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Abstract

A vast body of literature in combinatorics and computer science aims at understanding the
structural properties of a poset P implied by placing certain marginal constraints on the uniform
distribution over linear extensions of P . These questions are typically concerned with whether
or not P must be a total order (or have small width). Here, we instead consider whether or not
these marginal constraints imply a non-trivial bound on the entropy of the uniform distribution
(over the set of linear extensions of P ). We prove such a result and establish that local bounds
do indeed yield global bounds.
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1 Introduction

A vast body of literature in combinatorics (more specifically, order theory) and computer science
has focused on understanding the properties of linear extensions of posets. Given a poset P and
a pair of elements x and y, throughout this paper we will use the notation Pr[x � y|P ] to denote
the fraction of linear extensions1 of P for which x is larger than y. Additionally, we will use δ(P )
to denote the largest real number δ so that there is a pair x and y with

δ ≤ Pr[x � y|P ] ≤ 1− δ.

The famous 1/3-2/3 Conjecture asserts that if P is not a total order, δ(P ) ≥ 1
3 . This question

was posed independently by Kislitsyn (1968) [14], Fredman (1976) [7] and Linial (1984) [18]. Kahn
and Saks [12] gave a computer science motivation for this question (which actually was not con-
tained in Fredman’s original paper, although Fredman’s paper did focus on sorting): If the 1/3-2/3
Conjecture is true, it guarantees that no matter what comparisons have already been made, there
is always some comparison that can be made whose outcome will reduce the number of possible
sorted orders by at least a 2/3-factor. This question has connections to convex geometry, where a
nice analogy can be drawn with Grunbaum’s Theorem (see [11]). The body of literature on this
subject is too vast to cover comprehensively here, but we refer the interested reader to a survey on
this question [3]. The record bounds on δ(P ) are due to Brightwell, Felsner and Trotter (1995) [4]

who proved that δ(P ) ≥ 1
2 −

√
5

10 by making use of the Alexandrov-Fenchel Inequality. Additionally,
Kahn and Kim [9] gave a polynomial time algorithm based on graph entropy for sorting starting
from a poset, and making O(logE) comparisons – where E is the number of linear extensions of
P . Despite this vast line of work, the conjecture remains unsolved.

Additionally, there are many generalizations and related questions but which have not had as
much progress. An interesting, related conjecture is due to Kahn and Saks [12]: If the 1/3-2/3
Conjecture is true, it is clearly tight since a poset P with three elements x, y and z with x � y and
z incomparable to both x and y has δ(P ) = 1

3 . This poset also has width two – i.e. the size of the
maximum anti-chain is two (see Definition 2.4). What if the width of a poset P is larger than two?
Is δ(P ) any larger? Kahn and Saks conjecture that as the width w tends to infinity, δ(P ) tends to
1
2 . The smallest known value of δ(P ) is 14

39 [25]. Another direction of generalization is that even
though δ(P ) can be 1

3 in the worst-case, asymptotically the number of comparisons needed to sort
a poset P is believed to have logarithm whose base is φ, the golden ratio. This conjecture is known
as the Golden Partition Conjecture [21].

We can reformulate many of these results and conjectures, in a way that will lead to the main
question considered in this paper.

Question 1.1 Suppose we are given constraints on the values of Pr[x � y|P ]. What can we
determine about P?

The 1/3-2/3 Conjecture asserts that if each value Pr[x � y|P ] is outside the range [1/3, 2/3] then
P must be a total order. The work of Brightwell, Felsner and Trotter [4] proves that if each value is
outside the range [1/2−

√
5/10, 1/2+

√
5/10] then P is indeed a total order. Similarly, the conjecture

of Kahn and Saks [12] asserts that if Pr[x � y|P ] is outside the range [1/2 − f(w), 1/2 + f(w)],
then the width of P is at least w and moreover f(w) tends to zero as w tends to infinity.

In fact, we ask a more general question. Let Σ be a distribution on total orderings. We can
define Pr[x � y|Σ] as the probability that x is larger than y in a total ordering sampled from Σ.

1For convenience of the reader, we give the standard definitions (including e.g. the definition of a linear extension)
related to posets in Section 2



Note that if ΣP is the uniform distribution on linear extensions of P , then Pr[x � y|ΣP ] is exactly
Pr[x � y|P ] as defined earlier. Also, let H2(Σ) denote the (binary) entropy of Σ.

Question 1.2 Suppose we are given constraints on the values of Pr[x � y|Σ]. What can we
determine about H2(Σ)?

In this general form, what we are asking for is a local to global bound for the entropy of
permutations. A constraints on Pr[x � y|Σ] ≥ p is a local constraint in the sense that the
comparison of x and y is a random variable whose outcome has entropy at most H2(p). Can these
local constraints on entropy be patched together to lead to a (non-trivial) global constraint on
entropy?

Interestingly, the maximum entropy distribution Σ∗ subject to marginal constraints of the form
Pr[x � y|Σ] ≥ px,y has a particularly nice structure. For a total ordering π, let �π denote the
comparison relation for π. For some (non-negative) choice of the values Λx,y, the probability of a
particular total ordering π in Σ∗ is proportional to the product of Λx,y over all pairs x and y for
which x �π y - i.e.

PrΣ∗ [π] ∝
∏
x�πy

Λx,y

This fact has been observed in a more general form in a number of contexts, such as statistical
mechanics [22], population genetics [23], [24], equilibrium selection [19] and combinatorics [9], [15],
[16]. Often times, this observation is used to give a local update rule whose only fixed points are
the maximum entropy distribution. Our questions differ in that we are interested in understanding
what the maximum entropy of this distribution is, and current techniques seem only to apply to
understanding local issues in convergence.

1.1 Our Results

We would like to prove that for any distribution on total orderings Σ of n elements, if all pairs of
elements x and y have Pr[x � y|Σ] is outside the interval [1/2 − ε, 1/2 + ε] then the entropy of
Σ is at most (1 − f(ε))n log2 n. However, we need an additional technical restriction in order to
establish this theorem.

Definition 1.3 A distribution Σ on total orderings of n elements is ε-stable if there is some or-
dering of the elements x1, x2, ...xn so that for all i < j

Pr[xi � xj |Σ] ≥ 1

2
+ ε.

Hence, in addition to assuming that for all pairs of elements the quantity Pr[x � y|Σ] is outside
the interval [1/2− ε, 1/2 + ε] we also need to assume that these comparisons are ”consistent” in the
sense that there is some ordering x1, x2, ...xn and when comparing xi and xj (for i < j) not only is
the probability outside the interval [1/2− ε, 1/2 + ε] but in fact xi � xj is more probable.

Our main theorem is:

Theorem 1.4 For any ε-stable distribution Σ on total orderings of n elements,

H2(Σ∗) ≤ (1− Cε4)n log2 n



It is easy to construct a distribution Σ on total orderings that is ε-stable and has entropy at least
(1− ε)n log2 n−O(n) (See Claim 4.14). In Section 3 we give a detailed outline of our proof.

This result fits into a more general framework in which the goal is to maximize the entropy
of a distribution subject to marginal constraints. As noted earlier, previous work has studied this
general version of the question (in the context of hypergraphs, distributions on hyper-edges and
marginal constraints on nodes [9], [15], [16]). However, our goal is not to characterize the maximum
entropy distribution but rather to given bounds on the entropy of this distribution. We can write
a general entropy maximization problem as:

(M):

max H(~p) =
∑

i−pi log pi
s.t. A~p ≥ ~b

~p ≥ ~0∑
i pi = 1.

Indeed, the constraint that a distribution on total orderings be ε-stable can be encoded into
this form for an appropriate choice of A and ~b. And in this context, we prove our main theorem by
interpreting the rows of A~p ≤ ~b as tests. We carefully group these linear inequalities in a structured
way, to derive entropy bounds for p.

Our main theorem implies that, for any poset P , if the uniform distribution on linear extensions
of P is ε-stable, P must be non-trivially close to a total order in the sense that the number
of linear extensions of P is at most (n!)1−Cε4 . However, we stress that our aim in this paper
is to introduce a method of proving global entropy bounds from only local constraints. Previous
techniques shed no light on this quantity apart from describing the functional form of the maximum
entropy distribution. In principle, the outcome of any comparison (for a distribution Σ) across
different pairs of elements can be arbitrarily correlated – and this is precisely the source of the
technical challenge. Our hope is that the techniques that we introduce here may lead to a more
general understanding of constrained entropy maximization problems.

As we indicated, a more appealing bound in the context of distributions on total orderings
would be:

Conjecture 1.5 Let Σ be a distribution on total orderings on n elements, so that for all pairs
of elements x and y, Pr[x � y|Σ] is outside the interval [1/2 − ε, 1/2 + ε]. Then H2(Σ) ≤ (1 −
f(ε))n log2 n.

Intuitively, making these comparisons disagree (i.e. Σ is not ε-stable) should have a destructive
interference and make it harder to have large entropy. This points to another interesting question:

Question 1.6 Is there a monotonicity principle for constraint entropy maximization problems?

To put this another way, if we have a global entropy bound for some system A~p ≤ ~b, are
there other systems A′~p ≤ ~b′ whose entropy must also be bounded (by, say the same bound as for
the system A~p ≤ ~b)? Perhaps this question has connections to correlation inequalities – indeed
correlation inequalities have found uses in attacks on the 1/3-2/3 Conjecture [4]. We also hope
that the techniques we introduce here can be useful in making progress on some of the well-known
questions in order theory, especially the conjecture of Kahn and Saks [12].

2 Definitions

Here we give standard definitions for terminology related to posets. We only use this notation in
the introduction, when describing literature in order theory but we include these definitions for



completeness.

Definition 2.1 A poset P is a binary relation �P over a set of elements that satisfies:

• (reflexivity) a �P a

• (anti-symmetry) a �P b and b �P a ⇒ a = b

• (transitivity) a �P b and b �P c ⇒ a �P c

We will use � instead of �P when the underlying poset is clear. Note that the binary relation
�P need not be defined for all pairs of elements. A relation that is defined for all pairs is a total
ordering.

Definition 2.2 A linear extension E of P is a total ordering that is consistent with P - i.e. x �P y
⇒ x �E y. Let E(P ) denote the set of linear extensions of P .

Definition 2.3 A chain x1, x2, ...xr in P is an ordered list that satisfies x1 �P x2 �P .... �P xr.
A chain of r elements is called a length r chain. Similarly an anti-chain is a list of incomparable
(according to P ) elements and a r anti-chain is a set of r elements that form an anti-chain.

Definition 2.4 The height of a poset P is the maximum length of a chain, and the width is the
maximum size of an anti-chain.

The height and width of a poset are typically used as a measure of the complexity of a poset,
and for small values of either the height or the width the 1/3-2/3 Conjecture, and even some other
related conjectures, have been established. Of course, throughout this paper our measure of choice
of the complexity of a poset is log2 |E(P )| – which is the entropy of the uniform distribution on the
set of linear extensions of P .

3 Outline

Throughout the rest of the paper, we will describe Σ as a distribution on permutations (rather
than a distribution on total orderings). The reason we choose this convention is because we will be
interested in ε-stable distributions Σ, and if x1, x2, ...xn is the ordering so that (for all i < j)

Pr[xi � xj |Σ] ≥ 1

2
+ ε,

we may as well regard a total ordering π on x1, x2, ...xn as a permutation in which π(1) is the
number of elements xj for which xj is at least xi (i.e. the rank of xi). We will continue to use the
symbols x1, x2, ...xn to attempt to avoid confusion. We could have renamed these symbols 1, 2, ..n
but we choose xi instead to emphasize that it is an element of the domain of π and we will regard
the range of π as 1, 2, ...n.

So we can regard an ε-stable distribution Σ on total orderings as a distribution on permutations
that satisfies certain marginal constraints, and we will abuse notation and call this an ε-stable
distribution on permutations.

Definition 3.1 Let Σ be a distribution on permutations of n elements. Σ is ε-stable if for all i < j,

Prπ←Σ[π(xi) < π(xj)] ≥
1

2
+ ε



Here we use the notation that π ← Σ denotes sampling a permutation π from Σ.

Definition 3.2 Let Hε be the maximum entropy (measured base 2) of a distribution on permuta-
tions that is ε-stable.

Next, we describe our general approach – which is based on elementary methods.To simplify the
discussion, we will specialize the description to our problem of interest - namely proving entropy
bounds for an ε-stable distribution on permutations.

How is the constraint that a distribution on permutations be ε-stable encoded in the notation of
Problem (M)? The vector ~p is length n!. Each index into ~p represents a permutation. Moreover, each
row in A corresponds to a pair of elements xi and xj (i < j)and the entry in this row, corresponding
to some permutation π is one if and only if π(i) < π(j). Hence setting the corresponding entry of
~b to be 1

2 + ε enforces that for a 1
2 + ε fraction of the permutations (weighted according to Σ), the

comparison of xi and xj favors xi.

1. Choosing Tests: We use the combinatorial structure of the problem to group linear inequal-
ities aTk ~p ≤ bk into sets. For each set we sum the linear inequalities in the set and get an
aggregate linear inequality tTl ~p ≤ sl. Each such linear inequality defines a test that we will
perform on a permutation π.

2. Sampling from Σ: We sample a permutation π from the distribution Σ and we consider
the characteristic vector ~pπ ∈ {0, 1}n! for this permutation. We apply each aggregate linear
inequality to this characteristic vector. If tTl ~pπ ≤ sl holds then the test is PASSED, and
otherwise the test is FAILED. We concatenate the test outcomes and get a test outcome
vector ~r(π) that contains information about which tests have been passed.

3. The Implications of Passing a Test: For any test outcome vector ~r, we consider the set
of permutations Π~r that result in this test outcome vector. We define a potential function φ
on test outcome vectors. For any test outcome vector ~r, the potential function φ(~r) gives a
rough estimate of |Π~r|.

4. ”Good” and ”Bad” Permutations: We define a permutation to be ”good” iff φ(~r(π)) ≥ T
i.e. the permutation π is assigned a potential larger than some target threshold T . We argue
via convexity arguments that on average a permutation sampled from Σ is ”good”, and we
use the potential function φ to count the space of ”good” permutations.

The intuition for this approach is that while a permutation π sampled from Σ can on average fail
many linear inequalities aTk ~pπ ≤ bk, we can group linear inequalities into sets. For an appropriate
grouping (which we choose based on the combinatorial structure of the space of permutations),
when a test is passed we can characterize how - in a combinatorial sense - such a test restricts
the space of permutations. This notion of grouping linear inequalities based on the combinatorial
structure of the space of permutations is inspired by de la Vega’s proof that there are graphical
tournaments T for which fit(T ) ≤ O(n3/2) [6].2

2fit(T ) is defined as the maximum over all orderings of the vertices of a di-graph, of the number of forward edges
minus the number of backward edges.



4 A Local to Global Entropy Bound

4.1 Choosing Tests

For notational convenience (because often we will be working in either the domain or range of
the permutations) let us consider a permutation π to be a mapping from the set x1, x2, ...xn to
y1, y2, ...yn. But xi, yi are really just placeholders for the value i.

Given a permutation π sampled from Σ we will apply local tests of the following form: For any
two disjoint sets S, T ⊂ {x1, x2, ...xn} in the domain, we will measure inversions across these two
sets:

Definition 4.1 inv(π, S, T ) = {(xi, xj)|xi ∈ S, xj ∈ T s.t. EITHER xi < xj and π(xi) >
π(xj) OR xi > xj and π(xi) < π(xj)}

If Σ is an ε-stable distribution on permutations, the expected number of inversions is at most
(1

2 − ε)|S||T |. We relax this linear inequality and define a test t(π, S, T ):

Definition 4.2

t(π, S, T ) = PASS if |inv(π, S, T )| ≤ (
1− ε

2
)|S||T | and

t(π, S, T ) = FAIL if |inv(π, S, T )| > (
1− ε

2
)|S||T |

Notice that the threshold for a test to PASS is higher than the expected number of inversions.
We relax the inequality so that each test has a constant chance to be PASSED:

Lemma 4.3 Prπ←Σ[t(π, S, T ) = PASS] > 1−
1
2
−ε

1
2
− ε

2

= Ω(ε)

Proof: Let Prπ←Σ[t(π, S, T ) = PASS] = p. Then Eπ←Σ[|inv(π, S, T )|] > (1 − p)1−ε
2 |S||T |.

Also linearity of expectation yields that (1
2 − ε)|S||T | ≥ Eπ←Σ[|inv(π, S, T )|]. Combining these

inequalities yields:
1
2 − ε
1
2 −

ε
2

> 1− p

�

We have only chosen the structure of the tests that we will apply. Passing a test constrains the
distribution Σ, and we will carefully choose (offline) a set of tests so that any large enough fraction
of these tests that are passed can be patched together to yield a global constraint on the entropy
of Σ. The choice of tests needs to be made offline because distinct tests are not be independent,
and if we allow which test we apply next to depend on the outcome of a previous test then we can
no longer assume that the next test has a constant chance to be PASSED.

4.2 The Implications of Passing a Test

Here we characterize how a PASSED test restricts the space of permutations. The key observation
is that if a test is PASSED there must be some constant fraction of the range space that is non-
trivially biased under Σ towards either the set S or the set T (in a test t(π, S, T )).

Let ε = 1
2l

for l > 0. Then partition the range {y1, y2, ...yn} into A1 = {y1, y2, ...y 1

2l+1 n
},

A2 = {y 1

2l+1 n+1, ...y 2

2l+1 n
} .... A2l+1 = {y 2l+1−1

2l+1 n+1
, ...yn}.



Let U = {x1, x2, ...xn
2
}, V = {xn

2
+1, xn

2
+2, ...xn}.

We consider π−1 to be a function that maps a point in the range yi ∈ {y1, y2, ...yn} to the
point in the domain xj ∈ {x1, x2, ...xn} s.t. π(xj) = yi. For a subset S of the range, we define
π−1(S) = ∪yi∈Sπ−1(yi). So π−1 maps subsets of the range to subsets of the domain:

Definition 4.4

δ(π, l + 1) = 2 min
Ai

min(|π−1(Ai) ∩ U |, |π−1(Ai) ∩ V |)
|Ai|

The quantity min(|π−1(Ai)∩U |, |π−1(Ai)∩V |)/|Ai| measures the skew of the subset Ai i.e. are
the points in Ai when mapped by π−1 to points in the domain significantly biased to either U or
V ? Suppose that π is sampled uniformly at random from all permutations. We would expect that
for any subset Ai of the range, |π−1(Ai) ∩ U | ≈ |π−1(Ai) ∩ V |. So if π is sampled uniformly at
random from all permutations, we expect δ(π, l + 1) ≈ 1.

Suppose π is instead sampled from Σ. Suppose we expect δ(π, l + 1) < f(ε) for some f(ε) < 1
that is independent of n. Then there is some set Ai (which makes up a ε

2 -fraction of the range)
which is biased to either U or V - and we can use this to get a non-trivial entropy bound. Roughly,
we prove such a statement in the contrapositive - a bound on the number of inversions across the
sets U, V implies a bound on the parameter δ(π, l + 1).

We can lower bound the number of inversions across U , V with respect to π using δ(π, l + 1):

Lemma 4.5 |inv(π, U, V )| ≥ δ(π, l + 1)2n2(1
8 −

1
2l+4 )

Proof: The sets π−1(A1)∩U, π−1(A2)∩U, ...π−1(An)∩U and π−1(A1)∩V, π−1(A2)∩V, ...π−1(An)∩
V partition the domain {x1, x2, ...xn}. So

|inv(π, U, V )| =
∑
i,j

|inv(π, π−1(Ai) ∩ U, π−1(Aj) ∩ V )|

And for i > j we obtain:

|inv(π, π−1(Ai) ∩ U, π−1(Aj) ∩ V )| = |π−1(Ai) ∩ U | × |π−1(Aj) ∩ V |

≥ δ(π, l + 1)

2
|Ai|

δ(π, l + 1)

2
|Aj |

Using |Ai| = |Aj | = n
2l+2 we obtain |inv(π, π−1(Ai)∩U, π−1(Aj)∩V )| ≥ [ δ(π,l+1)n

2l+2 ]2 and this implies

|inv(π, U, V )| ≥ [
δ(π, l + 1)n

2l+2
]2(1 + 2 + ...2l+1 − 1)

≥ δ(π, l + 1)2n2

22l+4

1

2
(2l+1)(2l+1 − 1)

≥ δ(π, l + 1)2n2
(1

8
− 1

2l+4

)
�

In the above lemma, we counted only guaranteed inversions and ignored the diagonal inversions
such as:

|inv(π, π−1(Ai) ∩ U, π−1(Ai) ∩ V )|

We ignored these diagonal inversion because apriori this quantity can be anywhere between 0 and
|π−1(Ai) ∩ U | × |π−1(Ai) ∩ V |. It depends on which elements of Ai are mapped by π−1 to U and



which are mapped to V . So the number of diagonal inversions does not depend on δ(π, l+ 1) as do
the other inversions that we counted.

Because these diagonal inversions are not counted, we need to choose the number of sets in the
partition depending on ε - for smaller ε, we need a finer partition of the range {y1, y2, ...yn}. If we
chose a static partition size independent of ε then we woudl lose too much in the previous bound
by not counting diagonal inversions.

Claim 4.6 If t(π, U, V ) = PASS then δ(π, l + 1) ≤ √γ where 1 > γ =
1− 1

2l

1− 1

2l+1

= 1− Ω(ε)

Proof: Suppose t(π, U, V ) = PASS. Then

(
1

2
− 1

2l+1
)
n2

4
≥ |inv(π, U, V )| ≥ δ(π, l + 1)2n2(

1

8
− 1

2l+4
)

�

So whenever a test is PASSED, there is a set Ai (which makes up an ε
2 -fraction of the range)

which is significantly biased i.e. either

|π−1(Ai) ∩ U | = (1 + Ω(ε))
|Ai|

2
OR |π−1(Ai) ∩ V | = (1 + Ω(ε))

|Ai|
2

Such a set yields a corresponding reduction in the entropy of Σ (from the trivial bound) that we
can ”charge” to Ai.

4.3 An Offline Testing Strategy

Next, we need to choose a set of tests to apply in the hope that passing any large enough fraction
of these tests will imply enough constraints on Σ that we can bound the entropy.

Recall that U = {x1, x2, ...xn
2
}, V = {xn

2
+1, xn

2
+2, ...xn}.

Our testing strategy will first apply the test t(π, U, V ) and then will only apply tests t(π, S, T )
(for disjoint S, T ) such that either S, T ⊂ U or S, T ⊂ V . So later tests that depend on π(xi) where
xi ∈ U will depend only on the outcome of comparing π(xi) to any π(xj) for xj ∈ U . So we can
”collapse” a permutation π and forget about the value π(xi) and remember only the relative value
of π(xi) when compared to all π(xj) for xj ∈ U .

Let π be a permutation mapping {x1, x2, ...xn} to {y1, y2, ...yn} and consider a set S ⊂ {x1, x2, ...xn}.
Let s = |S| and suppose S = {xi1 , ...xis} where xi1 ≤ xi2 ≤ ...xis :

Definition 4.7 Define the permutation πS - which is the permutation π collapsed on a set S -
as a permutation mapping the set {x1, x2, ...x|S|} to the set {y1, y2, ...y|S|} s.t. ∀xip ,xiq∈SπS(xp) ≤
πS(xq) ⇐⇒ π(xip) ≤ π(xiq).

Using this notation, we can succinctly describe the sequence of tests that will be performed on
π. For a given permutation π, the test outcome vector ~r(π) is defined recursively. Let ◦ denote the
concatenation operator:

Definition 4.8 ~r(π) = t(π, U, V )◦~r(πU )◦~t(πV ) and ~r(π) = ∅ if π is a permutation on one element

Similarly define a potential vector ~c(n):

Definition 4.9 ~c(n) = n ◦ ~c(n2 ) ◦ ~c(n2 ) and ~c(1) = ∅
See Figure 1. The sequence of tests just tests t(π, U, V ) and then recurses on both πU and πV .

We also define the vector ~c(n) which will help us characterize how a test outcome vector ~r restricts
the space of permutations.



pi

n = 8 t1

t2

t3 t4

t5

t6 t7

t = [t1, t2, t3, t4, t5, t6, t7]

c = [8,  4,  2,   2,  4,  2,  2]

potential vector

test vector

Figure 1: Our sequence of tests ~r applied to a permutation on n = 8 elements.

4.4 Choosing a Potential Function

Not all tests in our testing strategy are created equal. Passing an early test more significantly
restricts the distribution Σ since passing an early test implies a large sized set Ai is biased, but
passing a later test only means that a smaller set is biased. Here we define a potential function,
with the goal being if any weighted-constant (by the potential function) fraction of the the tests
are passed, we want to be able to non-trivially bound the entropy of Σ.

Let ~r be any vector of test outcomes – i.e. ~r is a 0, 1-vector (in Θ(n)-dimensional space) so that
the value ri in any coordinate i is 1 iff the corresponding test is passed. We can then consider the
set Π~r which we will define as all permutations π for which ~r(π) = ~r. Here we choose a potential
function φ that (for any test outcome vector ~r) gives a rough estimate of |Π~r|.

Theorem 4.10 |Π~r| ≤ 2n logn−dφ+O(n) where d =
1−H2(

√
γ

2
)

2l+1 and φ = ~c(n)T~r and γ is defined as
in Claim 4.6

Proof: Every test except the first is only a function of either πU or πV . Assume that the bound
in this theorem is true for all values n0 < n. We can write the test vector ~r as the concatenation
of the test outcome t(π, U, V ), and the test outcome vectors for πU and πV . Let the resulting test
outcome vectors be r1, ~r2, ~r3 respectively. And so ~r = r1 ◦ ~r2 ◦ ~r3.

Let Rn be the number of ways of choosing which elements from {y1, y2, ..yn} are mapped by
π−1 to U and which are mapped to V s.t. the first test t(π, U, V ) = r1.

Let Tn(φ) = 2n logn−dφ+O(n). Let φ2 = ~c(n2 )T ~r2 and φ3 = ~c(n2 )T ~r3. Then the number of
permutations π s.t. ~r(π) = ~r is at most |Πr| ≤ Rn|Πr2 ||Πr3 | ≤ RnTn(φ2)Tn(φ3)

If r1 = 0 then we can choose the trivial upper bound of 2n for Rn. If r1 = 1 using Claim 4.6,
there is some Ai that (when mapped by π−1 ) is significantly biased to either U or V . So if r1 = 1
then

Rn ≤
(
εn
εn
2

) 1
ε
−1( εn√

γ
2 εn

)
Then using the well-known inequality log

(
n
k

)
≤ H2( kn)n+O(1) we obtain

logRn ≤
( 1

2l+1
H2

(√γ
2

)
+

2l+1 − 1

2l+1

)
n+O(1)

and this implies the theorem. �



Note that if no tests are passed in ~r, then the above theorem gives a trivial bound of 2n logn on
|Π~r| which is larger than n!. So we need to argue that on average a permutation π sampled from
Σ is ”good” and must be assigned a potential φ(~r(π)) that is larger than some target threshold T .
We can then use the potential function to count the space of ”good” permutations.

4.5 Good and Bad Permutations

Here we complete the argument, by first establishing that a permutation π sampled from Σ has
a constant chance of accumulating enough weight from tests that are passed (using the potential
function defined in the previous section, which credits different tests with different weights). Our
main theorem then follows from a union bound.

Choose f >> 1. Consider a permutation π sampled from Σ and the test vector ~r(π) for π.

Definition 4.11 A permutation π is ”good” if φ = ~c(n)T~r(π) ≥ 1
f n log n and ”bad” if φ =

~c(n)T~r(π) < 1
f n log n

Notice that there are Θ(n) tests performed, so there are at most 2Θ(n) possible test outcome
vectors. We also note that sampling from Σ can result in a ”bad” permutation. Sampling from
Σ can even result in a permutation π for which no tests are passed! But such samples must be
infrequent:

Lemma 4.12 For large but fixed f >> 1, the probability that π is ”good” is Ω(ε)

Proof: Let Σ′ be a distribution on permutations such that Pr[π′ ← Σ′] = Pr[π′ = π, π ←
Σ|π is ”bad” ]. So Σ′ is a restriction of Σ to ”bad” permutations.

All ”bad” permutations are assigned a potential < 1
f n log n. So Eπ′←Σ′ [~c(n)T~r(π′)] < 1

f n log n.
Also

∑
i ~c(n)i = Θ(n log n). so there must be a test t(π, S, T ) such that

Prπ′←Σ′ [t(π
′, S, T ) == PASS] ≤ Θ

( 1

f

)
Using Lemma 4.3, we know that for any test t(π, S, T ): Prπ←Σ[t(π, S, T ) == PASS] ≥ Ω(ε).
Also Prπ←Σ[t(π, S, T ) == PASS] ≤ Prπ′←Σ′ [t(π

′, S, T ) == PASS] + Prπ←Σ[π is ”good” ].
This implies that for f = Θ(1

ε ), Prπ←Σ[π is ”good” ] ≥ Ω(ε). �

Theorem 4.13 Hε ≤ (1− Cε4)n log n−O(n)

Proof: Using Theorem 4.10, and applying the union bound over all possible test outcome vectors
~r, there are at most 2n logn−Θ(d)n logn+O(n) permutations π s.t. ~r(π) is ”good” and using Lemma 4.12
these permutations contain at least Ω(ε) fraction of the weight in Σ. So for any ε-stable distribution
Σ we have that H(Σ) ≤ n log n−Ω(ε)Ω(d)n log n−O(n) (where d is defined in Theorem 4.10). So

Hε ≤ n log n− Ω
(
ε2 − ε2H2

(1

2

√
1− ε

2

))
n log n−O(n) ≤ n log n− Cε4n log n−O(n)

�

Claim 4.14 Hε ≥ (1− ε)n log n−O(n)

Proof: Let Σ to be a distribution that with probability 1− 2ε chooses a permutation π uniformly
at random, and with probability 2ε chooses the permutation π s.t. π(xi) = yi. Then for each pair
i < j, Pr[π(i) < π(j)] = 1

2(1− 2ε) + 2ε = 1
2 + ε. And so Σ is ε-stable.

Also H(Σ) > (1− 2ε) log n! = (1− 2ε)n log n−O(n) �
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