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1. INTRODUCTION
The Gaussian mixture model (GMM) is one of the oldest 
and most widely used statistical models. It is comprised of a 
weighted combination of heterogeneous Gaussian sources. As 
a simple one-dimensional example, consider measurements 
of heights of adults in a certain population, where the distribu-
tion of heights can be closely approximated as a mixture of two 
univariate Gaussians, one for males and one for females.3 Can 
one recover the parameters of the Gaussians from unlabeled 
height measurements alone (with no gender information)?

Our work focuses on the case where the mixture consists 
of a small but unknown number of Gaussian “components” 
that may overlap—the combined density may even have a 
single peak, as in the height example, and the dimensional-
ity may be high. Much of the previous work on this problem 
attempts to learn the parameters through clustering, and 
consequently needs to make a strong separation assump-
tion on the components in the mixture. The primary contri-
bution of our research is to avoid this assumption by instead 
basing our learning algorithm upon the algebraic structure 
of the mixture. Our algorithm succeeds even if the compo-
nents overlap almost entirely, in which case accurate clus-
tering is no longer possible.

We give a simple notion of “condition number” of a GMM 
which characterizes its complexity up to polynomial factors. 
Generally speaking, the conclusion is that the sample com-
plexity and computational complexity of this general problem 
are in every way polynomial, except for the dependence on 
the number of Gaussians, which is necessarily exponential.

Statisticians have long known that from random sam-
ples from a GMM it is possible to identify the Gaussians in 
the limit—one can eventually recover to arbitrary precision 
each Gaussian component’s mean, variance, and propor-
tion, given sufficiently many examples.14 However, their 
analysis provides no bounds on convergence rate—as the 
number of samples increases, the convergence might be log-
arithmically slow even for two Gaussians in one dimension. 
Moreover, even if the problem has reasonable sample com-
plexity, it is not clear, a priori, how to yield a computationally 
efficient algorithm. In practice, the heuristics in widespread 
use, such as the EM algorithm, suffer from local optima and 
have weak theoretical guarantees.

In seminal work, Dasgupta5 put forth a polynomial-time 
clustering approach for learning GMMs that is provably 
accurate under certain assumptions. In particular, if the 
Gaussians are sufficiently “well separated” then one can 
usually group together all the samples originating from the 
same Gaussian. As a by-product, parameter estimation fol-
lows easily by estimating the mean, covariance matrix, and 
proportion of samples from each cluster separately. In rapid 
succession, increasingly powerful clustering techniques 
that require “separability assumptions” between all pairs of 
Gaussians have since been analyzed.1, 2, 4, 6, 11, 16

In some sense, the parameter estimation problem is more 
fundamental than clustering, because accurate parameter 
estimates can be easily used for accurate clustering. And 
in the general case where the Gaussians may overlap, it is 
impossible to cluster the points with any degree of confi-
dence, just as one cannot accurately predict gender from the 
fact that a person is, say, 1.7 m tall. Nonetheless, from height 
data alone one may still recover the means, variances, and 
mixing weights of the two constituent Gaussians. Hence, 
while one cannot hope to cluster the individual samples, 
one can decompose the Gaussian mixture and efficiently 
disentangle the Gaussian components.

1.1. Our approach
We describe a polynomial-time GMM learning algorithm—
we emphasize that throughout, we favor clarity of presen-
tation and ease of analysis at the cost of impracticality. 
The algorithm is based on the random projection method 
(see, e.g., Vempala15). Since the projection of a multinor-
mal distribution onto one dimension is a normal distribu-
tion, the projection of a GMM is a GMM in one dimension. 
Roughly, the algorithm proceeds by projecting the data onto 
a sequence of vectors, solving the associated sequence of 
one-dimensional learning problems, and then reconstruct-
ing the solution to the original high-dimensional GMM 
problem.

There are several obstacles that must be surmounted 
to consummate this approach. First and foremost, is the 
question of solving the problem in one dimension. One-
dimensional problems are often easy if one is willing to 

This work appeared as “Efficiently Learning Mixtures 
of Two Gaussians” (Kalai, Moitra, Valiant, STOC 2010) 
and “Settling the Polynomial Learnability of Mixtures of 
Gaussians” (Moitra, Valiant, FOCS 2010).
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Figure 1. The Gaussian approximations of the heights of adult women 
(red) and men (blue). Can one recover estimates of these Gaussian 
components given only the aggregate data without gender labels 
(black)? [Raw data from NHANES].
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resort to brute-force search; for the problem of learning 
GMMs, it has already been mentioned that the bounds are 
necessarily exponential in the number of Gaussian com-
ponents, hence one might expect that a crude brute-force 
search would suffice to solve the one-dimensional case. We 
show that this is true. The difficulty of the one-dimensional 
case is not in designing the algorithm, but in guaranteeing 
that this crude brute-force search can be conducted over a 
sufficiently coarse grid. We show this by establishing, what 
we term, the polynomially robust identifiability of GMMs, 
which we discuss in Section 4.

Supposing one has an efficient algorithm for the one-
dimensional problem, a second obstacle in our high–level 
approach is ensuring that the projected data that are given 
as inputs to the one-dimensional algorithm are meaning-
ful. Consider, for example, a GMM that consists of two 
Gaussian components that have identical covariances, but 
different means. If, unluckily, we project the data onto a 
vector orthogonal to the difference in the means, then the 
resulting one-dimensional mixture will have just a single 
component. Further complicating this concern is the exis-
tence of GMMs, such as that depicted in Figure 3, for which 
two or more essentially non-overlapping components 
will, with very high probability, project to nearly identical 
Gaussians in a random projection. How can we hope to dis-
entangle these components if, in nearly every projection, 
they are indistinguishable?

We demonstrate that this problem can only arise if a cer-
tain spectral condition holds. When this condition holds, 
however, we show that a clustering-based approach will be 
successful. Specifically, when the spectral condition is met, 
we will be able to partition the data samples into two sets, 
such that the Gaussian components from which the sam-
ples in the first set were drawn are (nearly) disjoint from the 
set of components from which the second set of samples 
were drawn. Thus this partition of the samples corresponds 

to a partition of the GMM into two sub-mixtures; we can 
then apply our algorithm recursively to each of these two 
sets of samples.

For clarity of exposition, in Section 3, we first describe a 
simplified version of our algorithm that does not require the 
clustering and recursion steps, though has slightly weaker 
performance guarantees. In Section 5, we describe the full 
algorithm.

2. MODEL AND RESULTS
The input to our algorithm is a sample set of n points in d 
dimensions, drawn independently from GMM  
with mixing weights wi > 0 satisfying , and with k 
different Gaussian components Fi, where each Fi = N ( m i, Si) 
is a distinct d-dimensional Gaussian with mean m i ∈ Rd and 
covariance matrix Si ∈ Rd×d. The output is an estimate GMM 

. The goal of the estimation algorithm is to cor-
rectly learn k and furthermore to approximate the parameter 
set {(w1, m1, S1), . . . , (wk, mk, Sk )}. Note that one cannot hope to 
learn the correct ordering of the components Fi, since any 
permutation results in an identical distribution.

To measure the distance between Gaussians N ( m, S) and 
N (m′, S′), we employ the statistical distance. This natural 
metric is defined, more generally, for probability distribu-
tions. For distributions G and G′ with respective probabil-
ity density functions g and g ′, the statistical distance is 
defined as

This quantity is zero if the distributions are identical and one 
if the distributions have disjoint support. The main strength 
of statistical distance as a metric is that it measures the infor-
mation theoretic similarity of two distributions; for instance, 
if two distributions A and B have Dtv(A, B) = 0.01, then no algo-
rithm can distinguish a set of 100 samples from A from a set 
of 100 samples from B with probability more than 2/3. A sec-
ond advantage of statistical distance is that it is scale invari-
ant and affine invariant, meaning that an identical rescaling 
of two distributions does not affect the distance. In contrast, 
Euclidean error estimates such as m − m′2 and S − S′Fr 
change as one rescales the problem.a

We now define a quantity that controls “how hard” it is to 
learn a particular GMM.

Definition 1. The condition number κ(F) of GMM  
is defined to be

Any estimation algorithm requires, at a minimum, a number 
of samples proportional to κ(F ) to have any chance of accurate 
estimation. The reason is that one requires 1/wi samples to 
have a constant probability of encountering a single sample 
generated by Fi. Hence, for very small wi, a large sample size 

Figure 2. Illustration of the high–level approach: (1) project the data 
onto a series of vectors and learn the parameters of the resulting one-
dimensional GMMs, (2) determine a consistent labeling between the 
components of the recovered one-dimensional GMMs, and (3) for each 
component, combine the recovered one-dimensional parameters to 
reconstruct an estimate of the high-dimensional parameters.

a  Moreover, guaranteeing low statistical distance implies low Euclidean dis-
tance, in the case where all parameters are bounded.
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is necessary. Similarly, even if one exactly knows two prob-
ability distributions F and F′, one requires 1/Dtv(F, F′) samples 
to have a constant probability of distinguishing between the 
case that all samples arise from F or all samples arise from F′. 
Thus, at least a linear dependence on κ(F  ) is required, while 
our results have a polynomial dependence on κ(F ).

We are now ready to state our main theorem.

Theorem 1. For every k ≥ 1, there is a constant, ck , dependent 
on k, such that the following holds. For any d-dimensional GMM 

, , d > 0, and , the estimation algorithm 
when run on n samples independently drawn from F outputs 
GMM  such that, with probability ≥ 1 − d, k̂ = k and 
there exists a permutation p on {1, 2, . . . , k} such that

|wi -  ŵ p (i ) ≤   |  and Dtv(Fi,  ̂F p (i )) ≤    for i = 1, 2, . . . , k.

The runtime of the estimation algorithm is polynomial in the 
number of samples, n.b

2.1. Interpretation
Our algorithm takes as input samples from a d-dimen-
sional GMM F, and outputs estimates of the parameters of 
F. The main theorem shows that as the number of samples, 
n, increases the error of our estimates decreases as , 
where a is a constant that only depends on the number of 
components, k. This rate of convergence is striking both 
because it exhibits a polynomial (as opposed to exponen-
tial) dependence on the number of dimensions, d, and 
because it exhibits an inverse polynomial dependence on 
the number of samples. This is in contrast to the inverse 
logarithmic rate of convergence that has been hypoth-
esized.9 Lastly, the big-Oh notation hides a leading con-
stant that has a polynomial dependence on the condition 
number of the mixture, κ(F).

In applications in which a learner has reasonable upper 
bounds on k and κ(F), we could determine upper bounds 
on how much data is required to learn a good estimate—
and run our algorithm accordingly. In contrast, if an upper 
bound on either k or κ(F) is missing, every estimator can be 
fooled into either outputting a mixture with the wrong num-
ber of components, or outputting a mixture which is far 
from the true GMM.

While the runtime and data requirement of our algo-
rithm scale super-exponentially as a function of the num-
ber of Gaussian components, we show that, unfortunately, 
an exponential dependence on k is necessary at least in 
the case where the Gaussians overlap significantly. We 
give a simple construction of a mixture of k (polynomially) 
overlapping Gaussians that are exponentially close to a 
single Gaussian. This state of affairs is in contrast to the 
aforementioned clustering algorithms which depend only 
polynomially on k. Hence, when there are a large number 
of very well-separated Gaussians, clustering seems to be a 
better approach.

2.2. History and related work
Perhaps the earliest GMM study was conducted by Karl 
Pearson in the 1890s.12 He was given a dataset consisting 
of measurements of 1000 crabs found near Naples, and 
conjectured that the dataset arose as a GMM of two com-
ponents, corresponding to two crab species. Pearson then 
attempted to recover estimates of the parameters of the 
two hypothesized species, using the method of moments. In 
particular, he computed empirical estimates of the first six 
(raw) moments , for i = 1, 2, . . . , 6 from sam-
ple points x1, . . . , xn ∈ R. Using only the first five moments, 
he solved a cleverly constructed ninth-degree polynomial, 
by hand, from which he derived a set of candidate mixture 
parameters. Finally, he heuristically chose the candidate 
among them whose sixth moment most closely agreed with 
the empirical estimate.

The potential problem with this approach, which Pearson 
acknowledged, was the issue of robust identifiability. Perhaps 
there exist two different mixtures, where the components 
of one mixture are very different from the components of 
the other mixture, but nevertheless the densities and the 
moments of the two mixtures are extremely similar. We 
show that this cannot be the case, in some sense validating 
Pearson’s approach.

Recently, propitiated by the emergence of huge, high-
dimensional datasets, the question of learning GMMs 
was revisited by the theoretical computer science commu-
nity. In this body of work, initiated by Dasgupta,5 a line of 
computer scientists designed polynomial time algorithms 
for identifying and clustering in high dimensions.1, 2, 

4, 6, 11, 16 The problem of clustering is that of partitioning the 
points into sets, with the hope that the points in each set 
are drawn from different Gaussians. This task generally 
requires the Gaussians to have little overlap (statistical 
distance near 1); in many such cases they were able to find 
computationally efficient algorithms for GMMs of more 
than two Gaussians.

Recall that our goal is to learn the mixture  on 
a component by component basis. An easier problem which 
has also received some attention is that of learning the 
density function of the entire mixture F without trying to 
figure out the parameters of the individual components. 
Recently, a polynomial-time density estimation algorithm 
was given for axis-aligned GMMs, without any nonoverlap 
assumption.8,c

Finally, we note that there is a vast literature on heu-
ristics for the problem of learning GMMs, such as the 
EM algorithm.7 Our focus in this work is on algorithms 
with provable guarantees. Even though heuristics such 
as the EM algorithm often work well in practice, these 
approaches are not guaranteed to converge to the true 
parameters. Even worse, the EM algorithm (even for uni-
variate mixtures of just two Gaussians) has been observed 
to converge very slowly (see Redner and Walker for a thor-
ough treatment13) if the algorithm is initialized from a bad 
starting point.

b  Runtime is measured in the Real RAM model of computing where arithme-
tic operations are performed on real numbers.

c  Axis-aligned Gaussians are those whose principal axes are parallel to the 
coordinate axes.
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3. A SIMPLE ALGORITHM
We start by describing a simple algorithm that illus-
trates our approach to learning GMMs. While the perfor-
mance guarantees of this algorithm are slightly weaker 
than those of the full algorithm, described in Section 5, 
the mechanics of the reduction of the high-dimensional 
problem into a series of one-dimensional learning prob-
lems is made clear.

3.1. A simple one-dimensional algorithm
One would expect that the problem of (approximately) 
determining the parameters of a univariate mixture of 
Gaussians should be algorithmically easy because we can 
resort to a brute-force search. However, the surprising dif-
ficulty is in proving that a brute-force search over a coarse 
grid of the parameters does not return wrong estimates. 
For example, what if there are two distinct (univariate) mix-
tures of Gaussians that do not have close parameters, but 
are nevertheless extremely close as distributions in statisti-
cal distance? The central challenge in proving that a brute-
force search does work is in proving that this hypothetical 
example cannot arise—that two mixtures of (univariate) 
Gaussians that do not have similar parameters must be 
noticeably different.

To prove this we appeal to the method of moments, 
first introduced by Pearson. We prove that mixtures of k 
Gaussians are “polynomially robustly identifiable”—that 
is if two mixtures of at most k Gaussian components have 
sufficiently different parameters, then one of the low-order 
moments will be noticeably different. In fact, one of the first 
4k − 2 moments will be noticeably different, and there are 
distinct mixtures of k Gaussians that can match exactly on 
the first linearly (in k) many moments.

Our one-dimensional learning algorithm will draw 
polynomially many samples from a GMM with k compo-
nents, and compute the first 4k − 2 moments of this set 
of samples. We refer to these as the empirical moments. 
Then  for  every candidate set of parameters {(m1, , 
w1), . . . , (mk, , wk)} in our grid, we analytically compute 
the first 4k  − 2 moments of the corresponding distribu-
tion and compare these values to the empirical moments. 
If each of the first 4k − 2 analytically computed moments 
is close enough to the corresponding empirical moment, 
then we declare success and output that candidate set of 
parameters.

Through elementary concentration bounds we can dem-
onstrate that, whatever the true parameters are, the closest 
set of parameters in the grid will, with high probability, 
pass the test. Thus the algorithm will almost always output 
a set of parameters. The correctness of the algorithm then 
rests on demonstrating that the algorithm will never out-
put a set of parameters that is too far from the true set of 
parameters. Section 4—showing the polynomially robust 
identifiability of GMMs—is dedicated to establishing the 
correctness of this algorithm. Notice that in the case of 
mixtures of two Gaussians, this brute-force search con-
siders only the first six moments and hence we are able to 
obtain provable guarantees for a variant of Pearson’s Sixth 
Moment Test.

3.2. A simple high-dimensional algorithm
Given samples from a high-dimensional GMM, our strat-
egy is to reduce the problem to a series of one-dimensional 
learning problems. The goal is to obtain, for each compo-
nent in the mixture, an estimate of this component’s mean 
and co-variance matrix when projected onto many differ-
ent directions. For each component, we can then use these 
estimates to set up a system of linear constraints on the 
high-dimensional mean and co-variance matrix of the com-
ponent. This system can then be solved, yielding good esti-
mates for these high-dimensional parameters.

We choose a vector v uniformly at random from the unit 
sphere and d2 perturbations v1,1 . . . , vd,d of v. For each direc-
tion vi, j, we project the mixture onto direction vi, j and run 
our one-dimensional learning algorithm. Hence we obtain 
a set of d2 parameters of one-dimensional mixtures of k 
Gaussians. We must now label the components of these 
d2 mixtures consistently, such that for each i = 1, . . . , k, the 
ith Gaussian component in one of the d2 one-dimensional 
mixtures corresponds to the projection of the same high-
dimensional component as the ith component of all the 
other one-dimensional mixtures.

In the general setting to which the full-algorithm of 
Section 5 applies, we will not always be able to do this 
consistent labeling. For the purposes of our simple high-
dimensional learning algorithm, we will assume a certain 
technical condition that will make consistent labeling easy. 
Specifically, we assume that all components in the original 
mixture have noticeably different parameters. We prove that 
if each pair of components—say, N (m, S) and N (m′, S′)—has 
either m − m′2 > ε, or S − S′Fr > , then with high probability 
over a randomly chosen direction v, the projected means or 
projected variances will differ by at least poly ( , ). Intuitively, 
this makes consistent labeling easy because when we proj-
ect our data onto v, each component is noticeably different. 
Since each vi,j is a small perturbation of v, the projection of 
any high-dimensional component onto v and vi,j will be simi-
lar, allowing for easy consistent labeling.

For each component in the original mixture, after 
labeling, we have an estimate of the component’s mean 
and  variance when projected onto each direction vi,j. 
The one-dimensional parameters of the projection of a 
Gaussian are related to the high-dimensional parameters 

Given a set of samples x1, . . . , xn from a one-dimensional 
GMM with at most k components, and target accuracy :

• �Compute the first 4k − 2 sample moments.
• �Calculate the first 4k − 2 moments for every set of 
parameters, ({m1, s1, w1}, . . . , {mk, sk, wk}) such that

–  wi ∈ [0, 1],
–  mi ∈ [minj xj, maxj xj],
–  sk ∈ [0, maxj xj],

where all parameters are multiples of c, where c 
is a constant dependent on k.

• �Return the parameter set whose first 4k − 2 moments 
most closely match those of the samples.

The Simple 1-D Algorithm



february 2012 |   vol.  55  |   no.  2  |   communications of the acm     117

 

by a system of linear equations. If our one-dimensional 
estimates were not estimates, but were exact then we 
could back-solve this system to obtain the exact high-
dimensional parameters. We bound the condition num-
ber of this system of equations, ensuring that if our 
one-dimensional estimates are close, then we obtain good 
estimates for the high-dimensional parameters.

3.3. Performance of the simple algorithm
The following proposition characterizes the performance 
of the Simple High-Dimensional Algorithm described above.

Proposition 1. There exists a constant, ck dependent on k, 
such that given n independent samples from a GMM  
of k′ ≤ k components in d dimensions, with probability at least 
1  − d the simple high-dimensional algorithm, when run on 
inputs k, , d and the n samples, will return a GMM  
such that there exists a labeling of the components satisfying, 
for all i, |wi − ŵi| ≤ , mi − mî2 ≤ , and Si  −  ŜiFr ≤  , provided 
the following conditions hold:

• 

•  for all i,  j ≤ k′,

⏐wi - wj ⏐ + mi + mj2 + Si - SjFr ≥ .

•  mi2, SiFr ≤ 1/ .

The runtime of the estimation algorithm is polynomial in the 
number of samples.

The key distinction between the performance of this algo-
rithm and the performance of the more general algorithm 
that establishes Theorem 1 is in terms of the distance met-
ric. Here, the input mixture is required to have components 
whose parameters differ from each other by at least . Our 
more general algorithm performs on samples from GMMs 
whose components can have arbitrarily similar parameters, 
provided that the statistical distance between components 
is at least . Additionally, the mixture returned by this simple 
algorithm is only guaranteed to have parameters that are 
very close in Euclidean distance to the true parameters—the 
mixture returned by the more general algorithm is guaran-
teed to be very close in both parameter distance and statisti-
cal distance.

4. POLYNOMIALLY ROBUST IDENTIFIABILITY
It is well known that two GMMs whose components differ 
cannot have identical probability densities (see Teicher,14 
for example)—this is commonly referred to as “identifi-
ability.” Thus, given access to arbitrarily many samples, 
one can recover the parameters of a GMM to any desired 
accuracy. For the purposes of learning with limited data, 
however, we require a significantly more robust form of 
identifiability.

Consider two GMMs F, F′ whose parameter sets, up to 
relabeling, differ by —that is, no matter how one matches 
the components of the first GMM with the components of 
the second, there is some component whose mean, variance, 
or mixing weight differs by at least  from the correspond-
ing component in the other mixture. Given this discrepancy 
in parameter sets, what is the statistical distance D(F, F′)? 
If the answer is inverse exponential in 1/ , then our goal of 
polynomially efficient learning is hopeless—all algorithms 
for learning GMMs would necessarily require an amount of 
data exponential in the desired accuracy. Stated differently, 
the convergence rate of an optimal estimator for the para
meters of a GMM would be, at best, inverse-logarithmic in 
the number of samples.

Fortunately, such a dependence is not necessary—we 
show that GMMs are “polynomially robustly identifiable”: if 
mixtures F, F′ have parameter sets that differ by , and mixing 
weights at least , then their statistical distance is bounded 
below by poly( ), for any fixed number of components. In 
fact, we prove this by showing that there must be a poly( ) 
discrepancy in the first few moments of F and F′. For  mix-
tures of at most k components, considering the first 4k − 2 
moments is sufficient.

Theorem 2. There exists a constant, ck, dependent on k, such 
that given a pair of one-dimensional GMMs, F, F′, consisting of 
at most k components, with κ(F), κ(F′) < 1/ , if, for all i ≤ 4k − 2,

⏐Ex ← F [xi ] − Ex ← F′ [xi ]|≤ ck,

then F, F′ have the same number of components. Furthermore, 
there exists a correspondence between the components of  

The Simple High-Dimensional Algorithm

Given a set of sample from a GMM in d dimensions with 
at most k components, target accuracy and probability 
of failure , d:

Let 

• �Choose vector v0,0 uniformly at random from the 
unit sphere.

• �For i ∈ {1, . . . , d}, let ei denote the basis vector 
whose ith coordinate is 1, and all other coor-
dinates are 0. For all pairs i,  j ∈ {1, . . . , d}, let 
vi,  j : = v + 2(ei + ej ).

• �For all pairs i, j, project the samples onto vi,  j, 
run the Simple one-dimensional Algorithm on the 
resulting one-dimensional data with target accu-
racy 3, and let Pi,  j:= ({m1, s1, w1}, . . .) be the returned 
parameters.

• �For each m = 1, 2, . . . , k let , ,  be the recov-
ered parameters of the mth component of P0, 0. For 
each pair i, j ≥ 1 let  be the recov-
ered parameters from Pi, j of the component whose 
parameters are closest, in Euclidean distance,  
to .

• �For each m = 1, . . . , k, let , let mm be the 
point in Rd whose projections onto vi, j minimize the 
sum of the squared discrepancies with  and let 
Sm be the positive d × d semidefinite matrix that 
minimizes the sum of the squared discrepancies 
between .

• �If wi < , disregard component i.



118    communications of the acm   |   february 2012  |   vol.  55  |   no.  2

research highlights 

 

F and F′ such that the discrepancy in mean, variance, and mixing 
weight between corresponding components is at most .

The above theorem guarantees that if two GMMs have 
very similar low-order moments, the parameter sets must 
also be very similar, thereby guaranteeing the correctness 
of the simple brute-force search algorithm for learning one-
dimensional GMMs presented in Section 3.

4.1. Deconvolution and moments
Our proof of the polynomially robust identifiability of 
GMMs relies on considering what happens if one “decon-
volves” the probability density functions of a GMM by a 
Gaussian of carefully chosen variance. The convolution of 
two Gaussians is a Gaussian, just as the sum of two normal 
random variables is normal. Hence, we can also consider 
the “deconvolution” of the mixture by a Gaussian of vari-
ance, say, a—this is a simple operation which subtracts a 
from the variance of each Gaussian in the mixture: Given 
a GMM with parameter  set  {(m1, , w1), . . . , (mk, , wk)}, 
we define the a-deconvolved mixture to be the GMM with 
parameter set {(m1, , w1), . . . , (mk, , wk)}, provided 
that a < min 

The intuition behind considering this transformed mix-
ture is that by decreasing the variance of each Gaussian 
component, we are effectively disentangling the mixture 
by making the components overlap less. To illustrate this 
intuition, suppose we deconvolve by a that is close to the 
minimum variance of any component. Unless the smallest 
variance Gaussian is closely matched (in both mean, vari-
ance and mixing weight) by a Gaussian in the other mixture, 
then the two mixtures will have large statistical distance 
after deconvolution. If, on the other hand, the smallest vari-
ance Gaussian is closely matched, then this pair of compo-
nents can be stripped away from the respective GMMs as 
this pair contributes negligibly to the discrepancy between 
the two mixtures. We can then proceed by induction.

Unfortunately, the deconvolution transformation does 
not preserve the statistical distance between two distribu-
tions. However, we show that it, at least roughly, preserves 
the disparity in low-order moments of the distributions. 
Specifically, letting Fa(F ) denote the result of a-deconvolving 
mixture F, we show that if there is an i ≤ 4k − 2 such that the 
i th moment of Fa(F ) is at least poly( ) different than the i th 
moment of Fa(F ′) then there is a j ≤ 4k − 2 such that the j th 
moment of F is at least poly( ) different than the j th moment 
of F′. To simplify notation, let Mi [F] = Ex ← F [xi].

Lemma 3. Suppose that each constituent Gaussian in F or F′ 
has variances in the interval [a, 1]. Then

The key observation here is that the moments of F and 
Fa(F) are related by a simple linear transformation, which 
can also be viewed as a recurrence relation for Hermite 
polynomials.

4.2. Discrepancy in moments
The deconvolution operation gives us a method to pro-
duce a large statistical distance between two mixtures with 
sufficiently different parameters. Additionally, deconvo-
lution approximately preserves discrepancy in low-order 
moments. So all that remains is to demonstrate that two 
mixtures (after an appropriate deconvolution) not only have 
large statistical distance, but also have a non-negligible dis-
crepancy in moments.

To accomplish this, we show that there are at most 4k − 2 
zero-crossings of the difference in densities, f = Fa(F) − Fa(F′) 
and then we construct a degree 4k − 2 polynomial p(x) that 
always has the same sign as f (x), so that when p(x) is inte-
grated against f (x) the result is at least poly( ). We construct 
this polynomial so that the coefficients are bounded, and 
this implies that there is some moment i (at most the degree 
of the polynomial) for which the difference between the ith 
raw moment of Fa(F) and of Fa(F′) is large.

The first step is to show that the point-wise difference 
between the density functions of any two mixtures of k 
Gaussians is either identically zero, or has at most 4k − 2 
zero crossings. This bound can be easily shown to be tight. 
Our proof of this fact relies on the following theorem, due to 
Hummel and Gidas10:

Theorem 4 (Thm 2.1 in Hummel and Gidas10). Given f (x): 
R → R, that is analytic and has n zeros, then for any s 2 > 0, 
the function g (x) = f (x) ° N (0, s 2, x) has at most n zeros.

Given this theorem, we can then prove an upper bound 
on the number of zero crossings by isolating the smallest 
variance component through deconvolution, removing this 
component and then proceeding inductively; by the above 
theorem, deconvolution does not decrease the number of 
zero crossings and since each component that we remove in 
this way is essentially a delta function, its removal reduces 
the number of zero crossings by at most two.

The proof of Theorem 2 then follows from assembling 
the pieces: Given a pair of one-dimensional GMMs whose 
parameter sets differ: (1) strip away all components in pairs 
of closely corresponding components, which has negligible 
effect on the discrepancy in moments of the pair of GMMs; 
(2) deconvolve by nearly the variance of the skinniest remain-
ing component; (3) since this component is now nearly a 
Dirac delta function and there is no closely matching compo-
nent in the second GMM, the deconvolved GMMs have non-
negligible statistical distance; (4)  non-negligible statistical 
distance implies non-negligible moment discrepancy; and 
(5) if there is a discrepancy in one the low-order moments of 
two GMMs, then after convolution by a Gaussian, there will 
still be a discrepancy in some low-order moment.

5. THE FULL ALGORITHM
We now motivate and describe our general algorithm for 
learning GMMs which, with high probability, returns a mix-
ture whose components are accurate in terms of statistical 
distance. To get an intuitive sense for the types of mixtures for 
which the simple high-dimensional algorithm fails, consider 
the mixture of three components depicted in Figure 3. The two 
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narrow components are very similar: both their means, and 
their covariance matrices are nearly identical. With over-
whelming probability, the projection of this mixture onto any 
one-dimensional space will result in these two components 
becoming indistinguishable given any reasonable amount of 
data. Nevertheless, the statistical distance between these two 
components is close to one, and thus, information theoreti-
cally, we should be able to distinguish them.

How can we hope to disentangle these two components 
if, in nearly every one-dimensional projection, these com-
ponents are indistinguishable? The intuition for the solu-
tion is also provided in the example: we can cluster out these 
two components and recurse. In particular, there is a vector 
(corresponding to the direction of small variance of these 
two components) such that if we project all the data onto 
this direction, the pair of narrow Gaussians is almost com-
pletely “disentangled” from the third component. Almost 
all of the data corresponding to the two narrow components 
will be contained within a small interval when projected on 
this direction, and almost none of the data generated by the 
third component will be contained in this interval.

If we are able to successfully perform such a clustering of 
the original mixture into two sub-mixtures, we can recurse. 
The central insight is that if we consider the sub-mixture cor-
responding to just the two narrow Gaussians, then we can re-
scale the space by applying an affine transformation so that the 
resulting mean and variance are zero and one, respectively, in 
every direction. This re-scaling has the effect of stretching out 
this sub-mixture along the direction of small variance. In the 
resulting mixture of two Gaussians, if we project on a randomly 
chosen direction, the components will be noticeably different.

Our full algorithm will follow this general plan—in each 
step, our algorithm either learns a good estimate and out-
puts this estimate, or else will cluster the mixture into two 
proper sub-mixtures and recurse. The remainder of this sec-
tion is devoted to explaining how we can learn a direction of 
small variance, and hence enable the clustering and recur-
sion step if we are not able to directly apply the Simple High-
Dimensional Algorithm of Section 3 to learn good estimates 
for the GMM components.

5.1. Learning a direction to project
How does one find a vector in which direction some of the 
components have small variance? Intuitively, finding this 
direction seems to require knowledge of the true mixture. Our 
approach will be to first learn an estimate of the mixture that 
is close to some partition of the true components, and thus 
gain some insight into the general structure of the mixture.

Suppose we add d-dimensional Gaussian noise to 
samples drawn from the example GMM of Figure 3. This 
would have the effect of “fattening” each component. After 
“fattening,” the two narrow components would have extremely 
small statistical distance. So we could run our simple learn-
ing algorithm on this “fattened” mixture. Even though this 
distribution is a mixture of three Gaussians, the mixture is 
statistically extremely close to a mixture of two Gaussians. Our 
simple learning algorithm will return an estimate mixture of 
two Gaussians with the property that each component is close 
to a sub-mixture of the “fattened” distribution.

Thus one of the components in this estimate will correspond 
to the sub-mixture of the two narrow components. By examin-
ing this component, we notice that it is “skinny” (after adjusting 
the covariance matrix to account for the noise that we artificially 
added). Hence if we compute the smallest eigenvector of this 
co-variance matrix, we recover a direction which allows us to 
cluster the original mixture into two sub-mixtures and recurse.

Figure 3. An example of a GMM with three components F1, F2, F3, such 
that with high probability over random vectors, the one-dimensional 
projections of F2 and F3 will be very similar, despite Dtv(F2, F3) ª 1.

Given a set of sample from a GMM in d dimensions with 
at most k components, and target accuracy :
Let 

2
 =  c, (for a constant c dependent on k).

• �Rescale the set of samples so as to have mean 0 
and covariance the identity matrix.

• �Create a fattened set of samples: for each of the 
original samples add an independent x ← N(0, Id×d).

• �Define 1 , . . . , k 2 with i =  c′
.i, for a constant c′ (depen-

dent on k.) Run the Simple High-Dimensional 
Algorithm on the fattened samples with each tar-
get accuracy  i, yielding k2 parameter sets P1, . . . , Pk.

• �Find a consistent chain of at least k2/2 parameter 
sets; we say Pi is consistent with Pj for i < j if 
there exists a mapping of the components of Pi 
into the components of Pj such that the statisti-
cal distance between each component of Pi and its 
image in Pj is at most i + j.

• �Let P′ = ({m1, S1, w1}, . . . ) be one of these parameter sets 
in the chain, and let P = ({m1, S1 − I, w1}, {m2, S2 − I, w2}, . . .) 
be the unfattened parameters.

• �Let k′ ≤ k be the number of components of P. Let 
l be the minimum over  i ∈ {1, . . . , k′}, of the minimum 
eigenvalue of Si.

– �If λ > 2, output the recovered parameters and 
return SUCESS.

– �Otherwise, project the original (non-noisy) 
samples onto the eigenvector corresponding 
to this minimum eigen-value, and cluster the 
samples into two clusters, with one cluster 
corresponding to samples that likely origi-
nated from the component with the smallest 
minimum eigenvalue.

– �Recursively apply this entire algorithm to each 
of the two sets of samples, with target accu-
racy , and number of components at most k − 1.

The Full High-Dimensional Algorithm
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If the Simple High-Dimensional Algorithm is run on 
samples from a GMM in which all components have large 
minimum eigenvalue (for example, if the samples have 
been “fattened”), then the algorithm, when run with tar-
get accuracy , will successfully learn the mixture provided 
that for each pair of components, either the statistical dis-
tance is at least , or at most ′ << , where ′ = p( ) for some 
polynomial p. In the case that some set of components all 
have pairwise statistical distance at most ′, then the simple 
high-dimensional algorithm will never realize that these 
components correspond to separate components, and will 
simply return a single component in place of this set. The 
difficulty is when there exists some pair of components 
whose statistical distance lies within this bad window [ p(
), ]. In such an instance, the Simple High-Dimensional 

Algorithm has no provable guarantees.
To avoid the potential difficulty of finding a target accu-

racy  for which no pair of components have statistical 
distance within the associated inadmissable window, one 
simply runs the high-dimensional algorithm with a range 
of target accuracies, 1, . . . , k 2 with i < p( i−1). While we will 
never know which runs succeeded, there are at most  
pairwise statistical distances, and each pairwise statistical 
distance can fall into the inadmissible window of at most 
one run, and thus a majority of the runs will be successful. 
All that remains is to find a set of at least k2/2 runs which 
are consistent: given two sets of parameters returned by 
runs with target accuracies 1 < 2, we say they are consis-
tent if there is some surjective mapping of the components 
returned by the 1 run into the components returned by the 

2 run, such that each component has similar mean and 
covariance to its image. Thus, one can find such a chain 
of at least k2/2 consistent runs, yielding a set of accurate 
parameters.

6. EXPONENTIAL DEPENDENCE ON k
While the dependency of our algorithm on the number of 
components is super-exponential, we also describe a lower 
bound showing that at least an exponential dependency 
is necessary, even for mixtures in just one dimension. We 
show this by giving an explicit construction, for any k, of 
two one-dimensional GMMs F1, F2 consisting of at most k 
Gaussian components where the mixing weights and pair-
wise statistical distances between components are at least 
1/2k. Additionally, in any correspondence between the com-
ponents of one mixture F1 and the components of mixture 
F2, there is at least one component in F1 whose mean or 
variance differs by at least 1 from that of the corresponding 
component of F2. Nevertheless, Dtv(F1, F2) < 1/eO(k), and thus it 
is information theoretically impossible to distinguish a set 
of eo(k) samples from F1 from a set of eo(k) samples from F2, and 
hence impossible to return the component parameters to 
within ±1/2 with any probability greater than 0.6.

Theorem 5. There exists a pair of GMMs, F1, F2 with at most 
k components each and condition numbers at most 2k such 
Dtv(F1, F2) = 1/eO(k), yet for any mapping between the components 
of F1 and F2, there will be a component whose variance differs by 
at least 1 from that of its image.

The construction hinges on the inverse exponential 
in k statistical distance between N (0, 2), and a mixture of 
infinitely many Gaussians of unit variance whose compo-
nents are centered at multiples of , where the weight 
assigned to the component centered at  is given by 

. Verifying this claim is an exer-
cise in Fourier analysis. We then modify the construction 
slightly so that both GMMs have at most k components, and 
all components have weight at least 1/2k.

7. CONCLUSION
The primary contribution of our research is to get a first han-
dle on the sample complexity and computational complexity 
of this problem—how many samples are required to learn, 
how much runtime is necessary, and in which parameters 
are these exponential or polynomial? While we do not know 
the optimal achievable rates, distinguishing between poly-
nomial and exponential is a telling start.

Asymptotic guarantees are merely a guide as to which 
algorithms may perform well. Our current algorithm is 
not designed to be practical in any meaningful sense. 
However, we hope it opens the door to future work on algo-
rithms that are both of practical utility and theoretically 
motivated, i.e., efficient estimators which do not suffer 
from local optima.	
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