# Pareto Optimal Solutions for Smoothed Analysts 

Ankur Moitra, IAS<br>joint work with Ryan O'Donnell, CMU

September 26, 2011

\section*{| values | $\mathrm{v}_{1}$ | $\cdots$ | $\mathrm{v}_{\mathrm{i}}$ | $\mathrm{v}_{\mathrm{i}+1}$ | $\cdots$ | $\mathrm{v}_{\mathrm{n}}$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| weights | $\mathrm{w}_{1}$ | $\cdots$ | $\mathrm{w}_{\mathrm{i}}$ | $\mathrm{w}_{\mathrm{i}+1}$ | $\cdots$ | $\mathrm{w}_{\mathrm{n}}$ |}



$$
\begin{array}{r|l|l|l|l|l|l}
\text { values } & \mathrm{v}_{1} & \cdots & \mathrm{v}_{\mathrm{i}} & \mathrm{v}_{\mathrm{i}+1} & \cdots & \mathrm{v}_{\mathrm{n}} \\
\text { weights } & \mathrm{w}_{1} & \cdots & \mathrm{w}_{\mathrm{i}} & \mathrm{w}_{\mathrm{i}+1} & \cdots & \mathrm{w}_{\mathrm{n}}
\end{array}
$$














Not Pareto Optimal

W－weight

| $:-$ | $v_{1}$ |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| values | $\mathrm{v}_{1}$ | $\cdots$ | $\mathrm{v}_{\mathrm{i}}$ | $\mathrm{v}_{\mathrm{i}+1}$ | $\cdots$ | $\mathrm{v}_{\mathrm{n}}$ |
| weights | $\mathrm{w}_{1}$ | $\cdots$ | $\mathrm{w}_{\mathrm{i}}$ | $\mathrm{w}_{\mathrm{i}+1}$ | $\cdots$ | $\mathrm{w}_{\mathrm{n}}$ |








\section*{|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{v}_{1}$ | $\cdots$ | $\mathrm{v}_{\mathrm{i}}$ | $\mathrm{v}_{\mathrm{i}+1}$ | $\cdots$ | $\mathrm{v}_{\mathrm{n}}$ |
| weights | $\mathrm{w}_{1}$ | $\cdots$ | $\mathrm{w}_{\mathrm{i}}$ | $\mathrm{W}_{\mathrm{i}+1}$ | $\cdots$ | $\mathrm{w}_{\mathrm{n}}$ |}


























W


## Dynamic Programming with Lists (Nemhauser, Ullmann):

## Dynamic Programming with Lists (Nemhauser, Ullmann):

- $P O(i+1)$ can be computed from $P O(i) \ldots$


## Dynamic Programming with Lists (Nemhauser, Ullmann):

- $P O(i+1)$ can be computed from $P O(i) \ldots$
... in linear (in $|P O(i)|$ ) time


## Dynamic Programming with Lists (Nemhauser, Ullmann):

- $P O(i+1)$ can be computed from $P O(i) \ldots$
... in linear (in $|P O(i)|$ ) time
- an optimal solution can be computed from $P O(n)$

Dynamic Programming with Lists (Nemhauser, Ullmann):

- $P O(i+1)$ can be computed from $P O(i) \ldots$
... in linear (in $|P O(i)|$ ) time
- an optimal solution can be computed from $P O(n)$

Bottleneck in many algorithms: enumerate the set of Pareto optimal solutions

## Results of Beier and Vöcking（STOC 2003，STOC 2004）

Smoothed Analysis of Pareto Curves：

## Results of Beier and Vöcking (STOC 2003, STOC 2004)

Smoothed Analysis of Pareto Curves:

- Polynomial bound on $|P O(i)| s$ (in two dimensions) in the framework of Smoothed Analysis (Spielman, Teng)


## Results of Beier and Vöcking (STOC 2003, STOC 2004)

Smoothed Analysis of Pareto Curves:

- Polynomial bound on $|P O(i)| s$ (in two dimensions) in the framework of Smoothed Analysis (Spielman, Teng)
- Knapsack has polynomial smoothed complexity:


## Results of Beier and Vöcking (STOC 2003, STOC 2004)

Smoothed Analysis of Pareto Curves:

- Polynomial bound on $|P O(i)| s$ (in two dimensions) in the framework of Smoothed Analysis (Spielman, Teng)
- Knapsack has polynomial smoothed complexity:
- first NP-hard problem that is (smoothed) easy


## Results of Beier and Vöcking (STOC 2003, STOC 2004)

Smoothed Analysis of Pareto Curves:

- Polynomial bound on $|P O(i)| s$ (in two dimensions) in the framework of Smoothed Analysis (Spielman, Teng)
- Knapsack has polynomial smoothed complexity:
- first NP-hard problem that is (smoothed) easy
- generalizes long line of results on random instances


## Capturing Tradeoffs

## Capturing Tradeoffs

Question<br>What if the precise objective function (of a decision maker) is unknown?

## Capturing Tradeoffs

## Question <br> What if the precise objective function (of a decision maker) is unknown?

e.g. travel planning: prefer lower fare, shorter trip, fewer transfers

## Capturing Tradeoffs

## Question <br> What if the precise objective function (of a decision maker) is unknown?

e.g. travel planning: prefer lower fare, shorter trip, fewer transfers

Question
Can we algorithmically help a decision maker?

## Capturing Tradeoffs

## Question

What if the precise objective function (of a decision maker) is unknown?
e.g. travel planning: prefer lower fare, shorter trip, fewer transfers

Question
Can we algorithmically help a decision maker?

Pareto curves capture tradeoffs among competing objectives

Proposition
Only useful approach if Pareto curves are small

## Proposition

Only useful approach if Pareto curves are small

Confirmed empirically e.g. Müller-Hannemann, Weihe: German train system

## Proposition

Only useful approach if Pareto curves are small

Confirmed empirically e.g. Müller-Hannemann, Weihe: German train system

Question
Why should we expect Pareto curves to be small?

## Proposition

Only useful approach if Pareto curves are small

Confirmed empirically e.g. Müller-Hannemann, Weihe: German train system

Question
Why should we expect Pareto curves to be small?

Caveat: Smoothed Analysis is not a complete explanation

## The Model

Adversary chooses:

## The Model

Adversary chooses:

- $Z \subset\{0,1\}^{n}$ (e.g. spanning trees, Hamiltonian cycles)


## The Model

Adversary chooses:

- $Z \subset\{0,1\}^{n}$ (e.g. spanning trees, Hamiltonian cycles)
- an adversarial objective function $O B J_{1}: Z \rightarrow \Re^{+}$


## The Model

Adversary chooses:

- $Z \subset\{0,1\}^{n}$ (e.g. spanning trees, Hamiltonian cycles)
- an adversarial objective function $O B J_{1}: Z \rightarrow \Re^{+}$
- d-1 linear objective functions

$$
O B J_{i}(\vec{x})=\left[w_{1}^{i}, w_{2}^{i}, \ldots w_{n}^{i}\right] \cdot \vec{x}
$$

## The Model

Adversary chooses:

- $Z \subset\{0,1\}^{n}$ (e.g. spanning trees, Hamiltonian cycles)
- an adversarial objective function $O B J_{1}: Z \rightarrow \Re^{+}$
- d-1 linear objective functions

$$
O B J_{i}(\vec{x})=\left[w_{1}^{i}, w_{2}^{i}, \ldots w_{n}^{i}\right] \cdot \vec{x}
$$

... each $w_{j}^{i}$ is a random variable on $[-1,+1]$ - density is bounded by $\phi$

## History

Let $P O$ be the set of Pareto optimal solutions...

## History

Let $P O$ be the set of Pareto optimal solutions...

- [Beier, Vöcking STOC 2003] $(d=2), E[|P O|]=O\left(n^{5} \phi\right)$


## History

Let $P O$ be the set of Pareto optimal solutions．．．
－［Beier，Vöcking STOC 2003］$(d=2), E[|P O|]=O\left(n^{5} \phi\right)$
－［Beier，Vöcking STOC 2004］$(d=2), E[|P O|]=O\left(n^{4} \phi\right)$

## History

Let $P O$ be the set of Pareto optimal solutions...

- [Beier, Vöcking STOC 2003] $(d=2), E[|P O|]=O\left(n^{5} \phi\right)$
- [Beier, Vöcking STOC 2004] $(d=2), E[|P O|]=O\left(n^{4} \phi\right)$
- [Beier, Röglin, Vöcking IPCO 2007] $(d=2), E[|P O|]=O\left(n^{2} \phi\right)$ (tight)


## History

Let $P O$ be the set of Pareto optimal solutions...

- [Beier, Vöcking STOC 2003] $(d=2), E[|P O|]=O\left(n^{5} \phi\right)$
- [Beier, Vöcking STOC 2004] $(d=2), E[|P O|]=O\left(n^{4} \phi\right)$
- [Beier, Röglin, Vöcking IPCO 2007] $(d=2), E[|P O|]=O\left(n^{2} \phi\right)$ (tight)
- [Röglin, Teng, FOCS 2009] $E[|P O|]=O\left((n \sqrt{\phi})^{f(d)}\right)$
$\ldots$ where $f(d)=2^{d-1}(d+1)$ !


## History

Let $P O$ be the set of Pareto optimal solutions...

- [Beier, Vöcking STOC 2003] $(d=2), E[|P O|]=O\left(n^{5} \phi\right)$
- [Beier, Vöcking STOC 2004] $(d=2), E[|P O|]=O\left(n^{4} \phi\right)$
- [Beier, Röglin, Vöcking IPCO 2007] $(d=2), E[|P O|]=O\left(n^{2} \phi\right)$ (tight)
- [Röglin, Teng, FOCS 2009] $E[|P O|]=O\left((n \sqrt{\phi})^{f(d)}\right)$
... where $f(d)=2^{d-1}(d+1)$ !
- [Dughmi, Roughgarden, FOCS 2010] any FPTAS can be transformed to a truthful in expectation FPTAS


## Our Results

Theorem
$E[|P O|] \leq 2 \cdot(4 \phi d)^{d(d-1) / 2} n^{2 d-2}$

## Our Results

Theorem
$E[|P O|] \leq 2 \cdot(4 \phi d)^{d(d-1) / 2} n^{2 d-2}$
...answers a conjecture of Teng

## Our Results

Theorem

$$
E[|P O|] \leq 2 \cdot(4 \phi d)^{d(d-1) / 2} n^{2 d-2}
$$

．．．answers a conjecture of Teng
［Bently et al，JACM 1978］： $2^{n}$ points sampled from a d－dimensional Gaussian，

$$
E[|P O|]=\Theta\left(n^{d-1}\right)
$$

square factor difference necessary for $d=2$

## On Smoothed Analysis

## On Smoothed Analysis

Bounds are notoriously pessimistic (e.g. Simplex)

## On Smoothed Analysis

Bounds are notoriously pessimistic (e.g. Simplex)
Method of Analysis:

## On Smoothed Analysis

Bounds are notoriously pessimistic (e.g. Simplex)
Method of Analysis:

- Define a "bad" event
...that you can blame if your algorithm runs slowly


## On Smoothed Analysis

Bounds are notoriously pessimistic (e.g. Simplex)
Method of Analysis:

- Define a "bad" event
...that you can blame if your algorithm runs slowly
- Prove this event is rare


## On Smoothed Analysis

Bounds are notoriously pessimistic (e.g. Simplex)
Method of Analysis:

- Define a "bad" event
...that you can blame if your algorithm runs slowly
- Prove this event is rare


## Proposition

Randomness is your friend!

## Our Approach

## Our Approach

## Goal

"Define" bad events using as little randomness as possible

## Our Approach

## Goal

"Define" bad events using as little randomness as possible
... "conserve" randomness, save for analysis

## Our Approach

## Goal

"Define" bad events using as little randomness as possible
... "conserve" randomness, save for analysis
Challenge
Events become convoluted (to say the least!)

## Our Approach

Goal
"Define" bad events using as little randomness as possible
... "conserve" randomness, save for analysis
Challenge
Events become convoluted (to say the least!)

We give an algorithm to define these events

## An Alternative Condition



## Method of Proof

Goal
Count the（expected）number of Pareto optimal solutions

## Method of Proof

## Goal

Count the (expected) number of Pareto optimal solutions

- Define a complete family of events
... for each Pareto optimal solution at least one (unique) event occurs


## Method of Proof

## Goal

Count the (expected) number of Pareto optimal solutions

- Define a complete family of events
... for each Pareto optimal solution at least one (unique) event occurs
- Then bound the expected number of events


## Method of Proof

## Goal

Count the (expected) number of Pareto optimal solutions

- Define a complete family of events
... for each Pareto optimal solution at least one (unique) event occurs
- Then bound the expected number of events

The key is in the definition

## The Common Case（Beier，Röglin，Vöcking）



## The Common Case (Beier, Röglin, Vöcking)



## The Common Case（Beier，Röglin，Vöcking）



## The Common Case（Beier，Röglin，Vöcking）



## The Common Case (Beier, Röglin, Vöcking)



## The Common Case (Beier, Röglin, Vöcking)



## Complete Family of Events

Let $I=(a, b)$ be an interval of $[-n,+n]$ of width $\epsilon$

## Complete Family of Events

Let $I=(a, b)$ be an interval of $[-n,+n]$ of width $\epsilon$
Let $E$ be the event that there is an $\vec{x} \in P O$ :

## Complete Family of Events

Let $I=(a, b)$ be an interval of $[-n,+n]$ of width $\epsilon$ Let $E$ be the event that there is an $\vec{x} \in P O$ :

- $O B J_{2}(\vec{x}) \in I$


## Complete Family of Events

Let $I=(a, b)$ be an interval of $[-n,+n]$ of width $\epsilon$
Let $E$ be the event that there is an $\vec{x} \in P O$ :

- $O B J_{2}(\vec{x}) \in I$
- $\vec{y}$ have the smallest $O B J_{1}(\vec{y})$ among all points for which $O B J_{2}(\vec{y})>b$


## Complete Family of Events

Let $I=(a, b)$ be an interval of $[-n,+n]$ of width $\epsilon$
Let $E$ be the event that there is an $\vec{x} \in P O$ ：
－$O B J_{2}(\vec{x}) \in I$
－$\vec{y}$ have the smallest $O B J_{1}(\vec{y})$ among all points for which $\mathrm{OBJ}_{2}(\vec{y})>b$
－$\vec{y}_{i}=0, \vec{x}_{i}=1$

## Complete Family of Events

Let $I=(a, b)$ be an interval of $[-n,+n]$ of width $\epsilon$
Let $E$ be the event that there is an $\vec{x} \in P O$ :

- $O B J_{2}(\vec{x}) \in I$
- $\vec{y}$ have the smallest $O B J_{1}(\vec{y})$ among all points for which $O B J_{2}(\vec{y})>b$
- $\vec{y}_{i}=0, \vec{x}_{i}=1$

Claim
$\operatorname{Pr}[E] \leq \epsilon \phi$

## Analysis

$\mathrm{OBJ}_{1}:$ arbitrary
$\mathrm{OBJ}_{2}:[? ?, ? ?, \ldots ? ? . . . ? ?] \overrightarrow{\mathrm{x}}$

E


## Analysis

$\mathrm{OBJ}_{1}:$ arbitrary
$\mathrm{OBJ}_{2}:[? ?, ? ?, \ldots ? ? . . . . ? ?] \overrightarrow{\mathrm{x}}$

E


## Analysis



## A Re－interpretation

## A Re-interpretation

Implicitly defined a Transcription Algorithm:

## A Re－interpretation

Implicitly defined a Transcription Algorithm：
Question
Given a Pareto optimal solution $x$ ，which event should we blame？

## A Re-interpretation

Implicitly defined a Transcription Algorithm:
Question
Given a Pareto optimal solution $x$, which event should we blame?

Blame event $E$ : interval $I$, index $i, x_{i}$ and $y_{i}$

## A Re-interpretation

Implicitly defined a Transcription Algorithm:
Question
Given a Pareto optimal solution $x$, which event should we blame?

Blame event $E$ : interval $I$, index $i, x_{i}$ and $y_{i}$
Transcription Algorithm

- Input: values of r.v.s (and Pareto optimal x)
- Output: interval I, index $i, x_{i}$ and $y_{i}$


## A Re－interpretation

Suppose output is event $E$ ：interval $I$ ，index $i, x_{i}$ and $y_{i}$

## A Re-interpretation

Suppose output is event $E$ : interval $I$, index $i, x_{i}$ and $y_{i}$
Question
Which solution $x$ caused this event to occur?

## A Re-interpretation

Suppose output is event $E$ : interval $I$, index $i, x_{i}$ and $y_{i}$
Question
Which solution $x$ caused this event to occur?

We do not need to know $w_{i}$ to determine the identity of $x$ !

## A Re-interpretation

Suppose output is event $E$ : interval $I$, index $i, x_{i}$ and $y_{i}$
Question
Which solution $x$ caused this event to occur?
We do not need to know $w_{i}$ to determine the identity of $x$ !
Reverse Algorithm

- Find y


## A Re-interpretation

Suppose output is event $E$ : interval $I$, index $i, x_{i}$ and $y_{i}$
Question
Which solution $x$ caused this event to occur?
We do not need to know $w_{i}$ to determine the identity of $x$ !
Reverse Algorithm

- Find y
- Then find $x$


## A Re-interpretation

Reverse Algorithm: Find $x$ (without looking at $w_{i}$ )

## A Re-interpretation

Reverse Algorithm: Find $x$ (without looking at $w_{i}$ )
Question
Does x fall into the interval I?

## A Re-interpretation

Reverse Algorithm: Find $x$ (without looking at $w_{i}$ )
Question
Does x fall into the interval I?

Hidden random variable $w_{i}$ must fall into some small range

## A Re-interpretation

Reverse Algorithm: Find $x$ (without looking at $w_{i}$ )
Question
Does $x$ fall into the interval I?

Hidden random variable $w_{i}$ must fall into some small range
Proposition
We can deduce a missing input to Transcription Algorithm, from just some of the inputs and outputs

## A Re-interpretation

Reverse Algorithm: Find $x$ (without looking at $w_{i}$ )
Question
Does x fall into the interval I?

Hidden random variable $w_{i}$ must fall into some small range
Proposition
We can deduce a missing input to Transcription Algorithm, from just some of the inputs and outputs

Hence each output is unlikely

## Transcription for $d=3$

$\mathrm{OBJ}_{1}:$ adversarial
$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}:$ linear


## Transcription for $d=3$

$\mathrm{OBJ}_{1}:$ adversarial
$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}:$ linear


## Transcription for $d=3$

$\mathrm{OBJ}_{1}:$ adversarial
$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}:$ linear


## Transcription for $d=3$

$\mathrm{OBJ}_{1}:$ adversarial
$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}:$ linear


## Transcription for $d=3$

$\mathrm{OBJ}_{1}:$ adversarial
$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}:$ linear


## Transcription for $d=3$

$\mathrm{OBJ}_{1}$ : adversarial
$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}$ : linear
Z


## Transcription for $d=3$

$\mathrm{OBJ}_{1}:$ adversarial
$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}:$ linear


## Transcription for $d=3$

$\mathrm{OBJ}_{1}$ : adversarial
$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}$ : linear
Z


## Transcription for $d=3$

$\mathrm{OBJ}_{1}$ : adversarial
$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}$ : linear
Z


## Transcription for $d=3$

$\mathrm{OBJ}_{1}$ : adversarial
$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}$ : linear
Z


## Transcription for $d=3$

$\mathrm{OBJ}_{1}$ : adversarial
$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}$ : linear
Z


## Transcription for $d=3$

OBJ $_{1}$ : adversarial<br>$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}$ : linear

$\mathrm{OBJ}_{3}$


$\mathrm{OBJ}_{2}$

## Transcription for $d=3$



## Transcription for $d=3$



## Transcription for $d=3$



## Transcription for $d=3$

OBJ $_{1}$ : adversarial<br>$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}$ : linear


$\mathrm{OBJ}_{3}$


Output: (i, ) $>$

$\mathrm{OBJ}_{2}$

## Transcription for $d=3$



## Transcription for $d=3$



## Transcription for $d=3$

OBJ $_{1}$ : adversarial<br>$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}$ : linear


$\mathrm{OBJ}_{3}$


Output: (i,j)

$\mathrm{OBJ}_{2}$

## Transcription for $d=3$

$\mathrm{OBJ}_{1}$ : adversarial<br>$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}$ : linear


$\mathrm{OBJ}_{2}$


## Transcription for $d=3$

$\mathrm{OBJ}_{1}$ ：adversarial<br>$\mathrm{OBJ}_{2}, \mathrm{OBJ}_{3}$ ：linear


$\mathrm{OBJ}_{2}$

，

## Future Directions？

## Future Directions?

Open Question
Are there additional applications of randomness "conservation" in Smoothed Analysis?

## Future Directions?

## Open Question

Are there additional applications of randomness
"conservation" in Smoothed Analysis?
e.g. simplex algorithm

## Future Directions?

Open Question
Are there additional applications of randomness "conservation" in Smoothed Analysis?
e.g. simplex algorithm

Open Question
Are there perturbation models that make sense for non-linear objectives?

## Future Directions?

Open Question
Are there additional applications of randomness
"conservation" in Smoothed Analysis?
e.g. simplex algorithm

Open Question
Are there perturbation models that make sense for non-linear objectives?
e.g. submodular functions

## Questions？

Thanks!

