Planted Clique, Sum-of-Squares and Pseudo-Calibration

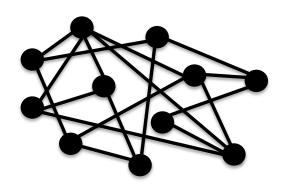
Ankur Moitra (MIT)

joint work with Boaz Barak, Sam Hopkins, Jon Kelner, Pravesh Kothari and Aaron Potechin

Introduced by [Jerrum, '92], [Kucera, '95]:

Introduced by [Jerrum, '92], [Kucera, '95]:

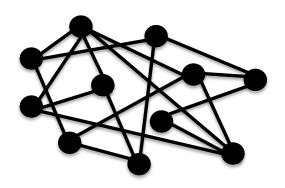
Step #1: Generate E-R random graph $G(n, \frac{1}{2})$

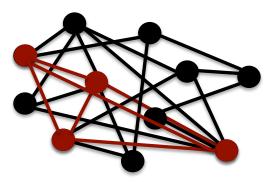


Introduced by [Jerrum, '92], [Kucera, '95]:

Step #1: Generate E-R random graph G(n, ½)

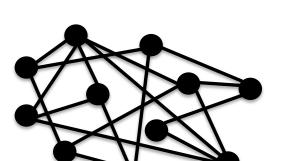
Step #2: Add a clique on random set of ω vertices



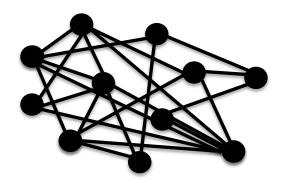


Introduced by [Jerrum, '92], [Kucera, '95]:

Step #1: Generate E-R random graph G(n, ½)



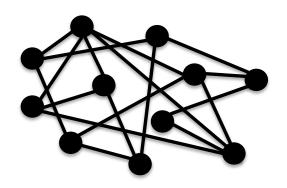
Step #2: Add a clique on random set of ω vertices

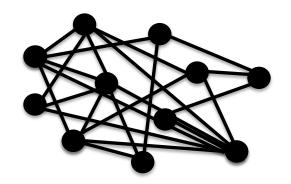


Introduced by [Jerrum, '92], [Kucera, '95]:

Step #1: Generate E-R random graph G(n, ½)

Step #2: Add a clique on random set of ω vertices





Can we find the planted clique?

And how large does ω need to be?

Fact: There is an $n^{O(logn)}$ -time algorithm (brute-force) that can find planted cliques of size $\omega \ge C \log n$, for any C > 2

Fact: There is an $n^{O(logn)}$ -time algorithm (brute-force) that can find planted cliques of size $\omega \ge C \log n$, for any C > 2

Polynomial time:

Fact: There is a polynomial time algorithm that succeeds (whp) for $\omega \ge C \sqrt{n \log n}$ (degree counting)

Fact: There is an $n^{O(logn)}$ -time algorithm (brute-force) that can find planted cliques of size $\omega \ge C \log n$, for any C > 2

Polynomial time:

Fact: There is a polynomial time algorithm that succeeds (whp) for $\omega \ge C \sqrt{n \log n}$ (degree counting)

Theorem [Alon, Krivelevich, Sudakov '98]: There is a polynomial time algorithm that succeeds (whp) for $\omega \ge C \sqrt{n}$ (spectral)

Fact: There is an $n^{O(logn)}$ -time algorithm (brute-force) that can find planted cliques of size $\omega \ge C \log n$, for any C > 2

Polynomial time:

Fact: There is a polynomial time algorithm that succeeds (whp) for $\omega \ge C \sqrt{n \log n}$ (degree counting)

Theorem [Alon, Krivelevich, Sudakov '98]: There is a polynomial time algorithm that succeeds (whp) for $\omega \ge C \sqrt{n}$ (spectral)

Theorem [Deshpande, Montanari '13]: There is a nearly linear time algorithm that succeeds (whp) for $\omega \ge \sqrt{n/e}$

APPLICATIONS OF PLANTED CLIQUE

Planted Clique (and variants) are basic problems in average-case analysis, many applications:

APPLICATIONS OF PLANTED CLIQUE

Planted Clique (and variants) are basic problems in average-case analysis, many applications:

- Discovering motifs in biological networks [Milo et al '02]
- Computing the best Nash Equilibrium [HK '11], [ABC '13]
- Property testing [Alon et al '07]
- Sparse PCA [Berthet, Rigollet '13]
- Compressed sensing [Koiran, Zouzias '14]
- Cryptography [Juels, Peinado '00], [Applebaum et al '10]
- Mathematical finance [Arora et al '10]

LOWER BOUNDS?

Is it *actually* hard to find $n^{1/2-\epsilon}$ -sized planted cliques?

LOWER BOUNDS?

Is it *actually* hard to find $n^{1/2-\epsilon}$ -sized planted cliques?

Complexity-theoretic reasons lower bound are unlikely to be based on P vs. NP

e.g. [Feigenbaum, Fortnow '93], [Bogdanov, Trevisan '06]

LOWER BOUNDS?

Is it *actually* hard to find $n^{1/2-\epsilon}$ -sized planted cliques?

Complexity-theoretic reasons lower bound are unlikely to be based on P vs. NP

e.g. [Feigenbaum, Fortnow '93], [Bogdanov, Trevisan '06]

Our best evidence seems to come from hierarchies...

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

SUM-OF-SQUARES HIERARCHY

Powerful hierarchy of semidefinite programs, introduced by [Shor '87], [Nesterov '00], [Parrilo '00], [Lasserre '01]

SUM-OF-SQUARES HIERARCHY

Powerful hierarchy of semidefinite programs, introduced by [Shor '87], [Nesterov '00], [Parrilo '00], [Lasserre '01]

Goal: Find operator that behaves like the expectation over a distribution on solutions

$$\widetilde{\mathbb{E}}: \mathcal{P}_n^{\leq d} \to \mathbb{R}$$

degree ≤ d polynomials in n variables

Called a **Pseudo-expectation**

(1)
$$\widetilde{\mathbb{H}}$$
 is linear

(2)
$$\widetilde{\mathbb{E}}[1] = 1$$

(3)
$$\widetilde{\mathbb{E}}[p^2] \geq 0$$

for all $deg(p) \le d/2$

general

(1)
$$\widetilde{\mathbb{H}}$$
 is linear

(2)
$$\widetilde{\mathbb{E}}[1] = 1$$

(3)
$$\widetilde{\mathbb{E}}[p^2] \geq 0$$

for all $deg(p) \le d/2$

(4)
$$\widetilde{\mathbb{E}}[x_i^2p] = \widetilde{\mathbb{E}}[x_ip]$$
 (booleanity)

(1)
$$\widetilde{\mathbb{H}}$$
 is linear

(2)
$$\widetilde{\mathbb{E}}[1] = 1$$

(3)
$$\widetilde{\mathbb{E}}[p^2] \ge 0$$

for all $deg(p) \le d/2$

general

(4)
$$\widetilde{\mathbb{E}}[x_i^2p] = \widetilde{\mathbb{E}}[x_ip]$$

(5)
$$\widetilde{\mathbb{E}}[\sum x_i] = \omega$$
 (clique size)

(1)
$$\widetilde{\mathbb{H}}$$
 is linear

(2)
$$\widetilde{\mathbb{E}}[1] = 1$$

(3)
$$\widetilde{\mathbb{E}}[p^2] \ge 0$$

for all $deg(p) \le d/2$

(4)
$$\widetilde{\mathbb{E}}[x_i^2p] = \widetilde{\mathbb{E}}[x_ip]$$

(5)
$$\widetilde{\mathbb{E}}[\sum x_i] = \omega$$

(6)
$$\widetilde{\mathbb{E}}[x_ix_jp]=0$$

for all (i,j) not an edge (clique constraints)

(1)
$$\widetilde{\mathbb{H}}$$
 is linear

(2)
$$\widetilde{\mathbb{E}}[1] = 1$$

$$(3) \ \widetilde{\mathbb{E}}[p^2] \ge 0$$

for all $deg(p) \le d/2$

general

(4)
$$\widetilde{\mathbb{E}}[x_i^2p] = \widetilde{\mathbb{E}}[x_ip]$$

(5)
$$\widetilde{\mathbb{E}}[\sum x_i] = \omega$$

(6)
$$\widetilde{\mathbb{E}}[x_ix_jp]=0$$

for all (i,j) not an edge

specific to planted clique

(1)
$$\widetilde{\mathbb{H}}$$
 is linear

(2)
$$\widetilde{\mathbb{E}}[1] = 1$$

(3)
$$\widetilde{\mathbb{E}}[p^2] \geq 0$$

for all $deg(p) \le d/2$

(4)
$$\widetilde{\mathbb{E}}[x_i^2p] = \widetilde{\mathbb{E}}[x_ip]$$

(5)
$$\widetilde{\mathbb{E}}[\sum x_i] = \omega$$

(6)
$$\widetilde{\mathbb{E}}[x_ix_ip] = 0$$

for all (i,j) not an edge

E.g. if a_1 , a_2 , ... a_n is the indicator vector of an ω -sized clique

$$\widetilde{\mathbb{E}}[p(x_1, x_2, ... x_n)] = p(a_1, a_2, ... a_n)$$

meets (1) - (6)

(1)
$$\widetilde{\mathbb{H}}$$
 is linear

(2)
$$\widetilde{\mathbb{E}}[1] = 1$$

$$(3) \ \widetilde{\mathbb{E}}[p^2] \ge 0$$

for all $deg(p) \le d/2$

(4)
$$\widetilde{\mathbb{E}}[x_i^2p] = \widetilde{\mathbb{E}}[x_ip]$$

(5)
$$\widetilde{\mathbb{E}}[\sum x_i] = \omega$$

(6)
$$\widetilde{\mathbb{E}}[\overline{x_ix_jp}] = 0$$

for all (i,j) not an edge

There is an n^{O(d)}-time algorithm for finding such an operator, if it exists

Called the level d Sum-of-Squares Algorithm

- strengthens Sherali-Adams, Lovasz-Schrijver, LS+
- breaks integrality gaps for other hierarchies [Barak et al, '12]
- highly successful convex relaxation
 sparsest cut [ARV '04]
 unique games [ABS '10], [BRS '12], [GS '12]
- optimal among all poly. sized SDPs for random CSPs [LRS '15]
- best known algorithm for several average-case problems planted sparse vector, dictionary learning [BKS '14, '15] noisy tensor completion [BM '15], tensor PCA [HSS '15]

- strengthens Sherali-Adams, Lovasz-Schrijver, LS+
- breaks integrality gaps for other hierarchies [Barak et al, '12]
- highly successful convex relaxation
 sparsest cut [ARV '04]
 unique games [ABS '10], [BRS '12], [GS '12]
- optimal among all poly. sized SDPs for random CSPs [LRS '15]
- best known algorithm for several average-case problems planted sparse vector, dictionary learning [BKS '14, '15] noisy tensor completion [BM '15], tensor PCA [HSS '15]

Can it find n^ε-sized planted cliques in polynomial time?

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

We show a nearly optimal lower bound against SoS, for the planted clique problem:

Theorem [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin]:

The integrality gap of the level d Sum-of-Squares hierarchy is

$$n^{\frac{1}{2}-c\sqrt{d/\log n}}$$

for some constant c > 0

For any $d = o(\log n)$, the integrality gap is $n^{1/2-o(1)}$

We show a nearly optimal lower bound against SoS, for the planted clique problem:

Theorem [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin]:

The integrality gap of the level d Sum-of-Squares hierarchy is

$$n^{\frac{1}{2}-c\sqrt{d/\log n}}$$

for some constant c > 0

For any $d = o(\log n)$, the integrality gap is $n^{1/2-o(1)}$

Improves upon [Meka, Potechin, Wigderson '14], [Deshpande Montanari '15], [Hopkins, Kothari, Potechin, Raghavendra, Scrhamm '16]

Our Approach: Pseudo-calibration

New insights into what makes SoS powerful, and how to fool it

Our Approach: Pseudo-calibration

New insights into what makes SoS powerful, and how to fool it

When our recipe fails, does it immediately yield algorithms?

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

How can we fool the SoS algorithm into thinking there is a $n^{1/2-o(1)}$ sized clique in $G(n, \frac{1}{2})$?

How can we fool the SoS algorithm into thinking there is a $n^{1/2-o(1)}$ sized clique in $G(n, \frac{1}{2})$?

Usual Approach: Adapt integrality gaps from weaker hierarchies

How can we fool the SoS algorithm into thinking there is a $n^{1/2-o(1)}$ sized clique in $G(n, \frac{1}{2})$?

Usual Approach: Adapt integrality gaps from weaker hierarchies

This works for random CSPs

How can we fool the SoS algorithm into thinking there is a $n^{1/2-o(1)}$ sized clique in $G(n, \frac{1}{2})$?

Usual Approach: Adapt integrality gaps from weaker hierarchies

This works for random CSPs

Theorem [Feige, Krauthgamer '03]: The integrality gap of the level d LS+ hierarchy is

$$\sqrt{\frac{n}{2^d}}$$

$$n^{1/d-o(1)}$$

$$n^{1/d-o(1)}$$

In particular, set:
$$\underbrace{x_A}_{\widetilde{\mathbb{E}}_{MPW}[\prod x_i]} = 2^{\binom{|A|}{2}} \Big(\frac{\omega}{n}\Big)^{|A|}$$

if A is clique, zero otherwise.

$$n^{1/d-o(1)}$$

In particular, set:
$$\underbrace{x_A}_{\widetilde{\mathbb{E}}_{MPW}[\prod x_i]} = 2^{\binom{|A|}{2}} \Big(\frac{\omega}{n}\Big)^{|A|}$$

if A is clique, zero otherwise. Extend by linearity to all deg(p) ≤ d

$$n^{1/d-o(1)}$$

In particular, set:
$$\underbrace{x_A}_{\widetilde{\mathbb{E}}_{MPW}[\prod x_i]} = 2^{\binom{|A|}{2}} \Big(\frac{\omega}{n}\Big)^{|A|}$$

if A is clique, zero otherwise. Extend by linearity to all $deg(p) \le d$

Approach: Spectral bounds on locally random matrices

$$n^{1/d-o(1)}$$

$$n^{1/d-o(1)}$$

Improved analysis due to [Deshpande, Montanari '15], for d = 4

$$n^{1/3-o(1)}$$

$$n^{1/d-o(1)}$$

Improved analysis due to [Deshpande, Montanari '15], for d = 4

$$n^{1/3-o(1)}$$

And due to [Hopkins, Kothari, Potechin '16] for any d

$$n^{1/(\lceil d/2 \rceil + 1) - o(1)}$$

$$n^{1/d-o(1)}$$

Improved analysis due to [Deshpande, Montanari '15], for d = 4

$$n^{1/3-o(1)}$$

And due to [Hopkins, Kothari, Potechin '16] for any d

$$n^{1/(\lceil d/2 \rceil + 1) - o(1)}$$

But these bounds are tight (for these moments)

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

Do the MPW moments work beyond $n^{1/(\lceil d/2 \rceil + 1)}$?

Do the MPW moments work beyond $n^{1/(\lceil d/2 \rceil + 1)}$?

Set
$$G_{i,j} = \begin{cases} +1 & \text{if (i,j) an edge} \\ -1 & \text{else} \end{cases}$$
 $P_{G,i} = \Big(\sum_j G_{i,j} x_j\Big)^\ell$

Do the MPW moments work beyond $n^{1/(\lceil d/2 \rceil + 1)}$?

Set
$$G_{i,j} = \left\{ egin{array}{ll} +1 & \mbox{if (i,j) an edge} \\ -1 & \mbox{else} \end{array} \right. \qquad P_{G,i} = \left(\sum_{j} G_{i,j} x_j\right)^{\ell}$$

If there is an ω -sized planted clique:

$$\mathbb{E}[P_{G,i}^2] \ge \left(\frac{\omega}{n}\right)\omega^{2\ell}$$

Do the MPW moments work beyond $n^{1/(\lceil d/2 \rceil + 1)}$?

Set
$$G_{i,j} = \left\{ egin{array}{ll} +1 & \mbox{if (i,j) an edge} \\ -1 & \mbox{else} \end{array} \right. \qquad P_{G,i} = \left(\sum_{j} G_{i,j} x_j \right)^{\ell}$$

If there is an ω -sized planted clique:

$$\underset{\scriptscriptstyle (G,x)\,\leftarrow\,G(n,\,1/2,\,\omega)}{\mathbb{E}[P_{G,i}^2]} \geq \left(\frac{\omega}{n}\right)\omega^{2\ell}$$

But if G is sampled from $G(n, \frac{1}{2})$:

$$\underset{G \leftarrow G(n,1/2)}{\mathbb{E}} \widetilde{\mathbb{E}}_{MPW}[P_{G,i}^2]] \leq (n^{\ell}) \left(\frac{\omega}{n}\right)^{\ell} = \omega^{\ell}$$

Do the MPW moments work beyond $n^{1/(\lceil d/2 \rceil + 1)}$?

Set
$$G_{i,j} = \left\{ egin{array}{ll} +1 & \mbox{if (i,j) an edge} \\ -1 & \mbox{else} \end{array} \right. \qquad P_{G,i} = \left(\sum_{j} G_{i,j} x_j \right)^{\ell}$$

If there is an ω -sized planted clique:

$$\mathbb{E}[P_{G,i}^2] \ge \left(\frac{\omega}{n}\right)\omega^{2\ell}$$

But if G is sampled from $G(n, \frac{1}{2})$:

$$\underset{G \leftarrow G(n,1/2)}{\mathbb{E}} [\widetilde{\mathbb{E}}_{MPW}[P_{G,i}^2]] \leq (n^{\ell}) \left(\frac{\omega}{n}\right)^{\ell} = \omega^{\ell}$$

Need: $\omega \leq n^{1/(\ell+1)} = n^{1/(d/2+1)}$ otherwise something is wrong

Do the MPW moments work beyond $n^{1/(\lceil d/2 \rceil + 1)}$?

Do the MPW moments work beyond $n^{1/(\lceil d/2 \rceil + 1)}$?

This example can be used to find a squared polynomial whose pseudo-expectation is negative for $\omega > n^{1/(\lceil d/2 \rceil + 1)}$

$$\widetilde{\mathbb{E}}_{MPW}[P^2] < 0$$

Do the MPW moments work beyond $n^{1/(\lceil d/2 \rceil + 1)}$?

This example can be used to find a squared polynomial whose pseudo-expectation is negative for $\omega > n^{1/(\lceil d/2 \rceil + 1)}$

$$\widetilde{\mathbb{E}}_{MPW}[P^2] < 0$$

Intuition: A good pseudo-expectation attempts to **hide** info about what vertices participate in the planted clique

Do the MPW moments work beyond $n^{1/(\lceil d/2 \rceil + 1)}$?

This example can be used to find a squared polynomial whose pseudo-expectation is negative for $\omega > n^{1/(\lceil d/2 \rceil + 1)}$

$$\widetilde{\mathbb{E}}_{MPW}[P^2] < 0$$

Intuition: A good pseudo-expectation attempts to **hide** info about what vertices participate in the planted clique

But vertices with a **standard deviation higher degree**, should be a constant factor more likely to be in the p.c. (**soft constraint**)

This family of polynomials is essentially the only thing that goes wrong at d = 4

Theorem [Hopkins et al '16], [Raghavendra, Schramm '16]:

The integrality gap of the level 4 Sum-of-Squares hierarchy is

$$n^{1/2-o(1)}$$

This family of polynomials is essentially the only thing that goes wrong at d = 4

Theorem [Hopkins et al '16], [Raghavendra, Schramm '16]:

The integrality gap of the level 4 Sum-of-Squares hierarchy is

$$n^{1/2-o(1)}$$

Approach: Add an explicit correction term of fix all P_{G,i}'s, even more dependent random matrix theory

This family of polynomials is essentially the only thing that goes wrong at d = 4

Theorem [Hopkins et al '16], [Raghavendra, Schramm '16]:

The integrality gap of the level 4 Sum-of-Squares hierarchy is

$$n^{1/2-o(1)}$$

Approach: Add an explicit correction term of fix all P_{G,i}'s, even more dependent random matrix theory

Is there a fix for higher degrees?

This family of polynomials is essentially the only thing that goes wrong at d = 4

Theorem [Hopkins et al '16], [Raghavendra, Schramm '16]:

The integrality gap of the level 4 Sum-of-Squares hierarchy is

$$n^{1/2-o(1)}$$

Approach: Add an explicit correction term of fix all P_{G,i}'s, even more dependent random matrix theory

Is there a fix for higher degrees?

It turns out for d = 6, even the fixes need fixes, and on and on...

This family of polynomials is essentially the only thing that goes wrong at d = 4

Theorem [Hopkins et al '16], [Raghavendra, Schramm '16]:

The integrality gap of the level 4 Sum-of-Squares hierarchy is

$$n^{1/2-o(1)}$$

Approach: Add an explicit correction term of fix all P_{G,i}'s, even more dependent random matrix theory

Is there a fix for higher degrees?

It turns out for d = 6, even the fixes need fixes, and on and on...

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

PSEUDO-CALIBRATION

Can we find pseudo-moments that satisfy the following:

$$\underset{G \leftarrow G(n, 1/2)}{\mathbb{E}} [f(G, x)]] = \underset{(G, x)}{\mathbb{E}} [f(G, x)]$$

for all *simple* functions f?

PSEUDO-CALIBRATION

Can we find pseudo-moments that satisfy the following:

$$\underset{G \leftarrow G(n,1/2)}{\mathbb{E}} [f(G,x)]] = \underset{(G,x)}{\mathbb{E}} [f(G,x)]$$

for all polynomials f that are low-degree in $G_{i,j}$'s and x_i 's?

Consider the pseudo-expectation of some monomial:

$$\widetilde{\mathbb{E}}[x_A]:G o\mathbb{R}$$
 , and let $\chi_T(G)=\prod_{(i,j)\in T}G_{i,j}$

Consider the pseudo-expectation of some monomial:

$$\widetilde{\mathbb{E}}[x_A]:G o\mathbb{R}$$
 , and let $\chi_T(G)=\prod_{(i,j)\in T}G_{i,j}$

We can write any such function in terms of its Fourier expansion

$$\widetilde{\mathbb{E}}[x_A](G) = \sum_{T \subseteq \binom{[n]}{2}} \widehat{\widetilde{\mathbb{E}}[x_A]}(T) \chi_T(G)$$

Consider the pseudo-expectation of some monomial:

$$\widetilde{\mathbb{E}}[x_A]:G o\mathbb{R}$$
 , and let $\chi_T(G)=\prod_{(i,j)\in T}G_{i,j}$

We can write any such function in terms of its Fourier expansion

$$\widetilde{\mathbb{E}}[x_A](G) = \sum_{T \subseteq \binom{[n]}{2}} \widehat{\widetilde{\mathbb{E}}[x_A]}(T) \chi_T(G)$$

How should we set the Fourier coefficients?

The Fourier coefficients are chosen for us, by pseudo-calibration

Utilizing the expression

$$\widetilde{\mathbb{E}}[x_A](G) = \sum_{T \subseteq \binom{[n]}{2}} \widehat{\widetilde{\mathbb{E}}}[x_A](T) \chi_T(G)$$

$$\underset{G \leftarrow G(n, 1/2)}{\mathbb{E}[\widetilde{\mathbb{E}}[x_A \chi_T(G)]]}$$

Utilizing the expression

$$\widetilde{\mathbb{E}}[x_A](G) = \sum_{T \subseteq \binom{[n]}{2}} \widehat{\widetilde{\mathbb{E}}}[x_A](T) \chi_T(G)$$

$$\mathbb{E}[\widetilde{\mathbb{E}}[x_A]\chi_T(G)]$$
 (by linearity)

Utilizing the expression

$$\widetilde{\mathbb{E}}[x_A](G) = \sum_{T \subseteq \binom{[n]}{2}} \widehat{\widetilde{\mathbb{E}}}[x_A](T) \chi_T(G)$$

$$\sum_{G \in G(n,1/2)} \widetilde{\mathbb{E}}[x_A] \chi_T(G)] = \sum_{T' \subseteq \binom{[n]}{2}} \widetilde{\widetilde{\mathbb{E}}}[x_A] (T') \mathbb{E}[\chi_T(G) \chi_{T'}(G)]$$

Utilizing the expression

$$\widetilde{\mathbb{E}}[x_A](G) = \sum_{T \subseteq \binom{[n]}{2}} \widehat{\widetilde{\mathbb{E}}}[x_A](T) \chi_T(G)$$

$$\mathbb{E}[\widetilde{\mathbb{E}}[x_A]\chi_T(G)] = \sum_{T' \subseteq \binom{[n]}{2}} \widehat{\widetilde{\mathbb{E}}[x_A]}(T') \mathbb{E}[\chi_T(G)\chi_{T'}(G)]$$

$$= \begin{cases} +1 & \text{if } \mathsf{T} = \mathsf{T'} \\ 0 & \text{else} \end{cases}$$

Utilizing the expression

$$\widetilde{\mathbb{E}}[x_A](G) = \sum_{T \subseteq \binom{[n]}{2}} \widehat{\widetilde{\mathbb{E}}}[x_A](T) \chi_T(G)$$

$$\underset{G \leftarrow G(n, 1/2)}{\mathbb{E}[\widetilde{\mathbb{E}}[x_A \chi_T(G)]]} = \widehat{\widetilde{\mathbb{E}}[x_A]}(T)$$

Utilizing the expression

$$\widetilde{\mathbb{E}}[x_A](G) = \sum_{T \subseteq \binom{[n]}{2}} \widehat{\widetilde{\mathbb{E}}}[x_A](T) \chi_T(G)$$

$$\mathbb{E}[\widetilde{\mathbb{E}}[x_A\chi_T(G)]] = \widetilde{\widetilde{\mathbb{E}}}[x_A](T)$$

$$\triangleq \mathbb{E}[x_A\chi_T(G)]$$
pseudo-calibration $(G,x) \leftarrow G(n,1/2,\omega)$

Utilizing the expression

$$\widetilde{\mathbb{E}}[x_A](G) = \sum_{T \subseteq \binom{[n]}{2}} \widehat{\widetilde{\mathbb{E}}[x_A]}(T) \chi_T(G)$$

$$\mathbb{E}[\widetilde{\mathbb{E}}[x_A\chi_T(G)]] = \widehat{\widetilde{\mathbb{E}}}[x_A](T) \qquad \text{vertices of T}$$

$$\triangleq \mathbb{E}[x_A\chi_T(G)] = \left(\frac{\omega}{n}\right)^{|V(T)\cup A|}$$
 pseudo-calibration $(G,x) \leftarrow G(n,1/2,\omega)$

Utilizing the expression

$$\widetilde{\mathbb{E}}[x_A](G) = \sum_{T \subseteq \binom{[n]}{2}} \widehat{\widetilde{\mathbb{E}}[x_A]}(T) \chi_T(G)$$

we can calculate:

$$\mathbb{E}[\widetilde{\mathbb{E}}[x_A\chi_T(G)]] = \widehat{\widetilde{\mathbb{E}}}[x_A](T)$$
 vertices of T
$$\triangleq \mathbb{E}[x_A\chi_T(G)] = \left(\frac{\omega}{n}\right)^{|V(T)\cup A|}$$
 pseudo-calibration $(G,x) \leftarrow G(n,1/2,\omega)$

It turns out, we need to **truncate** but at what degree?

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \leq \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup A|} \chi_T(G)$$

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \le \tau}} \binom{\omega}{n}^{|V(T) \cup A|} \chi_T(G)$$

Lemma: With high probability,

$$|\widetilde{\mathbb{E}}[1] - 1| \le \tau \max_{t \le \tau} 2^{t^2} \left(\frac{\omega}{\sqrt{n}}\right)^t$$

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \le \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup A|} \chi_T(G)$$

Lemma: With high probability,

$$|\widetilde{\mathbb{E}}[1] - 1| \le \tau \max_{t \le \tau} 2^{t^2} \left(\frac{\omega}{\sqrt{n}}\right)^t$$

(1) This is why we need to truncate

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \le \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup A|} \chi_T(G)$$

Lemma: With high probability,

$$|\widetilde{\mathbb{E}}[1] - 1| \le \tau \max_{t \le \tau} 2^{t^2} \left(\frac{\omega}{\sqrt{n}}\right)^t$$

(2) Is small enough for any $\omega \leq n^{1/2-\epsilon}$ for $\tau \leq \frac{\epsilon}{2}\log n$

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \le \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup A|} \chi_T(G)$$

Lemma: With high probability,

$$|\widetilde{\mathbb{E}}[1] - 1| \le \tau \max_{t \le \tau} 2^{t^2} \left(\frac{\omega}{\sqrt{n}}\right)^t$$

(3) Can always renormalize pseudo-expectation so $\widetilde{\mathbb{E}}[1]=1$

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \le \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup A|} \chi_T(G)$$

Lemma: With high probability,

$$|\widetilde{\mathbb{E}}[1] - 1| \le \tau \max_{t \le \tau} 2^{t^2} \left(\frac{\omega}{\sqrt{n}}\right)^t$$

(4) Similar bound holds (again by standard concentration) for

$$\widetilde{\mathbb{E}}[\sum_{i} x_{i}] = \omega(1 \pm n^{-\Omega(\epsilon)})$$

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \leq \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup A|} \chi_T(G)$$

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \le \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup A|} \chi_T(G)$$

Lemma: If A is not a clique then

$$\widetilde{\mathbb{E}}[x_A] = 0$$

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \le \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup A|} \chi_T(G)$$

Lemma: If A is not a clique then

$$\widetilde{\mathbb{E}}[x_A] = 0$$

Follows from Fourier expansion of AND, and grouping terms

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \le \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup A|} \chi_T(G)$$

Lemma: If A is not a clique then

$$\widetilde{\mathbb{E}}[x_A] = 0$$

Follows from Fourier expansion of AND, and grouping terms

This is why we use $|V(T) \cup A| \le \tau$ for truncation

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \leq \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup A|} \chi_T(G)$$

Our pseudo-moments are:

$$\widetilde{\mathbb{E}}[x_A] = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup A| \le \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup A|} \chi_T(G)$$

Lemma: Let
$$f_G(x) = \sum_{|S| \leq 2d} c_A(G) x_A$$
 where $\deg(\mathsf{c_A}) \leq \mathsf{\tau}$, then
$$\mathbb{E}[\widetilde{\mathbb{E}}[f_G(x)]] = \mathbb{E}[f_G(x)]$$
 $G \leftarrow G(n,1/2)$ $G \leftarrow G(n,1/2)$

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

OUTLINE

Part I: Introduction

- Planted Clique and its Applications
- The Sum-of-Squares Hierarchy
- Our Results

Part II: Fooling SOS

- The Meka-Potechin-Wigderson Moments
- Kelner's Polynomial, and Corrections at d = 4
- Pseudo-Calibration and Fourier Analysis
- Symbolic Factorization and Intersection Terms

What about proving positivity? e.g. $\widetilde{\mathbb{E}}[p^2] \geq 0$

What about proving positivity?

e.g.
$$\widetilde{\mathbb{E}}[p^2] \geq 0$$

This step is by far the most challenging (as usual)

What about proving positivity? e.g. $\widetilde{\mathbb{E}}[p^2] > 0$

e.g.
$$\widetilde{\mathbb{E}}[p^2] \geq 0$$

This step is by far the most challenging (as usual)

As is standard, it amounts to proving a certain matrix is PSD, whose entries are:

$$\mathcal{M}(I,J) = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup I \cup J| \le \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup I \cup J|} \chi_T(G)$$

What about proving positivity? e.g. $\widetilde{\mathbb{E}}[p^2] > 0$

e.g.
$$\widetilde{\mathbb{E}}[p^2] \geq 0$$

This step is by far the most challenging (as usual)

As is standard, it amounts to proving a certain matrix is PSD, whose entries are:

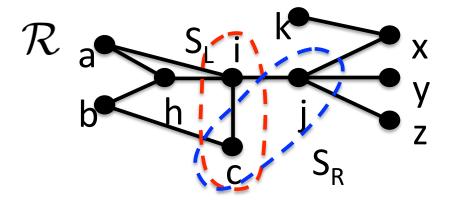
$$\mathcal{M}(I,J) = \sum_{\substack{T \subseteq \binom{[n]}{2} \\ |V(T) \cup I \cup J| \le \tau}} \left(\frac{\omega}{n}\right)^{|V(T) \cup I \cup J|} \chi_T(G)$$

Goal: Write \mathcal{M} as:

$$\mathcal{M} pprox \sum_{k} \mathcal{L}_k \mathcal{Q}_k \mathcal{L}_k^+$$
 size of minimum vertex separator of T, btwn I and J

RIBBON DECOMPOSITION

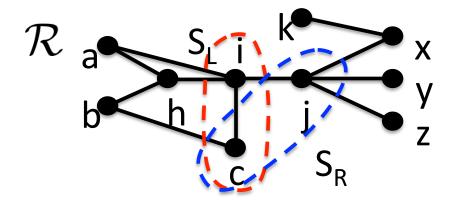
We call such graphs (I,J)-Ribbons, e.g.



with $I = \{a, b, c\}, J = \{c, x, y, z\}.$

RIBBON DECOMPOSITION

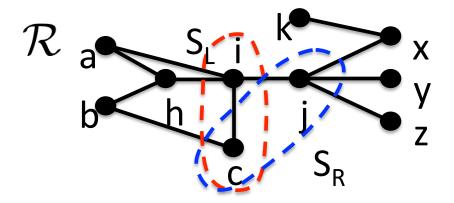
We call such graphs (I,J)-Ribbons, e.g.



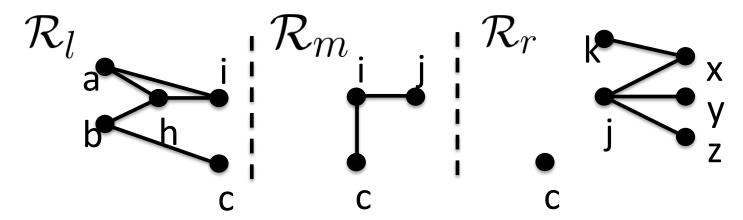
with $I = \{a, b, c\}$, $J = \{c, x, y, z\}$. Compute leftmost and rightmost minimum vertex separators S_L , S_R .

RIBBON DECOMPOSITION

We call such graphs (I,J)-Ribbons, e.g.



with $I = \{a, b, c\}$, $J = \{c, x, y, z\}$. Compute leftmost and rightmost minimum vertex separators S_L , S_R . Decompose



SYMBOLIC FACTORIZATION

Now we can write:

$$\mathcal{M}(I,J)pprox$$
 sum over k of

$$\left(\sum_{\text{valid } \mathcal{R}_l} \left(\frac{\omega}{n}\right)^{|V(\mathcal{R}_l)|}\right) \left(\sum_{\text{valid } \mathcal{R}_m} \left(\frac{\omega}{n}\right)^{|V(\mathcal{R}_m)|-2k}\right) \left(\sum_{\text{valid } \mathcal{R}_r} \left(\frac{\omega}{n}\right)^{|V(\mathcal{R}_r)|}\right)$$

$$\mathcal{L}_k$$

$$\mathcal{Q}_k$$

$$\mathcal{L}_k^T$$

SYMBOLIC FACTORIZATION

Now we can write:

$$\mathcal{M}(I,J)pprox$$
 sum over k of

$$\left(\sum_{ ext{valid }\mathcal{R}_l} \left(rac{\omega}{n}
ight)^{|V(\mathcal{R}_l)|}
ight) \left(\sum_{ ext{valid }\mathcal{R}_m} \left(rac{\omega}{n}
ight)^{|V(\mathcal{R}_m)|-2k}
ight) \left(\sum_{ ext{valid }\mathcal{R}_r} \left(rac{\omega}{n}
ight)^{|V(\mathcal{R}_r)|}
ight) \mathcal{L}_k$$

Major issue: \mathcal{R}_l , \mathcal{R}_m , \mathcal{R}_r were assumed to be **disjoint** except at S_l , S_R , $I \cap J$ which leads to substantial **error terms**

SYMBOLIC FACTORIZATION

Now we can write:

$$\mathcal{M}(I,J)pprox$$
 sum over k of

$$\left(\sum_{ ext{valid }\mathcal{R}_{l}} \left(\frac{\omega}{n}
ight)^{|V(\mathcal{R}_{l})|}
ight) \left(\sum_{ ext{valid }\mathcal{R}_{m}} \left(\frac{\omega}{n}
ight)^{|V(\mathcal{R}_{m})|-2k}
ight) \left(\sum_{ ext{valid }\mathcal{R}_{r}} \left(\frac{\omega}{n}
ight)^{|V(\mathcal{R}_{r})|}
ight)$$
 \mathcal{L}_{k}
 \mathcal{L}_{k}

Major issue: \mathcal{R}_l , \mathcal{R}_m , \mathcal{R}_r were assumed to be **disjoint** except at S_L , S_R , $I \cap J$ which leads to substantial **error terms**

Idea: Keep iterating the decomposition, carefully charging

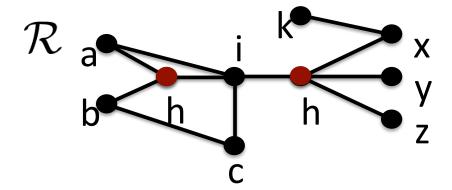
ITERATING THE DECOMPOSITION

Suppose h = j

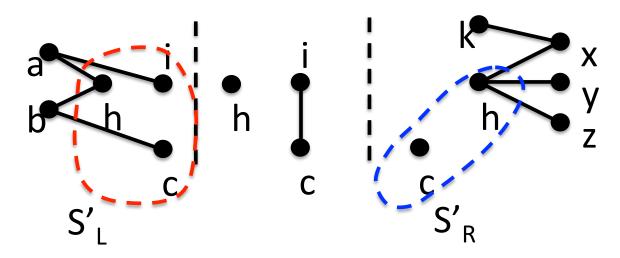


ITERATING THE DECOMPOSITION

Suppose h = j



Look for new leftmost, rightmost separators that separate I from J and intersection vertices



THE MAIN CHARGING ARGUMENT

Complications:

- (1) Vertices can become isolated
- (2) Separators not necessarily equal size
- (3) Need to sum over all pre-images of ribbons, their contributions

Main Tradeoff Lemma: There is a way to tradeoff all these parameters, to charge error terms

Summary:

- Nearly optimal lower bounds against SoS, for the planted clique problem
- Pseudo-calibration as a recipe for constructing good pseudo-moments
- When the recipe fails, are there algorithms?
- Connections between SoS-evidence and BP-evidence?

Summary:

- Nearly optimal lower bounds against SoS, for the planted clique problem
- Pseudo-calibration as a recipe for constructing good pseudo-moments
- When the recipe fails, are there algorithms?
- Connections between SoS-evidence and BP-evidence?

Thanks! Any Questions?