Topics in TCS: Problem Set # 1

Instructor: Ankur Moitra

Due: April 2nd

If you work with other students, you must write-up your solutions by yourself and indicate at the top who you worked with!

Problem 1 [Barvinok, page 19]

Give an example of an infinite family $\{A_i, i = 1, 2, ...\}$ of convex sets in \mathbb{R}^d such that every d+1 sets have a common point but there are no points in common to all of the sets A_i . (*Hint*: Helly's theorem holds for infinite families of compact sets, so you will have to look for non-compact sets)

Problem 2 [Matousek, page 12]

In the situation of Radon's lemma $(A \text{ is a } (d+2)\text{-point set in } \mathbb{R}^d)$, call a point $x \in \mathbb{R}^d$ a Radon point of A if it is contained in convex hulls of two disjoint subsets of A. Prove that if A is in general position (no d+1 points affinely dependent), then its Radon point is unique.

Problem 3 [Matousek, page 12] Kirchberger's Theorem

- (a) Let $X, Y \subset \mathbb{R}^2$ be finite point sets, and suppose that for every subset $S \subseteq X \cup Y$ of at most 4 points, $S \cap X$ can be linearly-separated from $S \cap Y$. Prove that X and Y are linearly-separable.
- (b) Extend (a) to sets $X, Y \subset \mathbb{R}^d$, with $|S| \leq d+2$.

Problem 4 [Barvinok, page 144]

Let $A \subset \mathbb{R}^d$ be a non-empty set such that $A^{\circ} = A$. Prove that A is the unit ball, i.e.

$$A = \{ x \in \mathbb{R}^d : ||x|| \le 1 \}$$

Problem 6

Problem 5 Seidel's Algorithm

Let $A = \{x \in \mathbb{R}^d : \langle c_i, x \rangle \leq 1 \text{ for } i = 1, ...m\}$ be a polytope (namely it is bounded). Let A' be obtained from A by removing one of its constraints at random. Then prove:

$$\Pr[\max_{x \in A} u^T x < \max_{x \in A'} u^T x] \le \frac{d}{m}$$

Problem 6 [Barvinok, page 8] Guass-Lucas Theorem

Let f(z) be a non-constant polynomial in one complex variable z and let $z_1, ..., z_m$ be the roots of f (that is, the set of all solutions to the equation f(z) = 0). Let us interpret a complex number z = x + iy as a point $(x, y) \in \mathbb{R}^2$. Prove that each root of the derivative f'(z) lies in the convex hull $conv(z_1, ..., z_m)$.

Hint: Without loss of generality we may suppose $f(z) = (z - z_1)...(z - \underline{z_m})$. If w is a root of f'(z), then $\sum_{i=1}^m \prod_{j \neq i} (w - z_j) = 0$, and, therefore, $\sum_{i=1}^m \prod_{j \neq i} (w - z_j) = 0$ (where \overline{z} is complex conjugate of z). Multiply both sides of the last identity by $(w - z_1)...(w - z_n)$ and express w as a convex combination of $z_1....z_m$.

Course name PS #