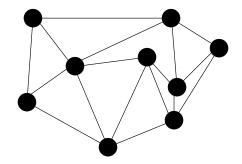
Some Results on Greedy Embeddings in Metric Spaces


Ankur Moitra, Tom Leighton

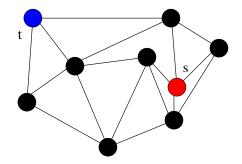
October 26, 2008

Ankur Moitra ()

Geometric Graph Theory

October 26, 2008 1 / 82

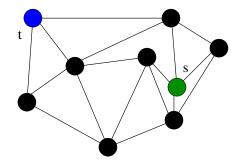
Ankur Moitra ()


Geometric Graph Theory

October 26, 2008 2 / 82

∃ →

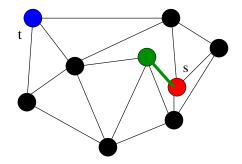
・ロト ・日下・ ・日下


3

Ankur Moitra ()

∃ → 3 / 82 October 26, 2008

Image: A math and A

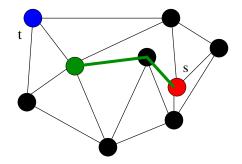

Ankur Moitra ()

Geometric Graph Theory

October 26, 2008 4 / 82

э.

Image: A math and A

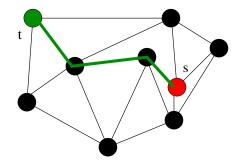

Ankur Moitra ()

Geometric Graph Theory

October 26, 2008 5 / 82

∃ →

Image: A math and A

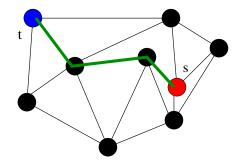


Ankur Moitra ()

Geometric Graph Theory

October 26, 2008 6 / 82

Image: A math and A

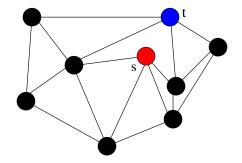

Ankur Moitra ()

Geometric Graph Theory

October 26, 2008 7 / 82

∃ →

Image: A math and A


Ankur Moitra ()

Geometric Graph Theory

October 26, 2008 8 / 82

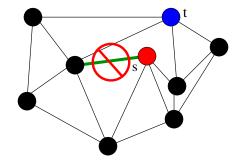
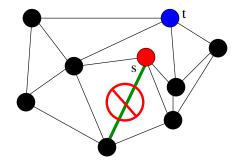
э.

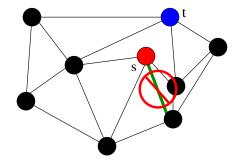
Image: A math and A

∃ →

・ロト ・日下・ ・日下

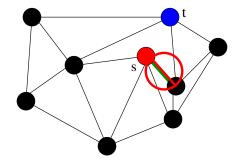
3


Image: A mathematical states of the state

Ankur Moitra ()

- < ∃ → 11 / 82 October 26, 2008


Image: A math and A

Ankur Moitra ()

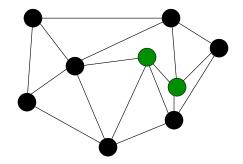

- < ∃ → October 26, 2008 12 / 82

Image: A mathematical states and a mathem

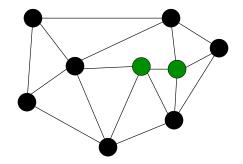
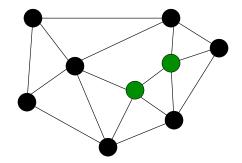

- < ∃ →

Image: A math and A

- < ∃ →

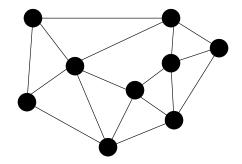
Image: A mathematical states and a mathem


Ankur Moitra ()

Geometric Graph Theory

October 26, 2008 15 / 82

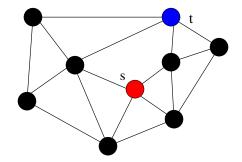
- < ∃ →


Image: A math and A

Ankur Moitra ()

- < ∃ → 16 / 82 October 26, 2008

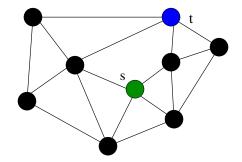
Image: A math and A



Ankur Moitra ()

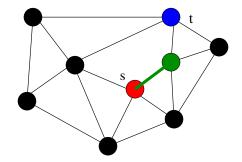
- ∢ ≣ → 17 / 82 October 26, 2008

Image: A math and A


2

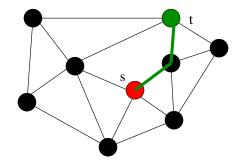
Ankur Moitra ()

- < ∃ → 18 / 82 October 26, 2008


Image: A mathematical states and a mathem

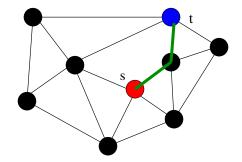
Ankur Moitra ()

- < ∃ → 19 / 82 October 26, 2008


Image: A mathematical states and a mathem

Ankur Moitra ()

∃ → 20 / 82 October 26, 2008


Image: A mathematical states and a mathem

Ankur Moitra ()

∃ → 21 / 82 October 26, 2008

Image: A mathematical states and a mathem

Ankur Moitra ()

∃ → 22 / 82 October 26, 2008

Image: A mathematical states and a mathem

2

Greedy Routing

Reminder: (X, d) is a metric space, $f: V \rightarrow X$

Greedy Routing

Always forward packets to a neighbor that is strictly closer to the destination

< 🗇 🕨 < 🖃 🕨

3

Greedy Routing

Reminder: (X, d) is a metric space, $f: V \rightarrow X$

Greedy Routing

Always forward packets to a neighbor that is strictly closer to the destination

(distances are measured using the distance function d applied to the images of nodes in the metric space)

Greedy Embedding: Definition

Fact

For all (s, t) there exists a path connecting s to t in which distances to t are decreasing \iff greedy routing never fails

< 🗇 🕨 < 🖃 🕨

Greedy Embedding: Definition

Fact

For all (s, t) there exists a path connecting s to t in which distances to t are decreasing \iff greedy routing never fails

Definition

A graph G admits a greedy embedding into a metric space (X, d) if there is a function $f : V \to X$ s.t. greedy routing never fails

Lemma (Papadimitriou, Ratajczak, 2005)

 $K_{1,7}, K_{2,13}, ... K_{r,6r+1}$ admit no greedy embedding into Euclidean plane

イロト 不得下 イヨト イヨト 二日

Lemma (Papadimitriou, Ratajczak, 2005)

 $K_{1,7}, K_{2,13}, ... K_{r,6r+1}$ admit no greedy embedding into Euclidean plane

Conjecture (Papadimitriou, Ratajczak, 2005)

All 3-connected planar graph admits a greedy embedding into the *Euclidean plane*

- 本間 と えき と えき とうき

Lemma (Papadimitriou, Ratajczak, 2005)

 $K_{1,7}, K_{2,13}, ... K_{r,6r+1}$ admit no greedy embedding into Euclidean plane

Conjecture (Papadimitriou, Ratajczak, 2005)

All 3-connected planar graph admits a greedy embedding into the Euclidean plane

Theorem (Kleinberg, 2007)

All connected graphs admit a greedy embedding into the Hyperbolic plane

イロト 不得下 イヨト イヨト 二日

Lemma (Papadimitriou, Ratajczak, 2005)

 $K_{1,7}, K_{2,13}, ... K_{r,6r+1}$ admit no greedy embedding into Euclidean plane

Conjecture (Papadimitriou, Ratajczak, 2005)

All 3-connected planar graph admits a greedy embedding into the Euclidean plane

Theorem (Kleinberg, 2007)

All connected graphs admit a greedy embedding into the Hyperbolic plane

Theorem (Dhandapani, 2008)

All 3-connected, triangulated planar graphs admit a greedy embedding into the Euclidean plane

イロト 不得 トイヨト イヨト 二日

Our Results

Ankur Moitra ()

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• The Papadimitriou-Ratajczak Conjecture is true!

___ ▶

3

Our Results

- The Papadimitriou-Ratajczak Conjecture is true!
- A combinatorial condition which is sufficient to guarantee no greedy embedding into Euclidean plane exists

Proof Outline

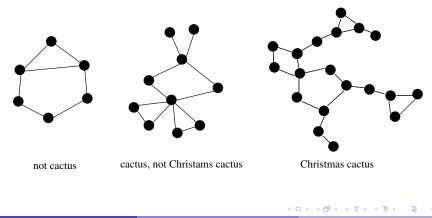
Theorem

All 3-connected planar graph admits a greedy embedding into the Euclidean plane

- All 3-connected planar graphs contain a spanning Christmas Cactus graph
- All Christmas Cactus graphs admit a greedy embedding into the Euclidean plane

Proof Outline

Theorem

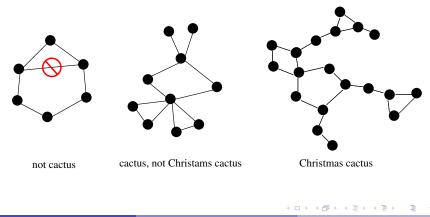

All 3-connected planar graph admits a greedy embedding into the Euclidean plane

- All 3-connected planar graphs contain a spanning Christmas Cactus graph
- All Christmas Cactus graphs admit a greedy embedding into the Euclidean plane

Cactus Graphs: Definition

Definition

A cactus graph G = (V, E) is a connected graph for which each edge is in at most one simple cycle

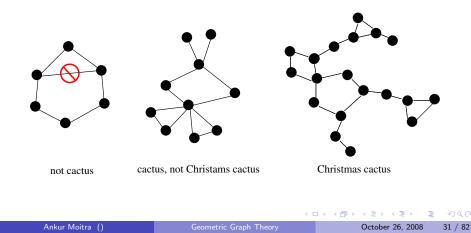

Geometric Graph Theory

October 26, 2008 29 / 82

Cactus Graphs: Definition

Definition

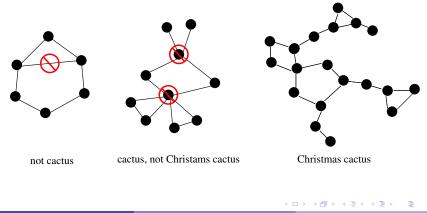
A cactus graph G = (V, E) is a connected graph for which each edge is in at most one simple cycle



Geometric Graph Theory

Christmas Cactus Graphs: Definition

Definition


A Christmas cactus graph G = (V, E) is a cactus graph for which the removal of any node $v \in V$ disconnects G into at most 2 components.

Christmas Cactus Graphs: Definition

Definition

A Christmas cactus graph G = (V, E) is a cactus graph for which the removal of any node $v \in V$ disconnects G into at most 2 components.

?? What is a Christmas cactus??

Ankur Moitra ()

Geometric Graph Theory

October 26, 2008 33 / 82

3

(日) (同) (三) (三)

?? What is a Christmas cactus??

Ankur Moitra ()

Geometric Graph Theory

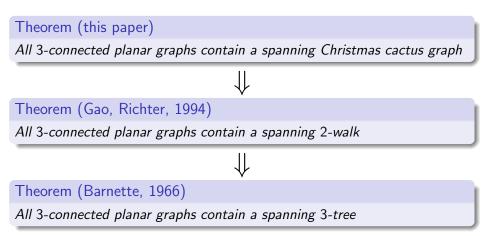
October 26, 2008 33 / 82

Spanning Subgraphs in 3-Connected Planar Graphs

Theorem (this paper)

All 3-connected planar graphs contain a spanning Christmas cactus graph

Spanning Subgraphs in 3-Connected Planar Graphs

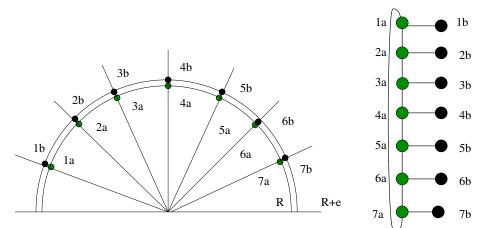

Theorem (this paper)

All 3-connected planar graphs contain a spanning Christmas cactus graph

Theorem (Gao, Richter, 1994)

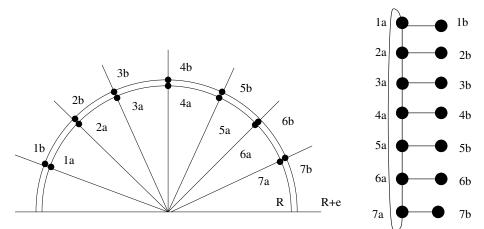
All 3-connected planar graphs contain a spanning 2-walk

Spanning Subgraphs in 3-Connected Planar Graphs

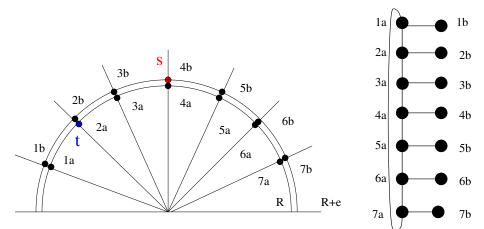

・ 何 ト ・ ヨ ト ・ ヨ ト

Proof Outline

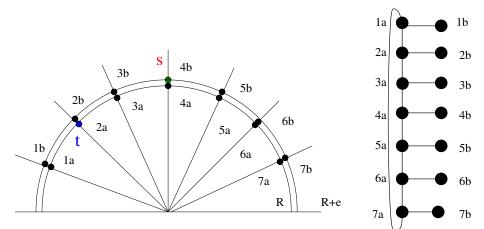
Theorem


All 3-connected planar graph admits a greedy embedding into the Euclidean plane

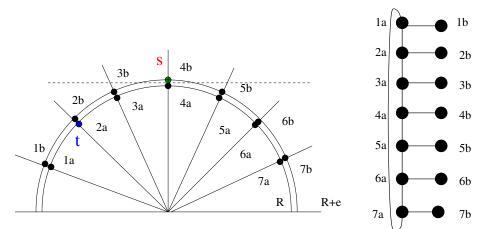
- ✓ All 3-connected planar graphs contain a spanning Christmas Cactus graph
- All Christmas Cactus graphs admit a greedy embedding into the Euclidean plane


October 26, 2008 36 / 82

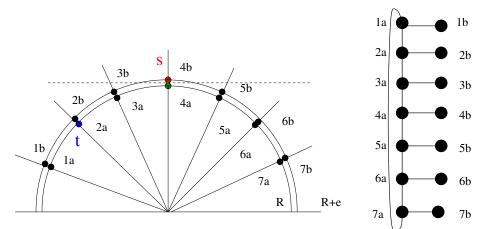
æ



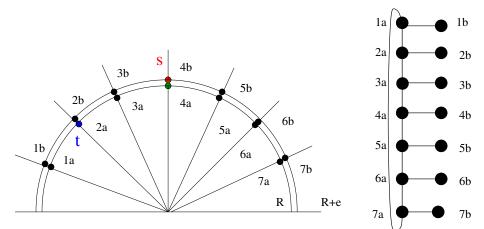
October 26, 2008 37 / 82


æ

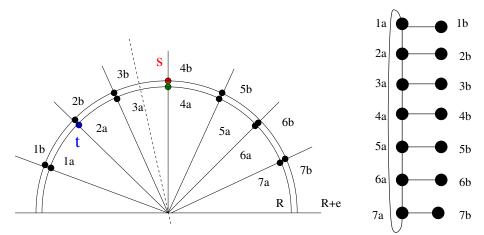
æ



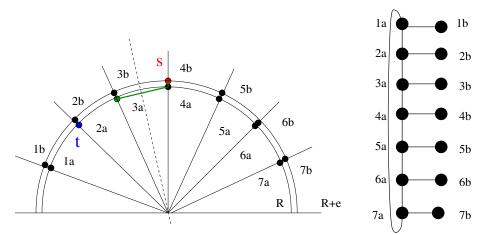
æ

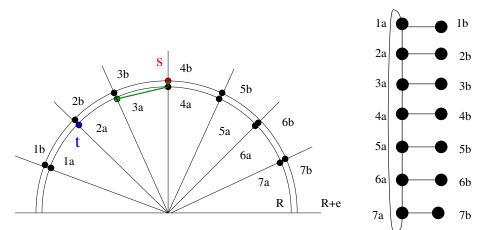

Moitra (

æ

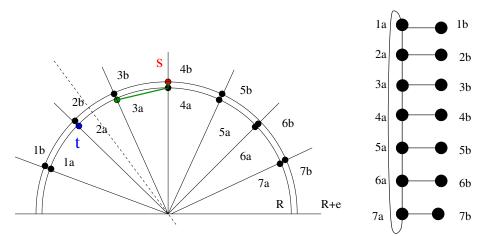


Moitra (

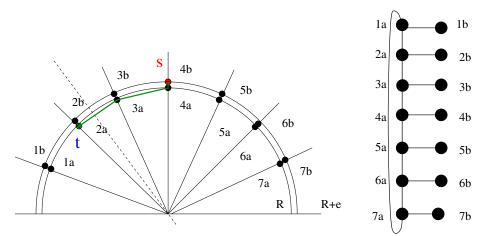

æ


æ

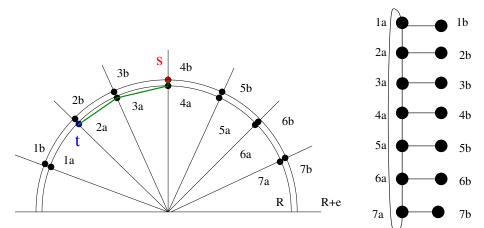
æ



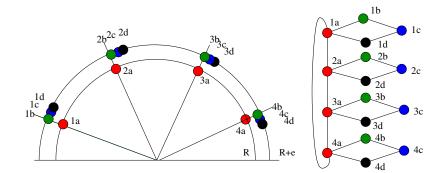
æ


October 26, 2008 45 / 82

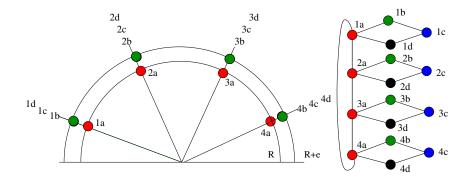
æ


October 26, 2008 46 / 82

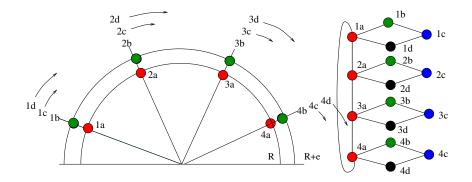
æ



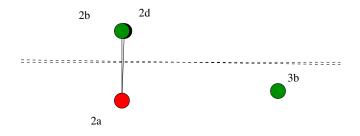
October 26, 2008 47 / 82


æ

æ

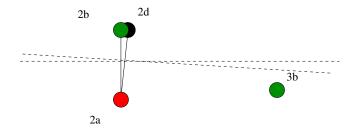


3



October 26, 2008 50 / 82

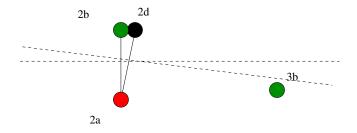
æ


æ

Moitra	

October 26, 2008 52 / 82

3

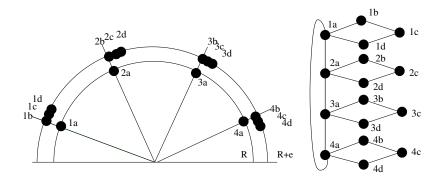


Anlaur	Moitra (
AllKul	wortha (

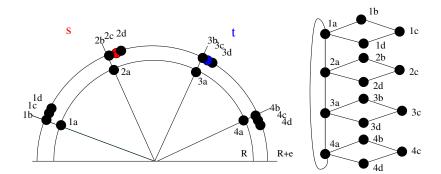
October 26, 2008 53 / 82

- E

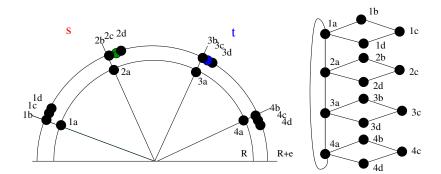
ヘロト 人間 と 人間 と 人間 と

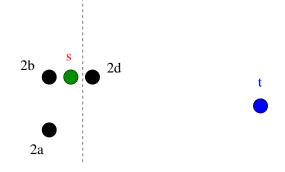


An	ĸur	Moitra (

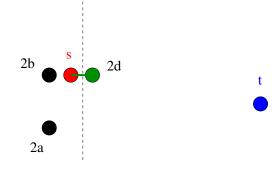

October 26, 2008 54 / 82

3

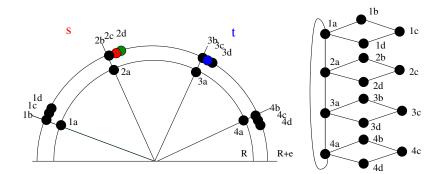

イロン イヨン イヨン イヨン


3

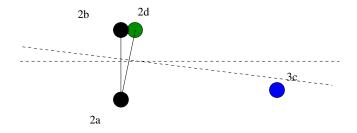
3



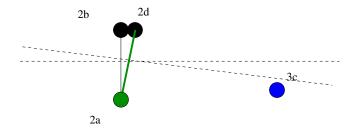
3



October 26, 2008 58 / 82


3

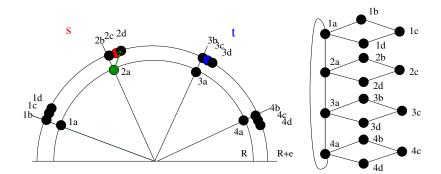
3


3

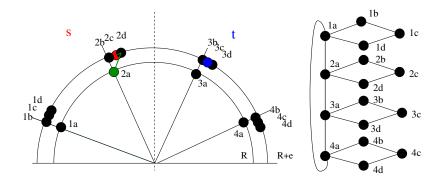
An	ĸur	Moitra (

October 26, 2008 61 / 82

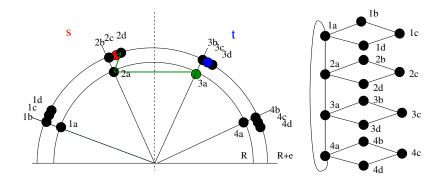
- 2

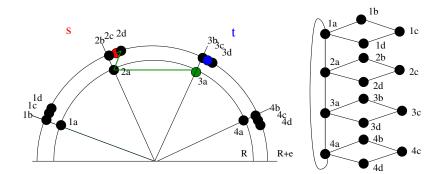


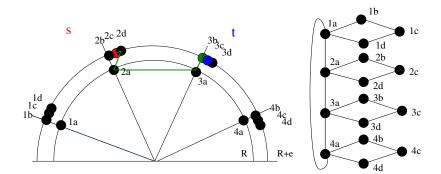
Ankur	Moitra (
AllKul	ivioitia j	

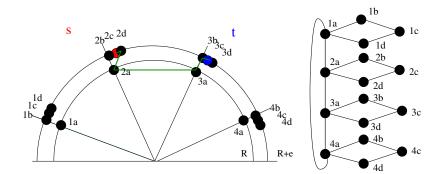

October 26, 2008 62 / 82

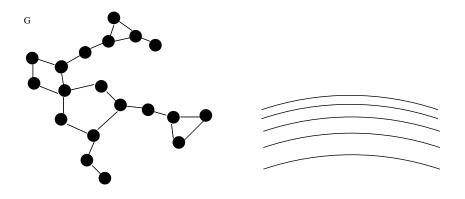
- 2

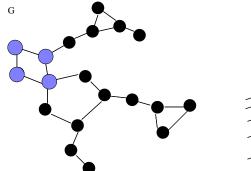

ヘロト 人間 と 人間 と 人間 と

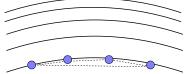

3


3

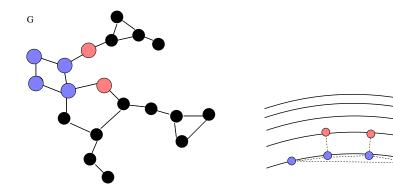

3

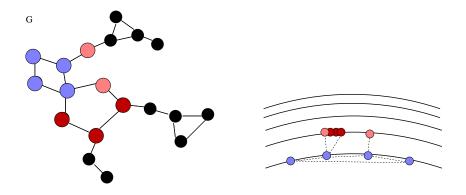

3

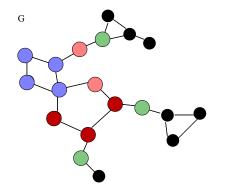


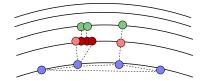

3

3

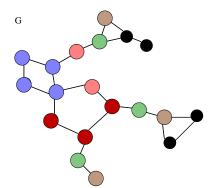


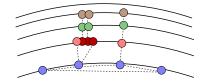

< 🗗 🕨 🔸

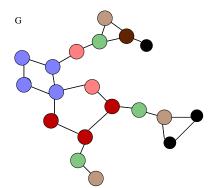

Ankur Moitra ()

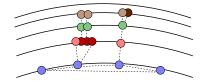

Geometric Graph Theory

October 26, 2008 70 / 82

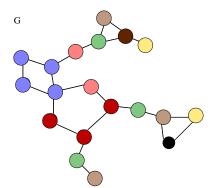


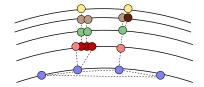


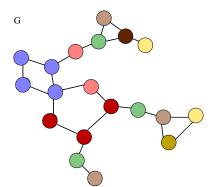


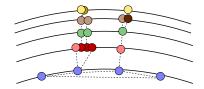

< 🗗 🕨 🔸

-






< 67 ▶


Anlaur	Moitra (n
AllKul	wortha (U

October 26, 2008 75 / 82

Proof Outline

Theorem

All 3-connected planar graph admits a greedy embedding into the Euclidean plane

- ✓ All 3-connected planar graphs contain a spanning Christmas Cactus graph
- ② √ All Christmas Cactus graphs admit a greedy embedding into the Euclidean plane

Open Questions

Our embedding requires *exponential* sized coordinates:

3

-

< 67 ▶

Our embedding requires *exponential* sized coordinates:

Conjecture

Any greedy embedding scheme for general Christmas cactus graphs requires exponential sized coordinates Our embedding requires *exponential* sized coordinates:

Conjecture

Any greedy embedding scheme for general Christmas cactus graphs requires exponential sized coordinates

OR: Are there greedy embedding schemes for which coordinates are only polynomial sized?

Partial Results

Theorem

There exist graphs that admit a greedy embedding into the Euclidean line, but all greedy embeddings require exponential sized coordinates

/₽ ▶ ∢ ∋ ▶

Partial Results

Theorem

There exist graphs that admit a greedy embedding into the Euclidean line, but all greedy embeddings require exponential sized coordinates

Theorem

There are metric spaces s.t. all connected graphs can be greedily embedded, and average coordinate size is constant

Questions?

3

Thanks!

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト