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PLANTED CLIQUE

Introduced by [Jerrum, ‘92], [Kucera, "95]:

Step #1: Generate E-R Step #2: Add a cligue on
random graph G(n, %) random set of w vertices

[Can we find the planted cquue?}

And how large does w need to be?
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Quasi-polynomial time:

Fact: There is an n°loen)-time algorithm (brute-force) that can
find planted cliques of size w = C logn, for any C> 2

Polynomial time:

Fact: There is a polynomial time algorithm that succeeds (whp)
for w = CVnlog n (degree counting)

Theorem [Alon, Krivelevich, Sudakov ‘98]: There is a polynomial
time algorithm that succeeds (whp) for w > C Vn (spectral)

Theorem [Deshpande, Montanari ‘13]: There is a nearly linear
time algorithm that succeeds (whp) for w = Vn/e
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APPLICATIONS OF PLANTED CLIQUE

Planted Clique (and variants) are basic problems in average-case
analysis, many applications:

* Discovering motifs in biological networks [Milo et al ‘02]

* Computing the best Nash Equilibrium [HK ‘11], [ABC “13]

* Property testing [Alon et al "07]

*Sparse PCA[Berthet, Rigollet “13]

* Compressed sensing [Koiran, Zouzias “14]

* Cryptography [Juels, Peinado ‘00], [Applebaum et al ‘10]

* Mathematical finance [Arora et al "10] 7
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LOWER BOUNDS?

[Is it actually hard to find n/2¢-sized planted cliques? }

Complexity-theoretic reasons lower bound are unlikely to be
based on P vs. NP

e.g. [Feigenbaum, Fortnow '93] [Bogdanov, Trevisan "06]

Our best evidence seems to come from hierarchies...




OUTLINE

Part I: Introduction
* Planted Clique and its Applications
* The Sum-of-Squares Hierarchy

® Qur Results

Part Il: Fooling SOS
* The Meka-Potechin-Wigderson Moments
* Kelner’s Polynomial, and Correctionsatd =4
* Pseudo-Calibration and Fourier Analysis

* Symbolic Factorization and Intersection Terms



OUTLINE

Part I: Introduction
* Planted Clique and its Applications
* The Sum-of-Squares Hierarchy

® Qur Results

Part Il: Fooling SOS
* The Meka-Potechin-Wigderson Moments
* Kelner’s Polynomial, and Correctionsatd =4
* Pseudo-Calibration and Fourier Analysis

* Symbolic Factorization and Intersection Terms



SUM-OF-SQUARES HIERARCHY

Powerful hierarchy of semidefinite programs, introduced by
[Shor ‘87], [Nesterov ‘00], [Parrilo ‘00], [Lasserre ‘01]



SUM-OF-SQUARES HIERARCHY

Powerful hierarchy of semidefinite programs, introduced by
[Shor ‘87], [Nesterov ‘00], [Parrilo ‘00], [Lasserre ‘01]

Goal: Find operator that behaves like the expectation over
a distribution on solutions

—~

@:Pgd%R
\_'_l

degree < d polynomials in n variables

Called a Pseudo-expectation
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Constraints on the pseudo-expectation:

~

(1) |K, is linear

~

2 Ell] =1

3) E pz] > ()

for all deg(p) < d/2

\ )
1

general

(4)

(5)

(clique size)



Constraints on the pseudo-expectation:

~

(1) 43 is linear (4) :ix%p] — E[szp]
2) (1] = il _
(2) *L_l] 1 (5) t_Z ZEZ] —
3 E[p?] > 0 ©) Ez;2,p] = 0
for all deg(p) < d/2 for all (i,j) not an edge
‘ ' ' (clique constraints)

general
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(1) |, is linear (4) :iajgp] — /;i[ajzp]
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B) Ep*] > 0 6) E|z;xp] = 0

for all deg(p) < d/2 for all (i,j) not an edge
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general specific to planted clique



Constraints on the pseudo-expectation:

~

(1) |, is linear (4) :iaj%p] — /:Ii[ajzp]
=02 =

B) Ep*] > 0 6) E|z;xp] = 0

for all deg(p) < d/2 for all (i,j) not an edge

E.g.ifa,, a,, ... a,is the indicator vector of an w-sized clique

~~

Elp(x1, 9, ...xp)| = play, a9, ...ap)
meets (1) — (6)




Constraints on the pseudo-expectation:

~

(1) |, is linear (4) :iaj%p] — /;i[ajzp]
=02 =

B) Ep*] > 0 6) E|z;xp] = 0

for all deg(p) < d/2 for all (i,j) not an edge

There is an n°9-time algorithm for finding such an operator,
if it exists

Called the level d Sum-of-Squares Algorithm
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* strengthens Sherali-Adams, Lovasz-Schrijver, LS+

* breaks integrality gaps for other hierarchies [Barak et al, ‘12]

* highly successful convex relaxation

sparsest cut [ARV "04]
unique games [ABS “10], [BRS “12], [GS “12]

* optimal among all poly. sized SDPs for random CSPs [LRS “15]

* best known algorithm for several average-case problems

planted sparse vector, dictionary learning [BKS “14, ‘15] 7

noisy tensor completion [BM '15], tensor PCA [HSS ‘15]

[Can it find né-sized planted cliques in polynomial time? }
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OUR RESULTS

We show a nearly optimal lower bound against SoS, for the
planted clique problem:

Theorem [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin]:
The integrality gap of the level d Sum-of-Squares hierarchy is

n%—c\/d/ logn

for some constantc>0

For any d = o(log n), the integrality gap is n/2~(1)

Improves upon [Meka, Potechin, Wigderson ‘14], [Deshpande
Montanari ‘15], [Hopkins, Kothari, Potechin, Raghavendra,
Scrhamm ‘16]
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OUR RESULTS

Our Approach: Pseudo-calibration

[New insights into what makes SoS powerful, and how to fool it }

When our recipe fails, does it immediately yield algorithms?



OUTLINE

Part I: Introduction
* Planted Clique and its Applications
* The Sum-of-Squares Hierarchy

® Qur Results

Part Il: Fooling SOS
* The Meka-Potechin-Wigderson Moments
* Kelner’s Polynomial, and Correctionsatd =4
* Pseudo-Calibration and Fourier Analysis

* Symbolic Factorization and Intersection Terms



OUTLINE

Part I: Introduction
* Planted Clique and its Applications
* The Sum-of-Squares Hierarchy

® Qur Results

Part Il: Fooling SOS
* The Meka-Potechin-Wigderson Moments
* Kelner’s Polynomial, and Correctionsatd =4
* Pseudo-Calibration and Fourier Analysis

* Symbolic Factorization and Intersection Terms



PSEUDO-MOMENTS

How can we fool the SoS algorithm into thinking there is a n1/2-o(1
sized clique in G(n, %%)?



PSEUDO-MOMENTS

How can we fool the SoS algorithm into thinking there is a n1/2-o(1
sized clique in G(n, %%)?

[Usual Approach: Adapt integrality gaps from weaker hierarchies }




PSEUDO-MOMENTS

How can we fool the SoS algorithm into thinking there is a n1/2-o(1
sized clique in G(n, %%)?

[Usual Approach: Adapt integrality gaps from weaker hierarchies }

This works for random CSPs



PSEUDO-MOMENTS

How can we fool the SoS algorithm into thinking there is a n1/2-o(1
sized clique in G(n, %%)?

[Usual Approach: Adapt integrality gaps from weaker hierarchies }

This works for random CSPs

Theorem [Feige, Krauthgamer ‘03]: The integrality gap of the
level d LS+ hierarchy is
n

2d
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Theorem [Meka, Potechin, Wigderson ‘14]: The integrality gap of
the level d Sum-of-Squares hierarchy is

n1/d—o(1)
In particular, set: X A
~ | | (14 w14
Enpwl] | i =22 (5)
€A

if Ais clique, zero otherwise. Extend by linearity to all deg(p) < d

Approach: Spectral bounds on locally random matrices
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Theorem [Meka, Potechin, Wigderson ‘14]: The integrality gap of
the level d Sum-of-Squares hierarchy is

1/d—o(1
n1/d—o(1)
Improved analysis due to [Deshpande, Montanari ’15], ford =4
1/3—o(1
nl/3—o(1)
And due to [Hopkins, Kothari, Potechin ’16] for any d

nl/(d/2]+1)=o(1)

But these bounds are tight (for these moments)
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KELNER’S POLYNOMIAL

[Do the MPW moments work beyond n%/([¢/2] +1)? }

+1 if (i,j) an edge ¢
Set G; 4 ={ ) ; Pai= (ZGz’,jij)
J

-1 else

If there is an w-sized planted clique:

E[PQ 1> (g) o2l

(G, z) + G(n, 1/2 w) T

But if G is sampled from G(n, %):

EEy pw[PE ] < (nf) (g)g = w’

G « G(n,1/2) mn

Need: w < nl/(€+1) = n1/<d/2+1)otherwise something is wrong
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KELNER’S POLYNOMIAL

[Do the MPW moments work beyond n%/([¢/2] +1)? }

This example can be used to find a squared polynomial whose
pseudo-expectation is negative for w > n1/([d/2] +1)

Epspw[P7] <0
Intuition: A good pseudo-expectation attempts to hide info about

what vertices participate in the planted clique

But vertices with a standard deviation higher degree, should be
a constant factor more likely to be in the p.c. (soft constraint)
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FIXING THE MPW-MOMENTS

This family of polynomials is essentially the only thing that goes
wrong atd =4

Theorem [Hopkins et al ‘16], [Raghavendra, Schramm ‘16]:
The integrality gap of the level 4 Sum-of-Squares hierarchy is

n1/2—0(1)

Approach: Add an explicit correction term of fix all P; s, even
more dependent random matrix theory

{Is there a fix for higher degrees? }

It turns out for d = 6, even the fixes need fixes, and on and on...

36 pgs 40 pgs 26 pgs 69 pgs ??? pgs
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PSEUDO-CALIBRATION

Can we find pseudo-moments that satisfy the following:

~

EE[(G,2)]] = E[f(G, z)

G+ G(n,1/2) ) < G(n, 1/2 w)

for all simple functions f?



PSEUDO-CALIBRATION

Can we find pseudo-moments that satisfy the following:

E[E[f(G,)]] = E[f(G, )]

G+ G(n,1/2) (G,z) + G(n,1/2,w)

for all polynomials f that are low-degree in G;/'s and x;'s?
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E[xA] :G—)R,andletXT H G,]
(i,5)ET



Consider the pseudo-expectation of some monomial:

E|x 4 G — R, andlet X7(G H Gij
(1,7)€T
We can write any such function in terms of its Fourier expansion

S Elea(M)yr(G)
rc ()



Consider the pseudo-expectation of some monomial:

E|x 4 G — R, andlet X7(G H Gij
(1,7)€T
We can write any such function in terms of its Fourier expansion

= Y B @xr(©
rc ()

[How should we set the Fourier coefficients? }
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Utilizing the expression

EedG) = 3 Elra@xr(G)
rc ()

we can calculate:

~
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G + G(n,1/2)



[The Fourier coefficients are chosen for us, by pseudo-calibration}

Utilizing the expression

EedG) = 3 Elra@xr(G)
rc ()

we can calculate:

~

E|E|x A|x7(G)] (by linearity)

G + G(n,1/2)
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Utilizing the expression

> M(TMT(G)

()

we can calculate:

EE@xr(G)] = ) Efw] (TENT(G)xr(G)]
T (") h g g

+1 fT=T
0 else



[The Fourier coefficients are chosen for us, by pseudo-calibration}

Utilizing the expression
Elzal(G) = ) Elzal(T)xr(G)
()

we can calculate:
/\

~ ~

EE[zox7(G)]] = Elz4)(T)

G + G(n,1/2)



[The Fourier coefficients are chosen for us, by pseudo-calibration}

Utilizing the expression

Eleal@) = Y Eleal)xr(G)
()
we can calculate: -
EE[zax7(G)]] = E[z4)(T)

[[>
Q——y
=
s
S
=
9



[The Fourier coefficients are chosen for us, by pseudo-calibration}

Utilizing the expression

> M(TMT(G)

(1)
we can calculate: -
E[E[xAXT(Gm — E[xA] (T) vertices of T

G« G(n,1/2)

2 E[xAXT(G)] _ (%) [V (T)UA

pseudo-calibration (¢.2) « ¢ 1/2.w



[The Fourier coefficients are chosen for us, by pseudo-calibration}

Utilizing the expression

> M(TMT(G)

()
we can calculate: -
EE[zaxr(G)]] = Elza)(T)  VeREEorT

G + G(n,1/2)

£ E[CEAXT(G)] (%) V(T)UA]

pseudo-calibration (¢.2) « ¢ 1/2.w

[It turns out , we need to truncate but at what degree? }
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)
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(2) Is small enougi}{or any w < n1/2 € for T < 5 logn
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TRUNCATION

Our pseudo-moments are:

Ezgl= ) (%

V(T)UA
) x7(G)

Lemma: With high probability,

~ 27 w \?U
E[1] — 1] < 2’5(—)
E( -1l < 7 (5

(4) Similar bound holds (again by standard concentration) for

E[Z CE‘Z] — w(l T TL_Q(€>)
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TRUNCATION

Our pseudo-moments are:

Ezgl= ) (%

V(T)UA
) x7(G)

Lemma: If Ais not a clique then

~

L[z 4] =0

Follows from Fourier expansion of AND, and grouping terms

This is why we use |V (T') U A| < 7 for truncation
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TRUNCATION

Our pseudo-moments are:

- [V (T)UA]
Elral= > (5 \1(G)
Tc()
V(TYUA| <T

Lemma: Let f(x Z cA(G)T 4 where deg(c,) < T, then
1S|<2d

E[E[fq(z)] = Elf(x)

G« G(n,1/2) (G, z) + G(n,1/2,w
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[What about proving positivity?} e.g. E[pQ] > ()

This step is by far the most challenging (as usual)

As is standard, it amounts to proving a certain matrix is PSD,
whose entries are:

ML T = Y (%

()
V(TYUTUJ| <7

V(T)UTUJ
) x7(G)

Goal: Write M as:

®\ size of minimum vertex

separator of T, btwn | and J
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RIBBON DECOMPOSITION

We call such graphs (1,J)-Ribbons, e.g.

with I ={a, b, c}, J ={c, x, y, z}. Compute leftmost and rightmost
minimum vertex separators S, S;. Decompose

Rl IRm_

11
a '.
|
|
|

-

C

IRr

X

N <
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SYMBOLIC FACTORIZATION

Now we can write:

M(I,J) =~ sum over k of

(Z G GG

valid Rl valid Rm valid Rr
| J | ] |\ J

L. Q. ﬁg

Major issue: R;, Ry, , R+ were assumed to be disjoint
except atS,, S;, INJ which leads to substantial error terms

[Idea: Keep iterating the decomposition, carefully charging}
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ITERATING THE DECOMPOQOSITION

Suppose h =
R a | o X
h Y
Z

Look for new leftmost, rightmost separators that separate |
from J and intersection vertices

\

\
\T
N <




THE MAIN CHARGING ARGUMENT

Complications:

(1) Vertices can become isolated
(2) Separators not necessarily equal size

(3) Need to sum over all pre-images of ribbons,
their contributions

Main Tradeoff Lemma: There is a way to tradeoff all these
parameters, to charge error terms
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the planted clique problem

* Pseudo-calibration as a recipe for constructing
good pseudo-moments

* When the recipe fails, are there algorithms?

* Connections between SoS-evidence and
BP-evidence?



Summary:

* Nearly optimal lower bounds against SoS, for
the planted clique problem

* Pseudo-calibration as a recipe for constructing
good pseudo-moments

* When the recipe fails, are there algorithms?

* Connections between SoS-evidence and
BP-evidence?

Thanks! Any Questions?



