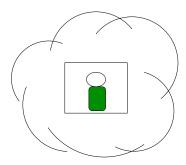
# **Capacitated Metric Labeling**

### Ankur Moitra, MIT

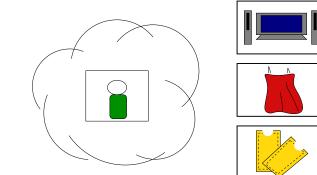
joint work with Matthew Andrews, MohammadTaghi Hajiaghayi and Howard Karloff

January 24, 2011

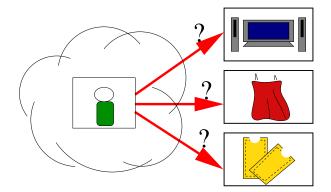
(日) (四) (문) (문) (문) (문)

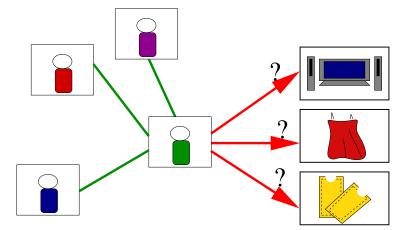


◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

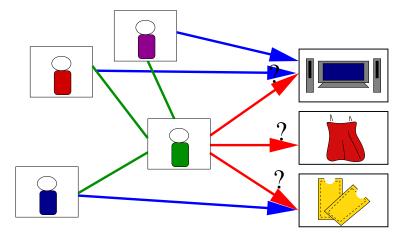


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで



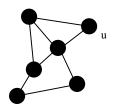


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで



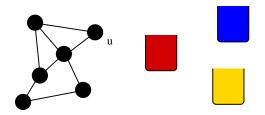
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

G = (V, E)

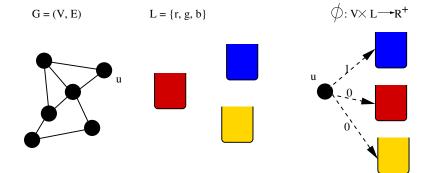


- E

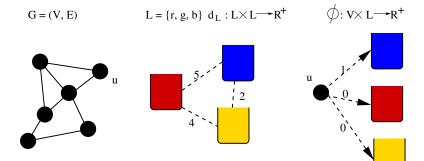




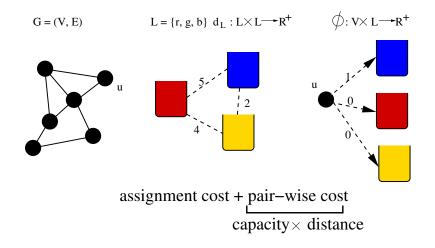
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ つくで



Metric Labeling Problem: (introduced by Kleinberg and Tardos)

$$\min_{f:V\to L}\sum_{u\in V}\phi(u,f(u))+\sum_{(u,v)\in E}w(u,v)d_L(f(u),f(v))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Metric Labeling Problem: (introduced by Kleinberg and Tardos)

$$\min_{f:V\to L}\sum_{u\in V}\phi(u,f(u))+\sum_{(u,v)\in E}w(u,v)d_L(f(u),f(v))$$

Applications to classification problems in statistical physics, biometry, machine vision,  $\ldots$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Metric Labeling Problem: (introduced by Kleinberg and Tardos)

$$\min_{f:V\to L}\sum_{u\in V}\phi(u,f(u))+\sum_{(u,v)\in E}w(u,v)d_L(f(u),f(v))$$

Applications to classification problems in statistical physics, biometry, machine vision,  $\dots$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Also encodes MAP estimation problem for Markov Random Fields

Let |V| = n, |L| = k

Theorem (Kleinberg, Tardos)

There is a polynomial time  $O(\log k)$ -approximation algorithm for METRIC LABELING

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

Let |V| = n, |L| = k

#### Theorem (Kleinberg, Tardos)

There is a polynomial time  $O(\log k)$ -approximation algorithm for METRIC LABELING

#### Theorem (Chuzhoy, Naor)

For any  $\epsilon > 0$ , METRIC LABELING is  $\Omega(\log^{1/2-\epsilon} k)$ -hard to approximate, unless P = NP

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

Let |V| = n, |L| = k

#### Theorem (Kleinberg, Tardos)

There is a polynomial time  $O(\log k)$ -approximation algorithm for METRIC LABELING

#### Theorem (Chuzhoy, Naor)

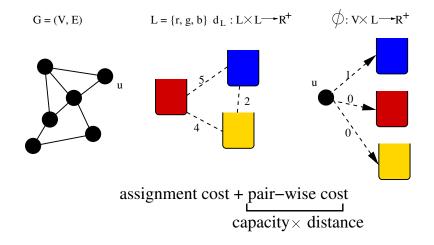
For any  $\epsilon > 0$ , METRIC LABELING is  $\Omega(\log^{1/2-\epsilon} k)$ -hard to approximate, unless P = NP

<ロト <四ト <注入 <注下 <注下 <

#### Problem

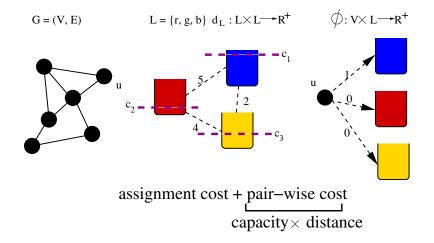
What if an approximation algorithm returns a highly imbalanced (balanced) solution, and our goal is a balanced (imbalanced) solution?

### Capacitated Metric Labeling



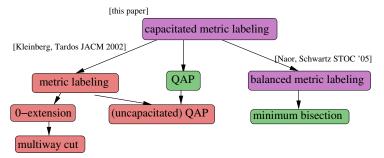
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

### Capacitated Metric Labeling



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

### Optimization



#### Theorem

For k = O(1), there is a polynomial time  $O(\log n)$ -approximation algorithm for CAPACITATED METRIC LABELING

《曰》 《聞》 《臣》 《臣》 三臣

#### Theorem

For k = O(1), there is a polynomial time  $O(\log n)$ -approximation algorithm for CAPACITATED METRIC LABELING

<ロト <四ト <至ト <至ト = 至

... this is the regime of interest for many classification problems

### Congestion

Question

What if |L| is not constant?



Question

What if |L| is not constant?

In this case, determining if there is a ZERO cost solution is HARD



#### Question

What if |L| is not constant?

In this case, determining if there is a ZERO cost solution is HARD

#### Definition

The congestion an instance I of CAPACITATED METRIC LABELING is the minimum value of C so that scaling the label capacities up by a factor of C has a zero cost solution

《曰》 《聞》 《臣》 《臣》 三臣

#### Theorem

For k = O(1), there is a polynomial time  $O(\log n)$ -approximation algorithm for CAPACITATED METRIC LABELING

<ロト <四ト <至ト <至ト = 至

... this is the regime of interest for many classification problems

#### Theorem

For k = O(1), there is a polynomial time  $O(\log n)$ -approximation algorithm for CAPACITATED METRIC LABELING

... this is the regime of interest for many classification problems

#### Theorem

For any  $\epsilon > 0$ , the congestion of CAPACITATED METRIC LABELING is  $\Omega(\log^{1/2-\epsilon} k)$ -hard to approximate, unless  $NP \subseteq ZPTIME(n^{polylog n})$ 

<ロト <四ト <至ト <至ト = 至

#### Theorem

For k = O(1), there is a polynomial time  $O(\log n)$ -approximation algorithm for CAPACITATED METRIC LABELING

 $\ldots$  this is the regime of interest for many classification problems

#### Theorem

For any  $\epsilon > 0$ , the congestion of CAPACITATED METRIC LABELING is  $\Omega(\log^{1/2-\epsilon} k)$ -hard to approximate, unless  $NP \subseteq ZPTIME(n^{polylog n})$ 

#### Theorem

There is a polynomial time  $O(\log k)$ -approximation algorithm for the congestion of CAPACITATED METRIC LABELING

< □ > < (四 > < 注) > < 注 > < 注 > ... 注

#### Theorem

For k = O(1), there is a polynomial time  $O(\log n)$ -approximation algorithm for CAPACITATED METRIC LABELING

... this is the regime of interest for many classification problems

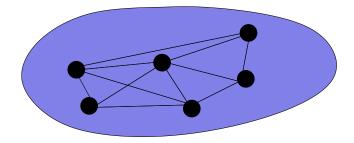
#### Theorem

For any  $\epsilon > 0$ , the congestion of CAPACITATED METRIC LABELING is  $\Omega(\log^{1/2-\epsilon} k)$ -hard to approximate, unless  $NP \subseteq ZPTIME(n^{polylog n})$ 

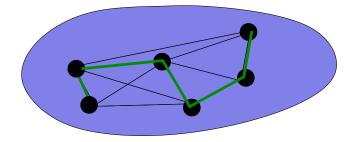
#### Theorem

There is a polynomial time  $O(\log k)$ -approximation algorithm for the congestion of CAPACITATED METRIC LABELING

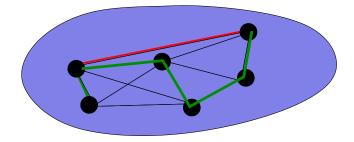
< □ > < (四 > < 注) > < 注 > < 注 > ... 注



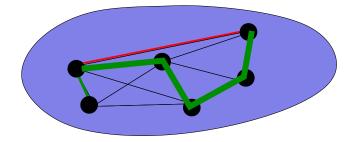
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ つくで



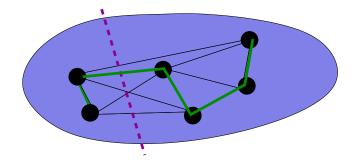
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ つくで



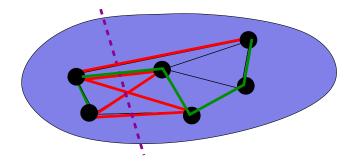
▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●



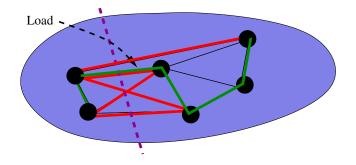
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 めんの



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□▶



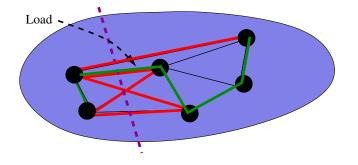
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Hierarchical Decompositions

Theorem (Räcke)

There is a distribution  $\mu$  on decomposition trees so that for all edges,

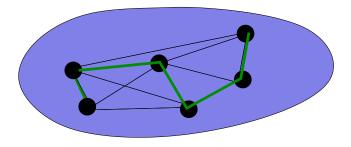
 $E_{T \leftarrow \mu}[load_T(e)] \leq O(\log n)w(e)$ 



Lemma  $COST(f, G) \le COST(f, T)$ 

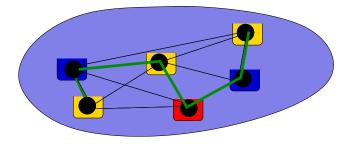
◆□▶ ◆御▶ ◆注▶ ◆注▶ … 注…

Lemma  $COST(f, G) \leq COST(f, T)$ 



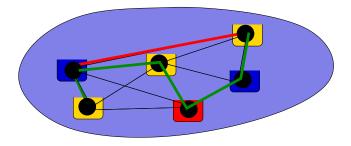
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ つくで

Lemma  $COST(f, G) \le COST(f, T)$ 



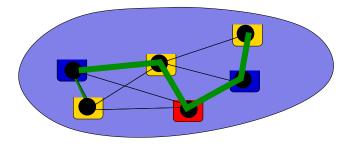
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Lemma  $COST(f, G) \le COST(f, T)$ 



▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへで

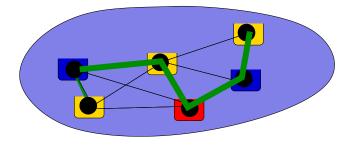
Lemma  $COST(f,G) \le COST(f,T)$ 



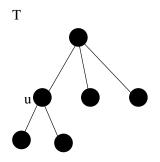
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで

Lemma

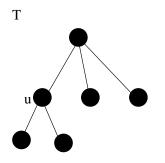
 $COST(f,G) \leq COST(f,T)$  and  $E_{T \leftarrow \mu}[COST(f,T)] \leq O(\log n)COST(f,G)$ 

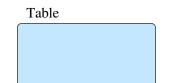


・ロト ・日ト ・ヨト ・ヨー うへで

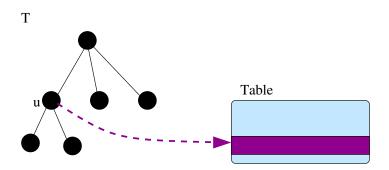


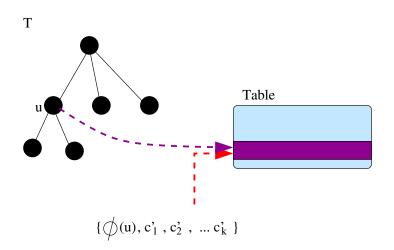






◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで





▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

#### Our Results

#### Theorem

For k = O(1), there is a polynomial time  $O(\log n)$ -approximation algorithm for CAPACITATED METRIC LABELING

 $\ldots$  this is the regime of interest for many classification problems

#### Theorem

For any  $\epsilon > 0$ , the congestion of CAPACITATED METRIC LABELING is  $\Omega(\log^{1/2-\epsilon} k)$ -hard to approximate, unless  $NP \subseteq ZPTIME(n^{polylog n})$ 

#### Theorem

There is a polynomial time  $O(\log k)$ -approximation algorithm for the congestion of CAPACITATED METRIC LABELING

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

#### Our Results

#### Theorem

For k = O(1), there is a polynomial time  $O(\log n)$ -approximation algorithm for CAPACITATED METRIC LABELING

 $\ldots$  this is the regime of interest for many classification problems

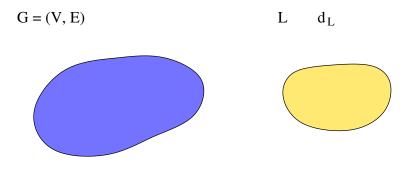
#### Theorem

For any  $\epsilon > 0$ , the congestion of CAPACITATED METRIC LABELING is  $\Omega(\log^{1/2-\epsilon} k)$ -hard to approximate, unless  $NP \subseteq ZPTIME(n^{polylog n})$ 

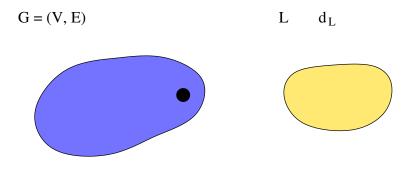
#### Theorem

There is a polynomial time  $O(\log k)$ -approximation algorithm for the congestion of CAPACITATED METRIC LABELING

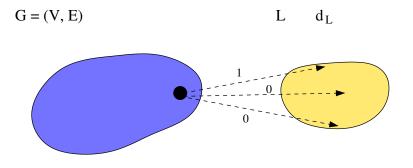
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □



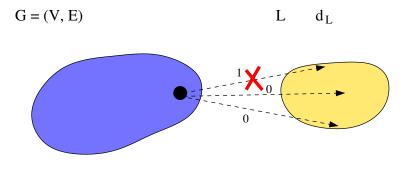
▲ロト ▲園ト ▲画ト ▲画ト 三国 - のへで



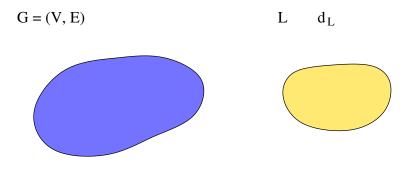
▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @



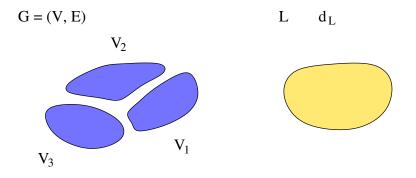
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで



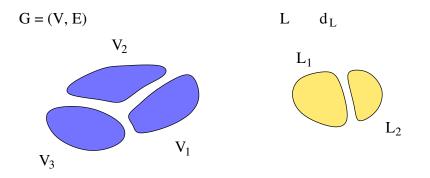
◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで



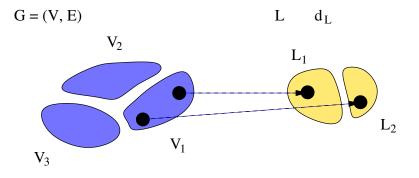
▲ロト ▲園ト ▲画ト ▲画ト 三国 - のへで



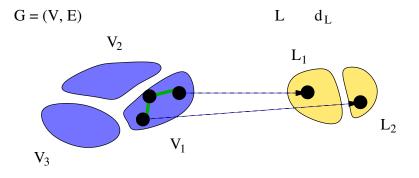
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



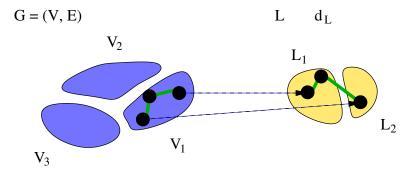
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



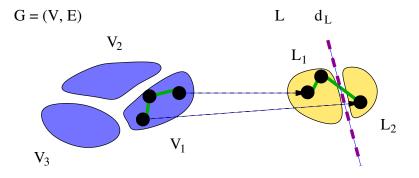
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



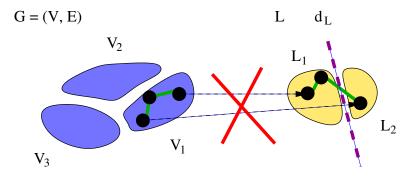
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



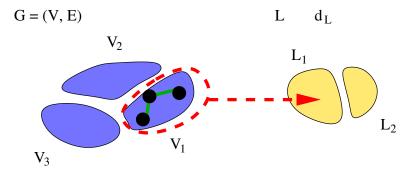
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



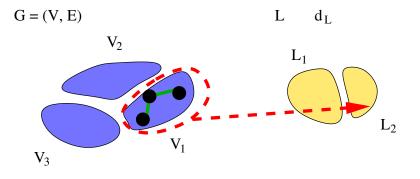
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



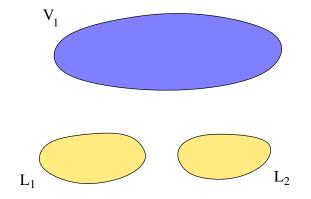
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



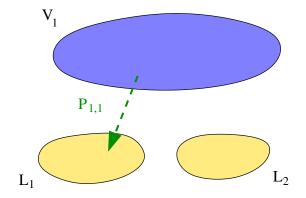
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



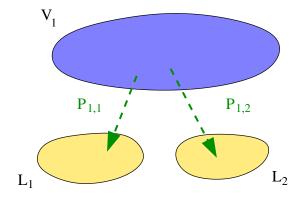
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



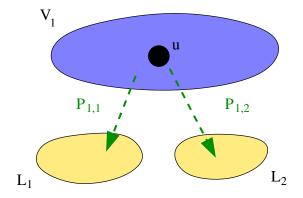
▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで



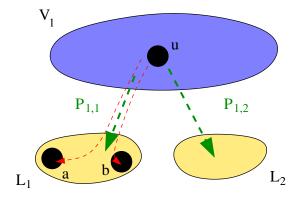
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



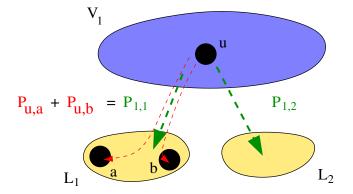
◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

#### Two Level Rounding

### Procedure

- ◆ □ ▶ → ₫ ▶ → 差 ▶ → 差 → の Q @

# Procedure

• For each component V<sub>i</sub>:

Choose  $V_i \rightarrow L_j$  according to  $P_{i,j}$ 

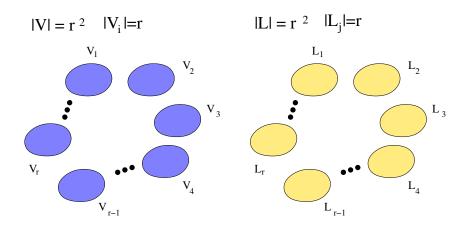
< ロ > (四 > (四 > ( 三 > ( 三 > ) ) ) 문 ( - )

# Procedure

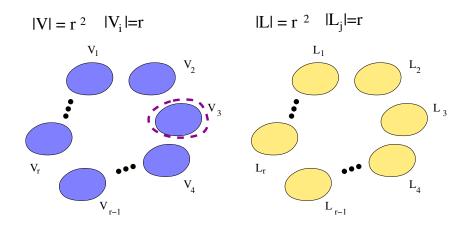
• For each component V<sub>i</sub>:

Choose  $V_i \rightarrow L_j$  according to  $P_{i,j}$ For each component  $V_i$  mapped to  $L_j$ , for each  $u \in V_i$ : Choose  $u \rightarrow a$  according to  $\frac{P_{u,a}}{P_{i,j}}$ 

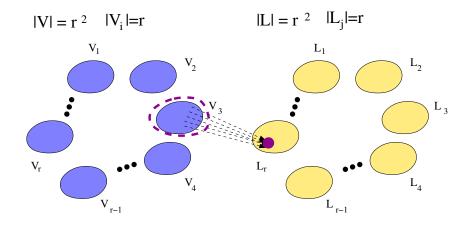
<ロト <四ト <注入 <注下 <注下 <



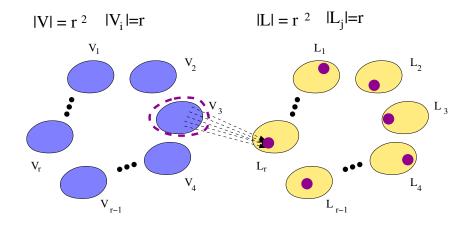
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ の々で



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで



▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 のへで

## Planning for Rounding

Expectation: 
$$E\Big[|\{u \in V_1 | \gamma(u) = a\}|\Big] = \sum_{u \in V_1} P_{u,a}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

## Planning for Rounding

Expectation: 
$$E\left[|\{u \in V_1 | \gamma(u) = a\}|\right] = \sum_{u \in V_1} P_{u,a}$$
  
Conditional Expectation:  $E\left[|\{u \in V_1 | \gamma(u) = a\}| \middle| V_1 \to L_1\right] = \frac{\sum_{u \in V_1} P_{u,a}}{Pr[V_1 \to L_1]}$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

### Planning for Rounding

Expectation:  $E\left[|\{u \in V_1 | \gamma(u) = a\}|\right] = \sum_{u \in V_1} P_{u,a}$ 

Conditional Expectation:  $E\left[|\{u \in V_1 | \gamma(u) = a\}| \middle| V_1 \to L_1\right] = \frac{\sum_{u \in V_1} P_{u,a}}{Pr[V_1 \to L_1]}$ 

#### Observation

In an integral solution the conditional expectation (of  $a \in L_1$ ) is also bounded by the label capacity (of a)

<ロト <四ト <至ト <至ト = 至

Let  $X_1, X_2, ... X_T$  be the expectation for a label a

Let  $X_1, X_2, ... X_T$  be the expectation for a label a

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Claim

 $X_1, X_2, ... X_T$  is a martingale

Let  $X_1, X_2, ... X_T$  be the expectation for a label *a* 

Claim

 $X_1, X_2, ... X_T$  is a martingale

Claim

 $|X_{i+1} - X_i|$  is at most the capacity of label a

<ロト <回ト < 注ト < 注ト = 注

Let  $X_1, X_2, ... X_T$  be the expectation for a label *a* 

Claim

 $X_1, X_2, ... X_T$  is a martingale

#### Claim

 $|X_{i+1} - X_i|$  is at most the capacity of label a

#### Theorem

There is a polynomial time  $O(\log k)$ -approximation algorithm for the congestion of CAPACITATED METRIC LABELING

<ロト <四ト <至ト <至ト = 至

# **Open Questions**

#### Open Question

*Is there a polynomial time, poly-logarithmic approximation algorithm for* CAPACITATED METRIC LABELING *that violates label capacities multiplicatively by O*(log *k*)?

<ロト <四ト <至ト <至ト = 至

# **Open Questions**

#### **Open Question**

*Is there a polynomial time, poly-logarithmic approximation algorithm for* CAPACITATED METRIC LABELING *that violates label capacities multiplicatively by O*(log *k*)?

Analogy: GAP (due to Shmoys-Tardos) compared to scheduling unrelated parallel machines (due to Lenstra-Shmoys-Tardos)

<ロト <四ト <注ト <注ト = 三

# **Open Questions**

#### Open Question

*Is there a polynomial time, poly-logarithmic approximation algorithm for* CAPACITATED METRIC LABELING *that violates label capacities multiplicatively by O*(log *k*)?

Analogy: GAP (due to Shmoys-Tardos) compared to scheduling unrelated parallel machines (due to Lenstra-Shmoys-Tardos)

#### **Open Question**

Can the notion of congestion be used to give bi-criteria hardness for other (graph partitioning) problems?

イロト イヨト イヨト イヨト

# Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

# Thanks!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?