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Metric Labeling Problem: (introduced by Kleinberg and Tardos)

min
f :V→L

∑
u∈V

φ(u, f (u)) +
∑

(u,v)∈E

w(u, v)dL(f (u), f (v))

Applications to classification problems in statistical physics, biometry, machine
vision, ...

Also encodes MAP estimation problem for Markov Random Fields
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Let |V | = n, |L| = k

Theorem (Kleinberg, Tardos)

There is a polynomial time O(log k)-approximation algorithm for Metric
Labeling

Theorem (Chuzhoy, Naor)

For any ε > 0, Metric Labeling is Ω(log1/2−ε k)-hard to approximate, unless
P = NP

Problem

What if an approximation algorithm returns a highly imbalanced (balanced)
solution, and our goal is a balanced (imbalanced) solution?
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Question

What if |L| is not constant?

In this case, determining if there is a ZERO cost solution is HARD

Definition

The congestion an instance I of Capacitated Metric Labeling is the
minimum value of C so that scaling the label capacities up by a factor of C has a
zero cost solution



Congestion

Question

What if |L| is not constant?

In this case, determining if there is a ZERO cost solution is HARD

Definition

The congestion an instance I of Capacitated Metric Labeling is the
minimum value of C so that scaling the label capacities up by a factor of C has a
zero cost solution



Congestion

Question

What if |L| is not constant?

In this case, determining if there is a ZERO cost solution is HARD

Definition

The congestion an instance I of Capacitated Metric Labeling is the
minimum value of C so that scaling the label capacities up by a factor of C has a
zero cost solution



Our Results

Theorem

For k = O(1), there is a polynomial time O(log n)-approximation algorithm for
Capacitated Metric Labeling

... this is the regime of interest for many classification problems

Theorem

For any ε > 0, the congestion of Capacitated Metric Labeling is
Ω(log1/2−ε k)-hard to approximate, unless NP ⊆ ZPTIME (npolylog n)

Theorem

There is a polynomial time O(log k)-approximation algorithm for the congestion
of Capacitated Metric Labeling



Our Results

Theorem

For k = O(1), there is a polynomial time O(log n)-approximation algorithm for
Capacitated Metric Labeling

... this is the regime of interest for many classification problems

Theorem

For any ε > 0, the congestion of Capacitated Metric Labeling is
Ω(log1/2−ε k)-hard to approximate, unless NP ⊆ ZPTIME (npolylog n)

Theorem

There is a polynomial time O(log k)-approximation algorithm for the congestion
of Capacitated Metric Labeling



Our Results

Theorem

For k = O(1), there is a polynomial time O(log n)-approximation algorithm for
Capacitated Metric Labeling

... this is the regime of interest for many classification problems

Theorem

For any ε > 0, the congestion of Capacitated Metric Labeling is
Ω(log1/2−ε k)-hard to approximate, unless NP ⊆ ZPTIME (npolylog n)

Theorem

There is a polynomial time O(log k)-approximation algorithm for the congestion
of Capacitated Metric Labeling



Our Results

Theorem

For k = O(1), there is a polynomial time O(log n)-approximation algorithm for
Capacitated Metric Labeling

... this is the regime of interest for many classification problems

Theorem

For any ε > 0, the congestion of Capacitated Metric Labeling is
Ω(log1/2−ε k)-hard to approximate, unless NP ⊆ ZPTIME (npolylog n)

Theorem

There is a polynomial time O(log k)-approximation algorithm for the congestion
of Capacitated Metric Labeling



Hierarchical Decompositions

Theorem (Räcke)
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Planning for Rounding
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|{u ∈ V1|γ(u) = a}|
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∣∣∣V1 → L1
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=
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Pu,a

Pr [V1→L1]

Observation

In an integral solution the conditional expectation (of a ∈ L1) is also bounded by
the label capacity (of a)
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Open Question

Is there a polynomial time, poly-logarithmic approximation algorithm for
Capacitated Metric Labeling that violates label capacities multiplicatively
by O(log k)?

Analogy: GAP (due to Shmoys-Tardos) compared to scheduling unrelated parallel
machines (due to Lenstra-Shmoys-Tardos)

Open Question

Can the notion of congestion be used to give bi-criteria hardness for other (graph
partitioning) problems?
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