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Applications to classification problems in statistical physics, biometry, machine
vision, ...

Also encodes MAP estimation problem for Markov Random Fields
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Theorem (Kleinberg, Tardos)

There is a polynomial time O(log k)-approximation algorithm for METRIC
LABELING

Theorem (Chuzhoy, Naor)

For any € > 0, METRIC LABELING /s Q(Iogl/z_E k)-hard to approximate, unless
P=NP

Problem

What if an approximation algorithm returns a highly imbalanced (balanced)
solution, and our goal is a balanced (imbalanced) solution?
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Congestion

Question

What if |L| is not constant?

In this case, determining if there is a ZERO cost solution is HARD
Definition
The congestion an instance | of CAPACITATED METRIC LABELING is the

minimum value of C so that scaling the label capacities up by a factor of C has a
zero cost solution
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Hierarchical Decompositions

Theorem (Racke)

There is a distribution p on decomposition trees so that for all edges,

Etr,lloadr(e)] < O(log n)w(e)
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Rounding to a Tree

Lemma

COST(f,G) < COST(f,T) and Er.,[COST(f, T)] < O(log n)COST(f, G)
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Two Level Rounding

Procedure
@ For each component V;:

Choose V; — L; according to P;

@ For each component V; mapped to L;, for each u € V;:

: P,
Choose u — a according to 5>
1]
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Planning for Rounding

Expectation: E[|{u € Vily(u) = a}@ — Y uevi Pus

2ucy; Pua

Conditional Expectation: E[|{u e Vily(v) = a}|‘ Vi— Ll} S A=vR

Observation

In an integral solution the conditional expectation (of a € Ly) is also bounded by
the label capacity (of a)
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Let X1, Xo,...XT be the expectation for a label a

Claim

X1, Xa,...XT is a martingale

Claim
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Theorem

There is a polynomial time O(log k)-approximation algorithm for the congestion
of CAPACITATED METRIC LABELING
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Open Question

Is there a polynomial time, poly-logarithmic approximation algorithm for
CAPACITATED METRIC LABELING that violates label capacities multiplicatively
by O(log k)?

Analogy: GAP (due to Shmoys-Tardos) compared to scheduling unrelated parallel
machines (due to Lenstra-Shmoys-Tardos)

Open Question

Can the notion of congestion be used to give bi-criteria hardness for other (graph
partitioning) problems?
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