup
Formally, we will work in the following corruption model:
Definition 2.1. For a given ε > 0 and an unknown distribution 
P, we say that S is an ε-corrupted set of samples from P of size N 
if S = G ∪ E \ Sr, where G is a set of N independent samples from 
P, Sr ⊂ G, and E and Sr satisfy |E| = |Sr| ≤ εN.

In other words, a set of samples is ε-corrupted if an 
ε-fraction of the samples has been arbitrarily changed, which 
we can think of as a two-step process: first the adversary 
removes the samples in Sr and then adds in its own arbitrarily 
chosen data points E. Note that the ε-corruption model is a 

strong model of corruption, and it gives it more power than 
other classical notions of corruption, such as Huber’s con-
tamination model. We can visualize how the adversary can 
change the probability density function of P as follows:
Here, the blue curve is the original density function, and the 
green curve is the new density function, which is merely 
approximately close to P. The regions where the blue curve 
lies above the green curve are places where the adversary has 
deleted samples, and the regions where the green curve is 
above the blue curve are places where it has injected sam-
ples. In fact, the true process is even more complicated 
because if an adversary first inspects the samples and then 
decides what to corrupt, even the samples it has not cor-
rupted are no longer necessarily independent.

It turns out that this model has very close connections to 
a natural measure of distance between distributions, 
namely, total variation distance:

Definition 2.2. Given two distributions P, Q over Rd with 
probability density functions p, q, respectively, the total varia-
tion distance between P and Q is given by

TV ( , ) (1 / 2) | ( ) ( )| .
d

d P Q p x q x dx= −∫R
The reason for this connection is as follows:

Fact 2.3. Let P, Q be two distributions with dTV(P, Q) = ε. Let S be N 
i.i.d. samples from Q. Then, with probability at least 1 − exp(−Ω(εn) ), 
S can be viewed as a set of (1 + o(1) )ε-corrupted samples from P.

This means that, up to subconstant factors in the fraction of 
corrupted points, learning from corrupted data is at least as 
hard as learning a distribution P from samples, if all we get 
are samples from some other distribution, which is ε-close 
to it in total variation distance. This fact immediately implies 
that if we are given ε-corrupted samples from P, the best we 
can generally hope for is to recover some  so that 

. As we shall see, it is often possible to match 
this lower bound (up to logarithmic factors).
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2. A large dimension-dependent factor appears in the 
error, resulting in very weak accuracy guarantees in 
high-dimensional settings.

At least one of these issues persists in all previously-known 
approaches, and either one would preclude realizable multi-
variate robust estimation. As few more examples, tourna-
ment-based hypothesis selection methods give accurate 
results, but are not computationally efficient. Alternatively, 
one could consider a pruning-based argument, which removes 
all points that are too far from the rest of the dataset. This is 
computationally efficient, but we again incur error of 

.  
The primary contribution of our main result is a method 
that avoids both these issues simultaneously, providing an 
algorithm that is computationally efficient and does not 
lose a dimension-dependent factor in the accuracy.

3.3. Robust mean estimation
To offer some insight into why things go wrong in multivari-
ate settings, we delve a bit deeper into the pruning-based 
approach. For the time being, we restrict our attention to 
Gaussians with identity covariance. It is well-known that, 

Similarly, as an estimate for the standard deviation, we 
can consider a rescaling of the median absolute deviation 
(MAD), letting

where Φ−1 is the inverse of the Gaussian cumulative distribu-
tion function. The rescaling is required to make the MAD a 
consistent estimator for the standard deviation. The median 
and MAD allow us to robustly estimate the underlying 
Gaussian:

Theorem 3.1. Given a set of N ≥ Ω 2

log 1/�
�

 
 
 

 ε-corrupted sam-
ples from N(µ, σ2), with probability at least 1 − δ, we have

for a universal constant C.

This estimator is the best of all possible worlds. It is prov-
ably robust. It can be computed efficiently. In fact, it also 
achieves the information-theoretically optimal sample com-
plexity. The median and MAD are examples of robust esti-
mators based on order statistics. There are other provably 
robust estimators based on winsorizing.13

3.2. Natural multivariate approaches that fail
There are many natural approaches for generalizing what 
we have learned in the one-dimensional case to the high-
dimensional case. But as we will see, there is a tension 
between being provably robust and computationally effi-
cient. First, consider a coordinate-by-coordinate approach 
where we robustly estimate the mean along each coordinate 
direction, and concatenate the d univariate estimates into an 
estimate for the d-dimensional mean vector. Although this 
achieves error Θ(ε) in each direction’s subproblem, combin-
ing the estimates results in an l2 error of . In high-
dimensional settings, this gives vacuous bounds on the total 
variation distance except for vanishingly small values of ε.

Alternatively, one could attempt to extend the median-
based estimator to multivariate settings. Although the same 
definition of the median does not apply in more than one 
dimension, there are many ways to generalize it. One such 
generalization is the Tukey median,25 proposed specifically 
for the problem of robust estimation. The Tukey median of a 
dataset is the point (not necessarily in the dataset) that max-
imizes the minimum number of points on one side of any 
half-space through the point. Although this achieves the 
desired O(ε) accuracy, it is unfortunately NP-hard to approxi-
mate on worst-case datasets.16 Another multivariate notion 
of median is the geometric median, the point that minimizes 
the sum of l2-distances to points in the dataset. Although 
this is efficiently computable in polynomial time, it unfortu-
nately also can be shown to incur  error.20

All the approaches mentioned so far have one of the fol-
lowing drawbacks:

1. The optimization problem is NP-hard, making it intrac-
table in settings of even moderate dimensionality.

given a dataset generated according to a d-dimensional 
spherical Gaussian distribution, all the data points will be 
tightly concentrated at a distance  from the mean. 
Thus, we can think about the distribution as being concen-
trated on a thin spherical shell, as depicted here:

A smart adversary can place all his corruptions within the 
shell too, in such a way that they move the empirical mean by 
as much as  in l2-distance. This demonstrates an intrin-
sic limitation of any algorithm, which only looks locally for 
corruptions—as a result, any effective algorithm must 
remove points based on global properties of the dataset.

This is captured in the following key geometric lemma:

Lemma 3.2. Let ε ∈ (0, 1/2). Let S be an ε-corrupted set of points 
from N(µ, I) of size at least Ω(d/ε2). Let , Σ̂  denote the empiri-
cal mean and covariance of S, that is,

Then, with probability at least 0.99, we have:

  (3)

This lemma is a slight rephrasing of Lemma 4.15 in 
Diakonikolas et al.4 At a high level, Lemma 3.2 states that if 
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consequential outliers, we seek to iteratively decrease their 
influence. Let S = G ∪ E\Sr be an ε-corrupted set of points. 
For each point Xi ∈ S, we associate a nonnegative weight wi. 
Ideally, we would want these weights to be uniform over 
S\E, and zero otherwise. A priori the only thing we know 
about S\E is that it has size at least (1 − ε)N. Consequently, 
a natural constraint to put on the weights w is that they 
must lie within the convex hull of the set of weights that are 
uniform on sets of size (1 − ε)N. This is the following set:

  (4)

Given this, one can show that a slight extension of Lemma 
3.2 implies that it suffices to find a set of weights w ∈ Wn, ε so 
that the empirical distribution over S with these weights is 
spectrally close to the identity after centering at µ. To make 
this more formal, for any w ∈ WN, ε, let

be the mean and covariance of the empirical distribution 
over S, with weights w. Define also

to be the empirical covariance, except we center at the true 
mean of the unknown distribution. Note that M(w) is a linear 
function of w, and so in particular, it is a convex function. 
Then, it suffices to solve the following convex problem:

  (5)

where C > 0 is some universal constant. If w ∈ WN, ε satisfies 
(5), then one can show that µ(w) is close to µ with high prob-
ability, provided that N = Ω(d/ε2).

There is an obvious difficulty in solving (5). Namely, the 
description of (5) requires knowledge of µ, the parameter 
that we wish to estimate! Luckily, we can still construct a sep-
aration oracle for (5), which will suffice for computing a solu-
tion. In particular, given w ∈ WN, ε, we want an algorithm that

(a) if w satisfies (5), outputs YES and
(b)  otherwise, outputs a hyperplane l so that l(w) > 0 but 

l(w′) < 0 for all w′ satisfying (5).

First, note that if we knew µ, then constructing such an 
oracle would be straightforward. We simply compute the 
largest eigenvalue λ of M(w) − I in magnitude, and its associ-
ated eigenvector v. If |λ| < Cε log 1/ε, then output YES. If not, 
observe that the following is a separating hyperplane for w:

  (6)

where σ is the sign of λ.
Now we need to remove the assumption that we know µ. 

The key insight is that Lemma 3.2 allows us to substitute the 
top eigenvalue of Σ(w) − I in magnitude and its associated 
eigenvector for λ and v, respectively, and µ(w) for µ in (6). At a 
high level, this is because if µ(w) is close to µ, then Σ(w) is very 

the true mean and the empirical (and potentially corrupted) 
mean are far apart, then the empirical variance must be 
noticeably different along some direction. Thus, the spec-
tral norm of Σ̂  can be used to certify that our estimate  is 
close to the true mean in the sense that

On the other hand, when the empirical mean has been 
corrupted, Lemma 3.2 gives us a way to algorithmically make 
progress. It isolates a specific direction—namely, the top 
eigenvector of Σ̂  – I—in which the corrupted points must 
contribute a lot. Both of the algorithms we describe use 
information gleaned about the corruptions from the empiri-
cal moments in somewhat different ways.

Filtering approach. The filtering approach works by 
removing points from the dataset, using the above intuition. 
It proceeds as follows:

(a)  Compute the top eigenvalue λ and eigenvector v of Σ̂ .
(b) If λ is sufficiently small, terminate and output .
(c)  Otherwise, compute , and for an adap-

tively chosen threshold T, remove all Xi so that τi > T, 
and repeat.

If this is done carefully, then Lemma 3.2 guarantees that we 
always throw out many bad points compared to the number 
of good points we throw out. See Diakonikolas et al.4 for a 
detailed description of how the threshold is chosen. To 
make this formal, for any two sets A, B, define 

, which measures the relative size of the 
symmetric difference compared to the size of A. Then, we 
have the following guarantee for the filter:

Lemma 3.3 (informal). Let S = G ∪ E\Sr be an ε-corrupted set 
of points from N(µ, I) of size at least . Then, with 
probability at least 0.99 and after a simple preprocessing step, 
the filter satisfies the following property: Given any S′ ⊆ S satis-
fying Γ(G, S′) ≤ 2ε, the filter either

(a) outputs  so that , or
(b) outputs T so that Γ(G, T) ≤ Γ(G, S′) − ε/α, where α = d 

log(d/ε) log(d log(d/ε) ).

Note that Γ(G, S) ≤ 2ε initially. Now applying Lemma 3.3 we 
can guarantee that the procedure terminates after at most 
O(α) iterations. And when we terminate, again by Lemma 
3.3, we are guaranteed to output , which is close to the true 
mean. As described, each application of the filter would 
require computing the top eigenvector of a d × d matrix, 
which would be prohibitively slow. However, it turns out that 
a rough approximation to the top eigenvector suffices for the 
correctness of the filter algorithm, and thus each iteration 
can be performed in nearly-linear time via an approximate 
power method.

Convex programming approach. The second approach 
uses the intuition behind Lemma 3.2 somewhat differ-
ently. Instead of trying to directly remove all of the 
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3.5. Assembling the general algorithm
At this point, we have designed efficient algorithms to solve 
two important subcases of our general problem. Specifically, 
we can

(1)  robustly estimate N(µ, I), up to error  
in total variation distance and

(2) robustly estimate N(0, Σ), up to error O(ε log(1/ε) ) in 
total variation distance.

In fact, we can combine these primitives into an algorithm 
that works in the general case when both µ and Σ are 
unknown. The first observation is that we can use the dou-
bling trick (even in the presence of noise) to zero out the 
mean. In particular, given two independent samples X1 and X2 
from a distribution that is ε-close to a Gaussian N(µ, Σ), their 
difference X1 − X2 will be 2ε-close in distribution to N(0, 2Σ).

The second observation is that, given an estimate  of 
the covariance, we can approximately whiten our dataset. 
After applying the transformation  to our data, we get 
noisy samples from

This almost fits into the setting where just the mean is 
unknown, because the resulting covariance matrix is close 
to (but not exactly equal to) the identity matrix. Fortunately, 
we can exploit the robustness of our algorithms to handle 
this error, because the data is generated from a distribution 
that is O(ε log(1/ε) )-close to a Gaussian with identity covari-
ance. Putting the pieces together, we get an error guarantee 
of O(ε log3/2(1/ε) ). The overall algorithm is described in 
Algorithm 1. We will use X and Y to denote a set of samples 
that are fed into various subroutines.

Algorithm 1 Algorithm for robustly learning a Gaussian

 1: function RecoverRobustGaussian(ε, X1, …, X2N)
 2:   Let LearnCovariance(4ε, X ) for

 3:   Let LearnMean(O(ε log(1/ε) ), Y) for

 4:   return 

4. EXPERIMENTS
Our algorithms (or rather, natural variants of them) not only 
have provable guarantees in terms of their efficiency and 
robustness but also turn out to be highly practical. In 
Diakonikolas et al.,5 we studied their performance on both 
synthetic and real-world data, and we discuss the results in 
this section.

In Figure 1, we demonstrate our results on synthetic 
data, for estimating the mean and covariance of a Gaussian. 
We compare our Filtering method with the algorithms of 
Lai et al.,20 the empirical plug-in estimator, the empirical 
estimator in combination with pruning, random sample 
consensus (RANSAC),11 and the geometric median (for 
mean estimation). The first row of plots displays mean 

close to M(w). On the other hand, if µ(w) is far from µ, then 
Lemma 3.2 guarantees that the shift caused by centering at 
µ(w) rather than µ is overshadowed by the large eigenvalues 
of M(w) − I.

3.4. Robust covariance estimation
The same geometric intuition that underlies our algorithms 
for robustly learning the mean also forms the basis for our 
algorithms for robustly learning the covariance. This time, 
we momentarily restrict our attention to Gaussians with 
zero mean. In the case of robust mean estimation, Lemma 
3.2 states that a shift in the first moment caused by a small 
fraction of outliers causes a noticeable deviation in the sec-
ond moment. It turns out that the same principles work for 
robustly learning the covariance, we just need to use higher 
moments. In particular, if we want to detect when the 
empirical second moment has been compromised by a 
small fraction of outliers, there must be some evidence in 
the fourth moment. However, making this rigorous is tech-
nically involved.

At a high level, the main difficulty is that in the case of 
robust mean estimation, we know the structure of the sec-
ond moment, even if we do not know the mean. Namely, 
we assume that the covariance is the identity. However, the 
structure of the fourth moment depends heavily on the 
unknown covariance, and as a result, it is nontrivial to for-
mulate the proper analog of Lemma 3.2 for this setting.

Fortunately, the relationship between the second 
moment and the fourth moment of a Gaussian follows a pre-
dictable formula, as a special case of Isserlis’ theorem. For 
any vector υ ∈ Rd, let υ ⊗ υ ∈ Rd2 denote the tensor product of 
v with itself. Similarly, for any matrix M ∈ Rd×d, let M⊗2 ∈ 
Rd2×d2 be its tensor product with itself. Finally, let M ∈ Rd2 be 
the d2-dimensional vector that comes from flattening M into 
a vector. Then, the key identity is the following: for any cova-
riance matrix Σ, we have

  (7)

Consider the case where the unknown covariance Σ is well-
conditioned, so that it suffices to learn Σ to small error in 
Frobenius norm. Let {X1, …, XN} be an ε-corrupted dataset 
and set Yi = Xi ⊗ Xi for all i ∈ [N]. If Yi is uncorrupted, then 
E[Yi] = Σ, so recovering Σ in Frobenius norm exactly corre-
sponds to learning the mean of the uncorrupted Yi to small 
error in l2 norm. Moreover, by (7), the covariance of the 
uncorrupted Yi is 2 ⋅ Σ⊗2.

Thus learning the covariance reduces to a complicated 
variant of the mean estimation problem, where the covari-
ance depends on the unknown mean, but in a structured 
way. The relationship between them is sufficiently nice so 
that if the empirical mean of the Yi is corrupted by outliers, 
then this still manifests as a large eigenvalue of the empiri-
cal covariance of the Yi. This allows us to formulate a more 
sophisticated analog of Lemma 3.2 for this setting (see 
Claim 4.29 in Diakonikolas et al.4). By then, leveraging this 
geometric structure, we can then devise generalizations of 
the filtering and the convex programming approaches to 
robustly learn the covariance.
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estimation for an isotropic Gaussian (with ε = 0.1), the sec-
ond row displays covariance estimation for an isotropic 
Gaussian, and the third row displays covariance estimation 
for a Gaussian with a highly-skewed covariance matrix (both 
with ε = 0.05). The first column of plots compares all the 
methods, whereas the second column of plots omits the 
less accurate methods, to allow a more fine-grained com-
parison between our algorithm and competitive methods. 
The x-axis of each plot indicates the dimension of the prob-
lem, and the y-axis indicates the error incurred by the esti-
mation method, where the baseline of 0 is the error of the 
plug-in estimator on the uncorrupted data. In Figure 1, for 
the mean estimation plots, this error is measured via 
l2-distance, whereas for covariance estimation, this is mea-
sured in terms of Mahalanobis distance.

In all experiments, we found that our algorithm outper-
formed all other methods, often by substantial margins. As 
predicted by the theory, our error appears to remain con-
stant as the dimension increases, but increases for all 
other methods (albeit minimally for LRV methods, which 

Figure 1. Robust parameter estimation on synthetic data. Our method 
(filtering) is shown to outperform all alternatives for both mean 
estimation (first row) and covariance estimation (last two rows).
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Figure 2. Robust exploratory data analysis on semisynthetic data. 
The top-left figure shows the projection of a high-dimensional 
genomic dataset onto its top two principal components, which 
resembles the map of Europe (center). In the presence of synthetic 
outliers, this structure is lost (top-right). Our methods for robust 
covariance estimation allow us to preserve this structure (bottom).

Filtered data projected onto the
top two principal components
returned by the filter

Data projected onto the top
two principal components
returned by the filter

Data projected onto the top
two principal components of
clean dataset

Data projected onto the top
two principal components of
pruned datase twith outliers

depend only logarithmically on the dimension). For mean 
estimation, our method performs better than LRV, which 
in turn performs much better than all alternatives. Similar 
trends are observed for covariance estimation, though the 
results are especially pronounced when estimating a 
skewed covariance, in which our methods outperform all 
others by orders of magnitude.

In our semisynthetic experiments, displayed in Figure 
2, we revisit a classic study of Novembre et al.21 In this 
study, the authors obtained a high-dimensional genomic 
dataset from the POPRES project. They annotated each 
data point with the individual’s country of origin and 
projected the dataset onto the top two principal compo-
nents of the dataset. As displayed in the top-left plot in 
Figure 2, they found that the resulting projection closely 
resembles the map of Europe, thus leading to the adage 
that “genes mirror geography.” However, omitted from 
the description above is a crucial manual data curation 
process, in which immigrants were removed from the 
dataset, as they were considered to be genetic outliers. Our 
methods provide an automatic and principled way of 
removing outliers.

In our experiments, we worked with a projection of the 
original dataset onto the top 20 principal components. We 
injected synthetic noise points (ε = 0.1) into the dataset and 
repeated the experimental procedure described above. Even 
with a pruning step, we found the empirical estimator was 
not able to preserve the structure of Europe (top-right of 
Figure 1). However, our method (based on our robust 
Gaussian covariance estimation algorithm) was able to 
relatively faithfully recreate the original map of Europe 
(bottom-left and bottom-right of Figure 1). Despite our fil-
ter being designed for Gaussian data, the method worked 
on the genomic data (which is not necessarily Gaussian) 
with minimal alterations. 



 

MAY 2021  |   VOL.  64  |   NO.  5  |   COMMUNICATIONS OF THE ACM     115

proofs. In Proceedings of the 50th 
Annual ACM Symposium on the 
Theory of Computing, STOC ‘18 (New 
York, NY, USA, 2018), ACM, Hoboken, 
New Jersey, 1021–1034.

 15. Huber, P.J., Ronchetti, E.M. Robust 
Statistics. Wiley, 2009.

 16. Johnson, D.S., Preparata, F.P. The 
densest hemisphere problem. Theor. 
Comp. Sci. 1, 6 (1978), 93–107.

 17. Kearns, M.J., Schapire, R.E., Sellie, L.M. 
Towards efficient agnostic learning. 
Mach. Learn. 2–3, 17 (1994), 115–141.

 18. Klivans, A.R., Long, P.M., Servedio, R.A. 
Learning halfspaces with malicious 
noise. J. Mach. Learn.  
Res., 10 (2009), 2715–2740.

 19. Kothari, P., Steinhardt, J., Steurer, D. 
Robust moment estimation and 
improved clustering via sum of squares. 
In Proceedings of the 50th Annual ACM 
Symposium on the Theory of 
Computing, STOC ‘18 (New York, NY, 
USA, 2018), ACM, 1035–1046.

 20. Lai, K.A., Rao, A.B., Vempala, S. 
Agnostic estimation of mean and 
covariance. In Proceedings of the 57th 
Annual IEEE Symposium on 
Foundations of Computer Science, 

FOCS ‘16 (Washington, DC, USA, 
2016), IEEE Computer Society, 
665–674.

 21. Novembre, J., Johnson, T., Bryc, K.,  
Kutalik, Z., Boyko, A.R., Auton, A., 
Indap, A., King, K.S., Bergmann, S.,  
Nelson, M.R., Stephens, M., 
Bustamante, C.D. Genes mirror 
geography within Europe. Nature 
7218, 456 (2008), 98–101.

 22. Prasad, A., Suggala, A.S., 
Balakrishnan, S., Ravikumar, P. Robust 
estimation via robust gradient 
estimation. arXiv preprint 
arXiv:1802.06485 (2018).

 23. Rousseeuw, P. Multivariate estimation 
with high breakdown point. Math. 
Statist. Appl., 8 (1985), 283–297.

 24. Tukey, J.W. A survey of sampling 
from contaminated distributions. In 
Contributions to Probability and 
Statistics: Essays in Honor of Harold 
Hotelling, Stanford University Press, 
Stanford, California, 1960, 448–485.

 25. Tukey, J.W. Mathematics and the 
picturing of data. In Proceedings of the 
International Congress of 
Mathematicians (1975), American 
Mathematical Society, 523–531.

References
 1. Awasthi, P., Balcan, M.F., Long, P.M. The 

power of localization for efficiently 
learning linear separators with noise. 
In Proceedings of the 46th Annual ACM 
Symposium on the Theory of 
Computing, STOC ‘14 (New York, NY, 
USA, 2014), ACM, 449–458.

 2. Balakrishnan, S., Du, S.S., Li, J., Singh, A.  
Computationally efficient robust 
sparse estimation in high dimensions. 
In Proceedings of the 30th Annual 
Conference on Learning Theory, COLT 
‘17 (2017), 169–212.

 3. Charikar, M., Steinhardt, J., Valiant, G. 
Learning from untrusted data. In 
Proceedings of the 49th Annual ACM 
Symposium on the Theory of 
Computing, STOC ‘17 (New York, NY, 
USA, 2017), ACM, 47–60.

 4. Diakonikolas, I., Kamath, G., Kane, D.M., 
Li, J., Moitra, A., Stewart, A. Robust 
estimators in high dimensions without 
the computational intractability. In 
Proceedings of the 57th Annual IEEE 
Symposium on Foundations of 
Computer Science, FOCS ‘16 
(Washington, DC, USA, 2016), IEEE 
Computer Society, 655–664.

 5. Diakonikolas, I., Kamath, G., Kane, D.M.,  
Li, J., Moitra, A., Stewart, A. Being 
robust (in high dimensions) can be 
practical. In Proceedings of the 34th 
International Conference on Machine 
Learning, ICML ‘17 (2017), JMLR, 
Inc., 999–1008.

 6. Diakonikolas, I., Kamath, G., Kane, D.M.,  
Li, J., Moitra, A., Stewartz, A. Robustly 
learning a Gaussian: Getting optimal 
error, efficiently. In Proceedings of the 
29th Annual ACM-SIAM Symposium 
on Discrete Algorithms, SODA ‘18 
(Philadelphia, PA, USA, 2018), SIAM.

 7. Diakonikolas, I., Kamath, G., Kane, D.M.,  
Li, J., Steinhardt, J., Stewart, A. Sever:  
A robust meta-algorithm for stochastic 
optimization. In Proceedings of the 
36th International Conference on 
Machine Learning, ICML ‘19 (2019), 
JMLR, Inc., 1596–1606.

 8. Diakonikolas, I., Kane, D.M. Recent 
advances in algorithmic high-
dimensional robust statistics. CoRR, 
abs/1911.05911, 2019.

 9. Diakonikolas, I., Kane, D.M., Stewart, A.  
Statistical query lower bounds for 
robust estimation of high-dimensional 
Gaussians and Gaussian mixtures. In 
Proceedings of the 58th Annual IEEE 
Symposium on Foundations of 
Computer Science, FOCS ‘17 
(Washington, DC, USA, 2017), IEEE 
Computer Society, 73–84.

 10. Diakonikolas, I., Kane, D.M., Stewart, A.  
List-decodable robust mean estimation 
and learning mixtures of spherical 
Gaussians. In Proceedings of the 50th 
Annual ACM Symposium on the Theory 
of Computing, STOC ‘18 (New York, NY, 
USA, 2018), ACM, 1047–1060.

 11. Fischler, M.A., Bolles, R.C. Random 
sample consensus: A paradigm for 
model fitting with applications to image 
analysis and automated cartography. 
Commun. ACM 6, 24 (1981), 381–395.

 12. Fisher, R.A. On the mathematical 
foundations of theoretical statistics. 
Phil. Trans. R. Soc. Lond. Ser. A 
594-604, 222 (1922), 309–368.

 13. Hampel, F.R., Ronchetti, E.M., 
Rousseeuw, P.J., Stahel, W.A. Robust 
Statistics: The Approach Based on 
Influence Functions. Wiley, Hoboken, 
New Jersey, 2011.

 14. Hopkins, S.B., Li, J. Mixture models, 
robustness, and sum of squares 

Ilias Diakonikolas (ilias@cs.wisc.edu), 
University of Wisconsin, Madison, WI, USA.

Gautam Kamath (g@csail.mit.edu), 
University of Waterloo, Canada.

Daniel M. Kane (dakane@cs.ucsd.edu), 
University of California, San Diego, CA, USA.

Jerry Li (jerrl@microsoft.com), Microsoft 
Research AI, Redmond, WA, USA.

Ankur Moitra (moitra@mit.edu), 
Massachusetts Institute of Technology, 
Cambridge, MA, USA.

Alistair Stewart (stewart.al@gmail.com), 
Web3 Foundation, Zug, Switzerland.

This work is licensed under a 
Creative Commons Attribution 
International 4.0 license.




