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Abstract

Geographic Routing is a family of routing algorithms that uses geographic point loca-
tions as addresses for the purposes of routing. Such routing algorithms have proven
to be both simple to implement and heuristically effective when applied to wireless
sensor networks. Greedy Routing is a natural abstraction of this model in which nodes
are assigned virtual coordinates in a metric space, and these coordinates are used to
perform point-to-point routing.

Here we resolve a conjecture of Papadimitriou and Ratajczak that every 3-connected
planar graph admits a greedy embedding into the Euclidean plane. This immediately
implies that all 3-connected graphs that exclude K3,3 as a minor admit a greedy
embedding into the Euclidean plane. Additionally, we provide the first non-trivial
examples of graphs that admit no such embedding. These structural results provide
efficiently verifiable certificates that a graph admits a greedy embedding or that a
graph admits no greedy embedding into the Euclidean plane.
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Chapter 1

Introduction

1.1 Background

The study of routing has a long and rich history. But for many important classes

of routing problems, routing schemes that are both simple and provably effective

have so far been elusive. In particular, scalable wireless sensor networks require

point-to-point communication but such ad-hoc networks admit no global hierarchical

addressing scheme and there are still no broadly accepted, scalable point-to-point

routing schemes despite numerous proposals. Geographic Routing is a family of rout-

ing algorithms that uses geographic point locations as addresses for the purposes of

routing. Such routing algorithms have proven to be both simple to implement and

heuristically effective when applied to wireless sensor networks.

Recent work on routing protocols for wireless sensor networks [2], [7] has focused

particular attention on a class of ’greedy’ algorithms wherein a packet at a node u

that is destined for a node v is simply forwarded to any neighbor u′ of u for which

d(u′, v) < d(u, v) where d(x, y) is the Euclidean distance between the locations of x

and y in the plane. For such an algorithm to guarantee delivery it must be the case

that for every u and v, such a u′ exists (i.e. that wherever a packet is in the network,

there is always a next hop that gets the packet closer in Euclidean distance to its

ultimate destination).

Rao et al. [11] proposed a natural abstraction of this model in which nodes are
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assigned virtual coordinates in a metric space, and these coordinates are used to

perform point-to-point routing.

Definition 1. A graph G = (V,E) is said to have a greedy embedding into a metric

space (X, d) if there is a function f : V → X such that for every pair of distinct nodes

u, v ∈ V , there exists a neighbor u′ of u in G such that d(f(u′), f(v)) < d(f(u), f(v)).

Papadimitriou and Ratajczak [9] considered the case where (X, d) is the Euclidean

plane and gave simple examples of graphs which have a greedy embedding (e.g.,

Hamiltonian graphs) and graphs that admit no greedy embedding into the Euclidean

plane (e.g., Kr,6r+1). Papadimitriou and Ratajczak conjectured that all 3-connected

planar graphs admit a greedy embedding into the Euclidean plane.

Kleinberg [8] considered the case in which (X, d) is the hyperbolic plane and

showed that every tree (and consequently every graph) has a greedy embedding in

the hyperbolic plane. However random geometric graph processes in the Euclidean

plane are one of the fundamental models for reasoning about wireless ad-hoc networks

[4], [6], [10]. And it remains a central question as to whether these generative models

result in graphs that can be embedded in a metric space that is fundamentally the

same as the metric space in which these graphs were generated.

Dhandapani [3] recently proved that all triangulated 3-connected planar graphs

have greedy embeddings in the Euclidean plane, a relaxation of the Papadimitriou-

Ratajczak conjecture. His proof made use of Schnyder Realizers, and used the geo-

metric properties of Schnyder Drawings to find a greedy embedding.

1.2 Our Results

Here we resolve a conjecture of Papadimitriou and Ratajczak that every 3-connected

planar graph admits a greedy embedding into the Euclidean plane. In fact, we con-

struct a greedy embedding into the Euclidean plane for all circuit graphs (which

generalize 3-connected planar graphs). This immediately implies that all 3-connected

graphs that exclude K3,3 as a minor admit a greedy embedding into the Euclidean

plane.
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Additionally, we provide the first non-trivial examples of graphs that cannot be

greedily embedded into the Euclidean plane. These structural results provide effi-

ciently verifiable certificates that a graph admits a greedy embedding or that a graph

admits no greedy embedding into the Euclidean plane.

Perhaps of independent interest, we make use of a decomposition theorem due

to Gao and Richter [5]. This is, to the best of our knowledge, this decomposition

theorem’s first use in theoretical computer science. We use this theorem to find a

spanning subgraph that can be greedily embedded into the Euclidean plane. And we

believe that this technique can be generally applicable for finding particular types of

spanning subgraphs in circuit graphs as needed.
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Chapter 2

A Greedy Embedding for Circuit

Graphs

Circuit graphs are a relaxation of 3-connected planar graphs. In this chapter, we

prove that all circuit graphs contain a spanning Christmas cactus graph and provide

a polynomial time algorithm to find such a spanning subgraph. We then construct

a greedy embedding into the Euclidean plane for all Christmas cactus graphs. This

proves a conjecture due to Papadimitriou and Ratajczak that every 3-connected pla-

nar graph admits a greedy embedding into the Euclidean plane. As a corollary, any

3-connected graph that excludes K3,3 as a minor admits a greedy embedding into the

Euclidean plane.

2.1 Christmas Cactus Graphs

A cactus graph is a graph for which every edge is part of at most one cycle. In what

follows, we will be interested in a special type of cactus graph that we call a Christmas

cactus graph.

Definition 2. A Christmas cactus graph G = (V,E) is a connected cactus graph for

which the removal of any node v ∈ V disconnects G into at most 2 components.

It is well known that a cactus graph can be constructed from a tree by replacing

9



*

T G

*

*

*

Figure 2.1: A Christmas cactus graph G generated by the tree T. The nodes in U are
denoted with a ∗ and the edge in F is circled.

edges with cycles of arbitrary size. Similarly, a Christmas cactus graph can be con-

structed from a tree by replacing nodes with cycles and contracting edges that are

not in cycles. In particular we will make use of the following method for constructing

a Christmas cactus graph:

Step 1. Let T be a tree and let U be any subset of nodes of T that contains every

node with degree at least 3 in T .

Step 2. (Repeat) For each node u ∈ U , replace u with a cycle Cu of arbitrary

length so that all neighbors of u (in the current graph) are connected by an edge to

a distinct node in Cu.

Step 3. Let F be any set of edges in the graph resulting from Step 2 which are

not contained in a cycle.

Step 4. Contract out the edges in F .

For example, these steps are shown in Figure 2.1.

Simple cycles in a Christmas cactus graph are not necessarily node-disjoint because

a path connecting two node-disjoint cycles can be contracted. However, for any

two simple cycles C1, C2, |C1 ∩ C2| ≤ 1 and for any three simple cycles C1, C2, C3,

|C1 ∩ C2 ∩ C3| = 0.
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2.2 Circuit Graphs

Barnette [1] introduced the class of graphs known as circuit graphs, which he defined

to be graphs obtained by deleting a vertex from a 3-connected planar graph. Gao and

Richter [5] proved rich structural theorems about the class of circuit graphs, and used

these results to inductively prove that all circuit graphs contain a spanning closed

2-walk. We also make use of the structural properties of circuit graphs, but to find

a spanning Christmas cactus subgraph. The class of circuit graphs is a relaxation of

3-connected planar graphs, but provides a more convenient class of graphs on which

to construct inductive proofs. Gao and Richter equivalently define a circuit graph as:

Definition 3. A circuit graph is an ordered pair (G,C) such that:

1. G is 2-connected, and C is a polygon in G.

2. There is a non-crossing embedding of G in the plane s.t. C bounds an infinite

face.

3. If (H,K) is a 2-separation1 of G, then C * H, C * K.

A 3-connected planar graph is a circuit graph because G can be embedded using

Tutte’s rubber band embedding and any 2-separation (H,K) s.t. C ⊂ H would imply

that G is not 3-connected. We next review some key structural properties of circuit

graphs:

Lemma 1. [5] Let (G,C) be a circuit graph embedded in the plane (s.t. no edges

are crossing), and let C1 be any polygon in G. Then the subgraph G1 containing C1

and all nodes and edges inside C1 (in the plane embedding) is a circuit graph.

Definition 4. [5] A connected graph G is a chain of blocks if each block of G contains

at most two cut vertices and each cut vertex 2 lies in exactly two blocks. Then a

chain of blocks can be written as B1, b1, B2, ..bk−1, Bk such that the common vertex

of blocks Bi and Bi+1 is bi. Then a plane chain of blocks is a chain of blocks and a

plane embedding s.t. for all j, ∪i 6=jBi is in the infinite face of Bj.

1A k-separation of a graph H = (V,E) is a pair H1, H2 of edge disjoint subgraphs of H, each
with at least k + 1 vertices, s.t. H = H1 ∪H2 and |V (H1) ∩ V (H2)| = k.

2A cut vertex is a vertex that when removed from G, disconnects the graph.
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Figure 2.2: A plane chain of blocks.

See Figure 2.2. Because each cut vertex is in exactly two blocks, then each bi

must be distinct. A block is called trivial if the block is just the edge bi, bi+1. Then

the seminal work of Gao and Richter gives the following structural result for circuit

graphs:

Theorem 1. [5] Let (G,C) be a circuit graph, and let x, y ∈ C be distinct. Then there

exists a partition of V (G)−V (C) into V1, V2, ..., Vm and distinct vertices v1, v2, ..., vm ∈

V (C)−{x, y} s.t. the graph induced by Vi∪{vi} is a plane chain of blocksBi,1, bi,1, ..., bi,k−1, Bi,k

s.t. vi ∈ V (Bi,1) − bi,1 and each nontrivial block Bi,j has an outer polygon Ci,j s.t.

(Bi,j, Ci,j) is a circuit graph 3.

Gao and Richter use this structural result to find a spanning closed 2-walk that

visits x, y only once, in any circuit graph by induction. In what follows, we use this

structural result to find a spanning subgraph in any circuit graph that can be greedily

embedded in the plane. We will use δG(x) to denote the degree of x in G. The proof

of this theorem given by Gao and Richter is constructive, and can be used to find such

3Gao and Richter actually state that Bi,j is a block, but from the construction of this block in
the proof of the theorem, it is clear that Bi,j is a subgraph containing all nodes and edges inside
(and including) a polygon Ci,j in G. This implies that (Bi,j , Ci,j) is a circuit graph and Gao and
Richter explicitly state this when actually invoking the structural theorem to prove that all circuit
graphs contain a closed, spanning 2 walk.
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a decomposition in polynomial time, given the planar drawing of the circuit graph.

Theorem 2. For any circuit graph (G,C) and distinct x, y ∈ C, there exists a Christ-

mas cactus graph T (G) that spans G s.t. x, y are jointly in a cycle and δT (G)(x) =

δT (G)(y) = 2. And such a subgraph can be found in polynomial time.

Proof. The proof is by induction on the number of vertices in the circuit graph (G,C).

Let x, y be distinct and x, y ∈ V (C). Applying Theorem 1, there exists a partition

of V (G)− V (C) into V1, V2, ..., Vm and distinct vertices v1, v2, ..., vm ∈ V (C)− {x, y}

s.t. the graph induced by Vi ∪ {vi} is a plane chain of blocks Bi,1, bi,1, ..., bi,k−1, Bi,k,

vi ∈ V (Bi,1)−bi,1 and each nontrivial block Bi,j has a outer polygon Ci,j s.t. (Bi,j, Ci,j)

is a circuit graph.

From the definition of a plane chain of blocks, each cut vertex bi,k must be distinct.

The chain of blocks Bi,1, bi,1, ..., bi,k−1, Bi,k is a plane chain of blocks w.r.t. the original

plane embedding. vi is on the infinite face in G, and this implies that vi ∈ Ci,1 because

vi must be in the infinite face in (Bi,1, Ci,1). Choose bi,0 = vi and bi,k to be any vertex

∈ Bi,k− bi,k−1 that is contained in the infinite face Ci,k. If Bi,k is a trivial block, then

just choose bi,k to be the remaining endpoint. Directly from the structural theorem,

vi ∈ Bi,1− bi,1. Then each bi,j is distinct, and contained in both infinite faces Ci,j and

Ci,j+1.

By induction each (non-trivial) Bi,j has a Christmas cactus spanning subgraph

s.t. bi,j−1, bi,j are jointly on a simple cycle and δT (Bi,j)(bi,j−1), δT (Bi,j)(bi,j) = 2. Then

join the spanning Christmas cactus graph of Bi,j to the spanning Christmas cactus

graph of Bi,j+1 by joining bi,j in each spanning Christmas cactus graph by an edge,

and contracting the edge. See Figure 2.3.

If the neighboring block in the plane chain is a trivial block, then just connect a

non-trivial block to the next non-trivial block by a path of the trivial blocks. If Bi,1

is not trivial, then the result is a Christmas cactus spanning subgraph for the plane

chain of blocks Bi,1, bi,1, ..., bi,k−1, Bi,k s.t. vi is on a cycle and has δT (Bi,1...,k)(vi) = 2.

If Bi,1 is trivial, then the result is a Christmas cactus spanning subgraph for the plane

chain of blocks Bi,1, bi,1, ..., bi,k−1, Bi,k s.t. vi is not on a cycle and δT (Bi,1...,k)(vi) = 1.

13
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bi3

Bi4

bi2 bi3bi1

Figure 2.3: Connecting spanning Christmas cactus graphs in a plane chain of blocks.

Then consider the base cycle V (C), and join the spanning Christmas cactus graph

of each induced plane chain of blocks Vi∪{vi} to the node vi on the cycle by an edge,

and contract the edge.

The result is a spanning Christmas cactus graph of G s.t. x, y are jointly on a cycle

and δT (G)(x), δT (G)(y) = 2 and the theorem is true by induction. This construction

also yields a polynomial time algorithm because each decomposition is polynomial

time constructible and x, y do not appear in the decomposition so the number of

decompositions that must be computed is bounded by n
2
.
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Chapter 3

Constructing a Greedy Embedding

In this chapter, we construct a greedy embedding of any Christmas cactus graph in

the Euclidean plane.

3.1 Embedding Christmas Cactus Graphs

Let G be an arbitrary Christmas cactus graph, and let F be the set of edges in G

that are not contained in a simple cycle. For the purposes of this construction, all

edges in F will be considered to be simple cycles (on two nodes). Then every edge in

G is contained in exactly one simple cycle.

Definition 5. A depth tree T w.r.t. G is a tree that contains a node for each simple

cycle in G, where nodes in T are connected iff |V (C1) ∩ V (C2)| = 1.

Select an arbitrary node of T to serve as the ”root” and define the depth of a

cycle in the graph G as the depth of the corresponding node in T . Then define the

depth of any node in G to be the minimum depth of any cycle containing that node.

G will be embedded on concentric semi-circles of radius 1 = R0 < R1 < R2... s.t. all

nodes at depth i will be embedded on the semi-circle of radius Ri. Let the center of

all the semi-circles be the origin.

For any cycle C = (p, x1, ..., xm) at depth k > 0 there will be a unique node on

the cycle that is at depth k − 1 and all remaining nodes will be at depth k. Assume
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Figure 3.1: Embedding a Christmas cactus graph on concentric semi-circles.

that for the cycle C, the unique node on the cycle that is at depth k − 1 is p. Then

p will be embedded on the semi-circle at radius Rk−1, and node x1 will be placed at

the intersection of the semi-circle of radius Rk and the ray that contains p and the

origin. The remaining nodes (if any) x2, ..., xm will be embedded on the semi-circle of

radius Rk s.t. the nodes x1, x2, ..., xm appear in clock-wise order along the semi-circle

of radius Rk at a distance to be specified shortly.

Definition 6. A node u ∈ G is a descendant of the cycle C at depth k if after

removing all edges in C from G, node u is not in the component that also contains

node p - the unique node in C at depth k − 1.

A node u in the cycle C at depth k, that is not the unique node in C at depth

k − 1, is also a descendant of the cycle C by this definition. See Figure 3.1.

The embedding will proceed in phases, and at the end of phase i all nodes at

depth ≤ i will be placed. To simplify the analysis, after each phase (and subphase)

we will preserve the greedy property that the subgraph induced by all currently placed

nodes along with the current embedding, must exhibit the greedy routing property.

Formally, if at the end of a subphase, the set of nodes in G already placed is P and

the subgraph induced by P is GP then for all s, t ∈ P there exists a node u (adjacent

to s in GP ) s.t. d(u, t) < d(s, t).

We will use a geometric lemma to establish the properties needed for this embed-
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ding scheme. Consider the coordinates (assume ε > 0 and 0 ≤ α, β ≤ π):

c = (0, 1 + z)

b = (− sin β, cos β)

a = (−(1 + ε) sin(β − α), (1 + ε) cos(β − α))

subject to the constraints:

0 < α, β ≤ π

2

0 < ε ≤ 1− cos β

6

0 ≤ z ≤ ε

sinα ≤ ε(1− cos β)

2(1 + ε)

Claim 1. d
dz

(d(a, c)2 − d(b, c)2) < 0

Proof.

d

dz
(d(a, c)2 − d(b, c)2)

= 2(1 + z − (1 + ε) cos(β − α))− 2(1 + z − cos β)

= 2(cos β − (1 + ε) cos(β − α))

= 2(cos β − (1 + ε)(cos β cosα + sin β sinα))

≤ 2 cos β(1− (1 + ε) cosα)

< 0

where the last inequality follows because sinα ≤ ε
1+ε

and cosα ≥ 1 − ε2

(1+ε)2
=

1+2ε
(1+ε)2

> 1
1+ε

Hence d(a, c)2 − d(b, c)2 is minimized for z = ε.

Claim 2. d(a, c)− d(b, c) ≥ ε2

17



Proof. By claim 1,

d(a, c)2 − d(b, c)2

≥ (1 + ε)2 sin2(β − α)− sin2 β

+(1 + ε)2(1− cos(β − α))2 − (1 + ε− cos β)2

≥ (1 + ε)2 sin2(β − α)− 2(1 + ε)(1− cos β)

+(1 + ε)2(1− cos(β − α))2 − ε2

= 2(1 + ε)2(1− cos(β − α))− 2(1 + ε)(1− cos β)− ε2

= −ε2 + 2(1 + ε)(ε+ cos β − (1 + ε) cos(β − α))

≥ −ε2 + 2(1 + ε)(ε+ cos β − (1 + ε)(cos β + sinα))

= −ε2 + 2(1 + ε)(ε(1− cos β)− (1 + ε) sinα)

≥ −ε2 + (1 + ε)ε(1− cos β)

≥ 5ε2

Then

d(a, c)− d(b, c) =
d(a, c)2 − d(b, c)2

d(a, c) + d(b, c)

≥ 1

5
(d(a, c)2 − d(b, c)2)

≥ ε2

since d(a, c) + d(b, c) ≤ 5.

For notational convenience, given an embedding f : V → R2 define the angle

∠a, b, c on nodes a, b, c,∈ V (G) as the angle formed by the rays (f(b), f(a) and

(f(b), f(c).

Theorem 3. For any Christmas cactus graph G, there exists a greedy embedding of

G into the Euclidean plane.

Proof. Assume that every edge is in a simple cycle by considering any edge not in

a simple cycle as a 2-cycle. Construct the depth tree T w.r.t. G, and root T at an

18



arbitrary node. Trace out a semi-circle of radius 1 centered at the origin. Suppose

that the cycle C in G at depth 0 contains m nodes, C = (1, 2, ...,m). Then divide the

semi-circle of radius R0 into m equal angle sectors and place node i at the beginning

of the ith sector. The arc subtended by 1, 2, ...,m is strictly smaller than the perimeter

of the semi-circle of radius R0 = 1 because no node is placed at the end of the mth

sector.

For any triple (a, a + 1, c) such that c > a the angle ∠a, a + 1, c is strictly larger

than π
2

and d(a + 1, c) < d(a, c). Similarly for any triple (a, c− 1, c) such that c > a

then the angle ∠a, c − 1, c is strictly larger than π
2

and d(a, c − 1) < d(a, c). Hence

this embedding is greedy.

This establishes the base case for the inductive construction. Now assume that

all nodes at depth ≤ i have been placed and that the induced subgraph on these

nodes, Gi, along with the embedding on concentric semi-circles (as described earlier)

is greedy.

Definition 7. If all nodes in Gi have been embedded s.t. this embedding exhibits

the greedy property, then for all s, t ∈ Gi there exists u ∈ Gi s.t. (u, s) ∈ E(Gi) and

d(u, t) < d(s, t). Fix ns,t = u and define δ(Gi) = mins,t d(s, t)− d(t, ns,t).

Then draw a ball Bu of radius δ(Gi)/3 around each node u ∈ Gi. Clearly if a

node t at depth i+ 1 s.t. (u, t) ∈ E(G) is placed in Bu, then for any node s ∈ Gi, 6= t

the neighbor ns,t that is strictly closer to t will also be strictly closer to u. And if

s = t ∈ Gi then the neighbor u will be strictly closer to u.

Definition 8. Let β(Gi) be defined as the minimum (non-zero) angle over all s, t at

depth ≤ i from s to the origin, to t in the current embedding.

Assume that all nodes at depth ≤ i have been placed, and that the subgraph

induced by these nodes along with the embedding exhibits the greedy property. We

must embed all cycles at depth i+ 1, and preserve the greedy property.

Subphase:

For each cycle C at depth i + 1, C = (p, x1, ..., xm) let p be the unique node

in the cycle at depth i. Call x1 the representative node for the cycle C (choose an
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orientation of C at random, and choose the next node after p). Let the radius of the

outermost semi-circle in the current embedding be Ri and define δ(Gi) and β(Gi) as

before w.r.t. the current embedding. Also, define ε = min( δ(Gi)
3
, Ri

1−cos 2
3
β(Gi)

6
).

Place each representative node x1 at the intersection of the semi-circle of radius

Ri+1 = Ri + ε and the ray containing both the origin and p. Let P be the set of

currently placed nodes (all nodes at depth ≤ i and one representative node for each

cycle at depth i+ 1). We will show that the subgraph induced by these nodes, along

with the current embedding, exhibits the greedy property:

For any nodes s, t ∈ Gi there is trivially a node u (adjacent to s in Gi) in the

current embedding s.t. d(u, t) < d(s, t) because the nodes in Gi along with the

embedding of these nodes exhibited the greedy property (and the embedding of nodes

in Gi has not been changed) by induction. For any nodes s, t s.t. s ∈ Gi and t is a

representative node for a cycle C at depth i + 1, then t is in the ball Bp of radius

δ(Gi)
3

centered around the node p in C that is the unique node in C at depth i. Then

(t, p) is an edge in G, and all s ∈ Gi have a (already placed) neighbor that is strictly

closer to t.

Lastly, consider routing from a node s that is a representative node on a cycle

C at depth i + 1 to any node that has already been placed. Again, let p be the

unique node in C that is at depth i. By construction, the perpendicular bisector to

the segment sp contains all nodes currently placed, except s, on the same side as p:

Trivially, any node t at depth ≤ i will be on the same side of the perpendicular

bisector to sp as the node p because the perpendicular bisector is a parallel shift of

the tangent to the semi-circle of radius Ri at the point p. And for any node t that is

placed on the semi-circle at radius Ri+1, the angle from t to the origin to s will be at

least β(Gi), and from the geometric lemma (choosing α = 0) then this node will also

be on the p side of the perpendicular bisector to sp. And thus p is strictly closer to t

than s is to t for any node t at depth i+ 1 that has been placed in this subphase.

All cases are covered: the subgraph on the currently embedded nodes, along with

the current embedding is greedy because for all s, t there is an already placed neighbor

of s that is strictly closer to t.

20



Subphase:

For a cycle C = (p, x1, ..., xm) at depth i + 1, only the unique node p at depth

i and the representative node x1 have been embedded so far. The embedding must

now be extended to include all nodes at depth i+ 1 and this is done by placing nodes

x2, ..., xm in clockwise order around the semi-circle of radius Ri+1 starting from the

location of node x1.

Let G1
i be the subgraph induced by all nodes already placed. Define δ(G1

i ) as

before. Note that this difference is now defined over all s, t that have already been

placed, which includes all nodes that are at depth ≤ i and all nodes that are depth

i+1 that are representative nodes for a cycle at depth i+1. Also define ε = Ri+1−Ri,

and note that β(G1
i ) = β(Gi).

Then place nodes x2, ..., xm on the semi-circle of radius Ri+1 at even intervals

starting from the (already fixed) location of x1 s.t. the angle (in radians) from x1

to the origin to xm is α ≤ min(
δ(G1

i )

3
, β(Gi)

3
) and s.t. sinα ≤ ε(1−cos 2

3
β(Gi))

2(1+ε)
. Place all

nodes on a cycle at depth i+ 1 that have not already been placed, according to this

rule. The induced subgraph on all placed nodes after this subphase, along with the

embedding will exhibit the greedy property:

Now all nodes at depth ≤ i + 1 have been placed. Consider all pairs s, t ∈ Gi+1.

Again, if s, t ∈ G1
i then there will still be a neighbor of s that is strictly closer.

If s ∈ G1
i , and t is placed in this subphase then t is at most distance

δ(G1
i )

3
from the

representative node u on the same cycle. s 6= u will have a neighbor that is strictly

closer to this representative node u, and this same neighbor will also be strictly closer

to t. If s = u, then s and t will be connected by a path on the semi-circle of radius

Ri+1 and each successive node on this path will be strictly closer to t.

The only remaining case is when s is a node that is placed in this subphase:

Any node that is not in the set x2, x3, ..., , xm cannot be strictly contained in the

sector from x1 to the origin to xm because we chose α ≤ β(Gi)
3

. Then if s is not x1 or

xm, s will have a neighbor that is strictly closer to t, choosing the next node on the

path x1, x2, ..., xm radially in the direction of t.

The case in which s = x1 has already been covered because the node x1 ∈ G1
i .
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Then suppose s = xm: If t is in the set x1, ..., xm, then choosing the next node on

the path x1, x2, ..., xm radially in the direction of t and s will have a neighbor strictly

closer to t. And if t is not in the set x1, ..., xm: α ≤ 1
3
β(Gi) and this implies that

the angle from p to the origin to the node t is at least 2
3
β(Gi). From the geometric

lemma, d(xm, t)− d(p, t) > 0 and p is strictly closer to t.

Then all cases are covered, and the subgraph on the currently embedded nodes,

along with the current embedding is greedy because for all s, t there is an already

placed node that is strictly closer to t.

This completes the inductive construction, because all nodes at depth ≤ i+1 have

been placed. And this also completes the proof that all Christmas cactus graphs can

be greedily embedded in the Euclidean plane.

Corollary 1. Any 3-connected graph G that excludes K3,3 as a minor admits a

greedy embedding into the Euclidean plane.
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Chapter 4

Greedy Embeddings for Trees

In this chapter, we provide the first non-trivial examples of graphs that admit no

greedy embedding into the Euclidean plane. We prove a combinatorial condition

that guarantees non-embeddability and this condition provides a certificate for non-

embeddability that can be verified in linear time. We use this result to construct

graphs that can be greedily embedded into the Euclidean plane, but for which no

spanning tree admits such an embedding.

4.1 Irreducible Triples

Definition 9. An irreducible triple is a triple {b, c, d} of nodes in a graph G such that

deg(b) = 3 and (b, c), (b, d) ∈ E(G) and removing either (b, c) or (b, d) disconnects

the graph. The parent of an irreducible triple {b, c, d} is the unique node a /∈ {b, c, d}

such that (a, b) ∈ E(G).

Definition 10. Two irreducible-triples {b, c, d} and {x, y, z} are said to be inde-

pendent if {b, c, d} ∩ {x, y, z} = ∅ and if deleting edges (b, c), (b, d), (x, y), and (x, z)

leaves b and x connected. A set of irreducible triples is mutually independent if the

irreducible triples are pair-wise independent.

Lemma 2. For any set of 3 or more mutually independent irreducible triples, let a be

the parent of an irreducible triple in the set. Then for all irreducible triples {x, y, z}
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in the set, {a} ∩ {x, y, z} = ∅ (including the triple for which a is the parent).

Proof. Clearly any parent a of an irreducible triple {b, c, d} cannot intersect {b, c, d}

directly from the definition of parent. Suppose there is a set of 3 or more mutually

independent triples in a graph G, and that the parent a of an irreducible triple {b, c, d}

is contained in another irreducible triple {x, y, z}. Suppose that a = y. Then deleting

the edge (x, y) disconnects G, but b is still connected to y. This implies that b is not

still connected to x. This contradicts the definition of independence.

Suppose that a = x. Then Γ(b) = {x, c, d} and Γ(x) = {b, y, z} because x is the

parent of the triple {b, c, d} and b is the parent of the triple {x, y, z}. Then consider

a third irreducible triple in the set of 3 or more mutually independent irreducible

triples, {l,m, n}.

From the definition of an irreducible triple, deleting the edge (b, c) must partition

G into components C1, C2. Deleting the edge (b, d) also partitioned G into two com-

ponents. Note that (b, d) cannot connect C1 and C2 that resulted from deleting (b, c).

Then deleting (b, d) after deleting (b, c) must partition G into three components, one

of which contains b, one of which contains c, one of which contains d. Continuing the

argument deleting edges (b, c), (b, d), (x, y) and (x, z) partitions G into five compo-

nents, one of which contains b and x, one of which contains c, one of which contains

d, one of which contains y and one of which contains z. The component that contains

b and x contains only the nodes b and x, because deg(b) = deg(x) = 3 before deleting

two of the edges incident to b and two of the edges incident to x.

Node l must be contained in a different component than b and x. Let this com-

ponent be the component that contains y. Then {l,m, n} would not be independent

from {x, y, z} because deleting the edge (x, y) from G would leave l and x in different

components, and this contradicts the definition of independence.

Thus if there is a set of 3 or more mutually independent irreducible triples, then

the parent a of any irreducible triple {b, c, d} in the set cannot be contained in any

other triple in the set.

Lemma 3. For any set of 3 or more mutually independent triples, let {b, c, d} and
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{x, y, z} be two irreducible triples in the set and let a, w be the respective par-

ents of these irreducible triples (note that a and w are not guaranteed to be dis-

tinct). Then any simple path from y to c in the graph G must be of the form

(y, x), (x,w), ..., (a, b), (b, c). Any simple path from x to c must be of the form

(x,w), ..., (a, b), (b, c). And any simple path from x to bmust be of the form (x,w), ..., (a, b).

Proof. The proof immediately follows from the previous lemma.

We will implicitly use the path lemma throughout the proof that any graph G

containing a set of 6 or more mutually independent irreducible triples cannot be

greedily embedded. Let S = ∪{b, c, d} be the set of all nodes in any irreducible triple

in the set. Let {b, c, d} be a particular irreducible triple in the set and let a be the

parent of this triple. Suppose G admits a greedy embedding f : V → R2. Consider

the halfspace Hb that is bounded by the perpendicular bisector to f(b), f(c) that

contains f(b). This halfspace must contain S/{c} from the path lemma, because the

only simple paths from c to a node t ∈ S/{c} must begin by traversing the edge

(c, b). Similarly, the halfspace Ha that is bounded by the perpendicular bisector to

f(a), f(b) and contains f(a) must contain S/{b, c, d} again from the path lemma.

Lemma 4. Let G be a graph that admits a greedy embedding f : V → R2 into the

Euclidean plane and let (p, x) ∈ E(G) be an edge s.t. deleting (p, x) disconnects G.

Let Cx be the component containing x that results from deleting the edge (p, x), and

let z be an arbitrary node /∈ Cx. Then {x} = Wz = arg minw∈Cx ||f(w)− f(z)||2

Proof. Suppose that Wz 6= {x}, and there is a node w ∈ arg minw∈Cx ||f(w)− f(z)||2
and w 6= x. All the neighbors of w are in Cx and no node in Cx is strictly closer to

z. Then there is no neighbor of w that is strictly closer to z, and f is not a greedy

embedding.

Lemma 5. Let G be a graph that admits a greedy embedding f : V → R2 into the

Euclidean plane, and that contains an irreducible triple {b, c, d}. Then any greedy

embedding into the Euclidean plane must map the nodes b, c, d to points in R2 s.t.

the angle ∠f(c)f(b)f(d) > π
3
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Figure 4.1: Embedding a quadruple {a, b, c, d} such that f(a) is contained in a side
of the angle ∠f(c)f(b)f(d) that is < π.

Proof. Suppose that the angle ∠f(c)f(b)f(d) is ≤ π
3
. Then by the law of sines, the

side (c, d) cannot be the strictly largest side in the triangle (c, b, d). Let (b, d) be the

largest side in the triangle. Node d /∈ Cc and c must be the closest node in Cc (the

component that results from deleting the edge (b, c)) to d. And when routing from

node c to node d, node b must be selected for the next hop. However d(b, d) ≥ d(c, d)

and this embedding cannot be greedy.

Claim 3. Any graph that contains two independent irreducible triples {b, c, d} and

{x, y, z} - where Γ(b) = {a, c, d},Γ(x) = {w, y, z} - cannot be greedily embedded such

that f(a) is contained in a side of the angle ∠f(c)f(b)f(d) that is ≤ π and f(w) is

contained in a side of the angle ∠f(y)f(x)f(z) that is ≤ π.

Proof. Assume that both ∠f(c)f(b)f(d) and ∠f(y)f(x)f(z) 6= π. Consider a greedy

embedding of the quadruple {a, b, c, d} depicted in Figure 4.1.

If the embedding is greedy, then there must be a path from a to c s.t. the distances

to the destination node, c, are strictly decreasing along this path. There must also

be such a path from a to d. Any such path contains b as an intermediary node, and

this implies that d(f(b), f(c)) < d(f(a), f(c)) and d(f(b), f(d)) < d(f(a), f(d)). This

implies that f(c) and f(d) must be contained on the b side of the line H3. As a result,
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the segment (bc, bd) must be contained on the b side of H3 because the line segment

is contained in the convex hull of the points f(c), f(d), f(b).

Using a similar argument, all nodes in G not in {b} ∪ Cc ∪ Cd must be strictly

contained in the triangle (p, q, r), because all nodes in G not in {b} ∪ Cc ∪ Cd must

be strictly on the b side of H1, strictly on the b side of H2 and strictly on the a side

of H3 respectively. Because the segment (bc, bd) is contained on the b side of H3, we

can relax this constraint to the requirement that all nodes in G not in {b} ∪ Cc ∪ Cd
must be strictly contained in the triangle (bc, bd, p).

An identical argument holds for the quadruple {w, x, y, z}, and all nodes in G not

in {x} ∪ Cy ∪ Cz must be strictly contained in the triangle (xy, xz, o).

Consider the point bc. This lies in the convex hull of f(b), f(c) and any convex

body (specifically the triangle (xy, xz, o)) that strictly contains f(b) and f(c) must

strictly contain bc. Similarly the point bd must be strictly contained in the triangle

(xy, xz, o). This implies that the segment (bc, bd) must be strictly contained in the

triangle (xy, xz, o). An identical argument holds for the triangle (bc, bd, p) and this

triangle must strictly contain the segment (xy, xz).

However, this yields a contradiction because there are two triangles T1 and T2 such

that T1 must strictly contain the base of T2 and T2 must strictly contain the base of

T1. An almost identical argument holds when ∠f(c)f(b)f(d) = π or ∠f(y)f(x)f(z) =

π.

Claim 4. If a graph G is greedily embedded and contains an irreducible triple {b, c, d}

- where Γ(b) = {a, c, d} - that is embedded such that f(a) is contained in a side of

the angle ∠f(c)f(b)f(d) that is > π, then let i be the point of intersection of the

perpendicular bisector to the segment (f(b), f(c)) and the perpendicular bisector to

the segment (f(b), f(d)). All nodes not in Cc ∪Cd are mapped outside the interior of

the quadrilateral (f(c), f(b), f(d), i).

Proof. Consider Figure 4.2.

Clearly, we must only prove that all nodes not in Cc ∪Cd are mapped outside the

quadrilateral (bc, f(b), bd, i) because the line H1 must contain all nodes not in Cc on
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Figure 4.2: Embedding a quadruple {a, b, c, d} such thatf(a) is contained in a side of
the angle ∠f(c)f(b)f(d) that is > π.

the b side, and the line H2 must contain all nodes not in Cd on the b side.

Consider the halfspace J1 defined as the a side of the perpendicular bisector to

f(a), f(b). Node a is not mapped into the quadrilateral (bc, f(b), bd, i) by assumption,

and any node in G not in {b} ∪Cc ∪Cd must be contained in the halfspace J1. If the

intersection of J1 with the quadrilateral (bc, f(b), bd, i) is empty, then clearly the claim

is proven. The halfspace J1 has an empty intersection with the triangle (f(b), bc, bd)

because the points f(b), f(c), f(d) must be on the b side of the perpendicular bisector

to (f(a), f(b)).

Consider the triangle (bc, bd, i). Assume that J1 intersects the triangle (bc, bd, i).

Then J1 must contain at least one of the points bc, bd, i. J1 cannot contain bc or bd

because f(b), f(c), and f(d) must all be closer to f(b) than to f(a). As a result, if J1

intersects the triangle (bc, bd, i) then J1 must contain the point i.

A line can intersect another line more than once only if the two lines are identical.

Consider the line L bounding the halfspace J1. Suppose this line is identical to H1.

This can only happen if f(a) = f(c) and this would imply that the embedding is not

greedy because node a will not have a neighbor that is strictly closer to f(c). This

implies that the line L can intersect H1 and H2 at most once each.

J1 contains the point i, but not either of the points bc or bd. This implies that
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the line L intersects both segments (bc, i) and (bd, i). This line can be cut into two

rays, leaving from the point ab in opposite directions. Both rays begin at the point ab

inside the shaded region K, and cannot leave this region through the segment (bc, bd)

because both end points of this segment are not contained in J1.

Then one of the rays must exit the region K through a side bounded by either the

line H1 or the line H2. This yields a contradiction because the line L will intersect

either the line H1 or the line H2 twice. Thus J1 cannot contain i and the claim is

proven.

Note that ∠bcibd < 2π
3

because ∠bcf(b)bd > π
3

and ∠f(b)bci = ∠f(b)bdi = π
2
.

When a point x is contained in the sector ∠bcibd we will say the intersection point i

contains x.

Lemma 6. Any graph G containing 6 or more mutually independent irreducible

triples cannot be greedily embedded in the Euclidean plane.

Proof. Suppose that a graph G contains 6 mutually independent irreducible triples.

Then there are two cases to consider:

Suppose that the irreducible triples are embedded such that for each quadruple

{a, b, c, d} - where {b, c, d} is an irreducible triple and Γ(b) = {a, c, d} - f(a) is con-

tained in a side of the angle ∠f(c)f(b)f(d) that is > π. Then for each quadruple

{a, b, c, d} define the points bc, bd, i as in Figure 6.

No node in G is mapped to a point in the triangle (bc, bd, i) from the previous

claim. Then consider another quadruple {w, x, y, z} where {x, y, z} is an irreducible

triple and Γ(x) = {w, y, z}. Re-using the argument used in the previous claim, if the

perpendicular bisector L to the segment (f(x), f(y)) does not contain i on the x side,

then L must intersect either H1 or H2 twice. But L is a perpendicular bisector to two

points that are contained on the same side of H1 and on the same side of H2, and L

cannot be identical to H1 or H2.

Then defining the intersection point i for each quadruple {a, b, c, d} as in Figure

6, each intersection point must contain all other intersection points in an angle that

is < 2π
3

. Define polygon on these intersection points - all angles in the polygon are

29



G

p

x
y

p’ x’

i

i

i

i i

i

Figure 4.3: Embedding quadruples.

< 2π
3

. And from elementary geometry any polygon on n ≥ 6 nodes must contain an

angle that is at least 2π
3

. Then there can be at most 5 intersection points. This yields

a contradiction, because there are 6 intersection points. See Figure 4.3.

Suppose that one quadruple {a, b, c, d} is embedded such that f(a) is contained

on the side of the angle ∠f(c)f(b)f(d) that is ≤ π. Consider the points bc, bd, and

define intersection points for all remaining irreducible triples. Then each intersection

point for the remaining 5 irreducible triples must contain bc and bd because these

intersection points must contain f(b), f(c) and f(d). We can apply the argument

used above to the perpendicular bisectors H1, H2 and H3 and this implies that the

angles bounded by H1, H3 and H2, H3 must contain each intersection point defined

for the remaining 5 irreducible triples.

The angles bounded by H1, H3 and H2, H3 sum to at most π, and using the 5

intersection points and the points bc, bd we have a polygon on 7 nodes such that the

angles sum to at most 13
3
π, which yields a contradiction because the sum of the angles

in a 7-gon is 5π from elementary geometry.

Corollary 2. The complete binary tree B31 with 31 nodes cannot be greedily em-

bedded into the Euclidean plane.

Proof. The complete binary tree B31 contains 6 mutually independent irreducible

triples.
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Theorem 4. There exist graphs that can be greedily embedded into the Euclidean

plane, but for which no spanning tree can be greedily embedded into the Euclidean

plane.

Proof. Let G be the cycle graph on n nodes, and for each node i add a 4-cycle

(wi, xi), (xi, yi), (yi, zi), (zi, wi) and an extra node pi, such that wi is joined by an edge

to i, and pi is joined to the node yi. Any spanning tree of this graph contains n

mutually independent irreducible triples, however, this graph is a Christmas cactus

graph and can be greedily embedded into the Euclidean plane.
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