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Dynamic Programming with Lists (Nemhauser, Ullmann):

PO(i + 1) can be computed from PO(i)...

... in linear (in |PO(i)|) time

an optimal solution can be computed from PO(n)

Bottleneck in many algorithms: enumerate the set of
Pareto optimal solutions
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Results of Beier and Vöcking (STOC 2003, STOC 2004)

Smoothed Analysis of Pareto Curves:

Polynomial bound on |PO(i)|s (in two dimensions) in
the framework of Smoothed Analysis (Spielman, Teng)

Knapsack has polynomial smoothed complexity:

first NP-hard problem that is (smoothed) easy

generalizes long line of results on random instances
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Capturing Tradeoffs

Question

What if the precise objective function (of a decision
maker) is unknown?

e.g. travel planning: prefer lower fare, shorter trip, fewer transfers

Question

Can we algorithmically help a decision maker?

Pareto curves capture tradeoffs among competing
objectives
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Proposition

Only useful approach if Pareto curves are small

Confirmed empirically e.g. Müller-Hannemann, Weihe: German

train system

Question

Why should we expect Pareto curves to be small?

Caveat: Smoothed Analysis is not a complete explanation
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Let PO be the set of Pareto optimal solutions...

[Beier, Vöcking STOC 2003] (d = 2), E [|PO|] = O(n5φ)

[Beier, Vöcking STOC 2004] (d = 2), E [|PO|] = O(n4φ)

[Beier, Röglin, Vöcking IPCO 2007] (d = 2), E [|PO|] = O(n2φ)
(tight)

[Röglin, Teng, FOCS 2009] E [|PO|] = O((n
√
φ)f (d))

... where f (d) = 2d−1(d + 1)!

[Dughmi, Roughgarden, FOCS 2010] any FPTAS can be
transformed to a truthful in expectation FPTAS
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[Beier, Vöcking STOC 2004] (d = 2), E [|PO|] = O(n4φ)
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[Beier, Vöcking STOC 2004] (d = 2), E [|PO|] = O(n4φ)
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[Röglin, Teng, FOCS 2009] E [|PO|] = O((n
√
φ)f (d))

... where f (d) = 2d−1(d + 1)!

[Dughmi, Roughgarden, FOCS 2010] any FPTAS can be
transformed to a truthful in expectation FPTAS



Our Results

Theorem

E [|PO|] ≤ 2 · (4φd)d(d−1)/2n2d−2

...answers a conjecture of Teng

[Bently et al, JACM 1978]: 2n points sampled from a d-dimensional
Gaussian,

E [|PO|] = Θ(nd−1)

square factor difference necessary for d = 2
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Method of Analysis:

Define a ”bad” event

...that you can blame if your algorithm runs slowly

Prove this event is rare

Proposition

Randomness is your friend!
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... for each Pareto optimal solution at least one (unique) event
occurs

Then bound the expected number of events

The key is in the definition



Method of Proof

Goal

Count the (expected) number of Pareto optimal solutions

Define a complete family of events
... for each Pareto optimal solution at least one (unique) event
occurs

Then bound the expected number of events

The key is in the definition



Method of Proof

Goal

Count the (expected) number of Pareto optimal solutions

Define a complete family of events
... for each Pareto optimal solution at least one (unique) event
occurs

Then bound the expected number of events

The key is in the definition



Method of Proof

Goal

Count the (expected) number of Pareto optimal solutions

Define a complete family of events
... for each Pareto optimal solution at least one (unique) event
occurs

Then bound the expected number of events

The key is in the definition



The Common Case (Beier, Röglin, Vöcking)

time

x

OBJ

OBJ
2

1



The Common Case (Beier, Röglin, Vöcking)
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~y have the smallest OBJ1(~y) among all points for which
OBJ2(~y) > b

~yi = 0, ~xi = 1

Claim

Pr [E ] ≤ εφ
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A Re-interpretation

Implicitly defined a Transcription Algorithm:

Question

Given a Pareto optimal solution x, which event should we
blame?

Blame event E : interval I , index i , xi and yi

Transcription Algorithm

Input: values of r.v.s (and Pareto optimal x)

Output: interval I , index i , xi and yi
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A Re-interpretation

Suppose output is event E : interval I , index i , xi and yi

Question

Which solution x caused this event to occur?

We do not need to know wi to determine the identity of x!

Reverse Algorithm

Find y

Then find x
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A Re-interpretation

Reverse Algorithm: Find x (without looking at wi)

Question

Does x fall into the interval I ?

Hidden random variable wi must fall into some small range

Proposition

We can deduce a missing input to Transcription
Algorithm, from just some of the inputs and outputs

Hence each output is unlikely
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Future Directions?

Open Question

Are there additional applications of randomness
”conservation” in Smoothed Analysis?

e.g. simplex algorithm

Open Question

Are there perturbation models that make sense for
non-linear objectives?

e.g. submodular functions
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