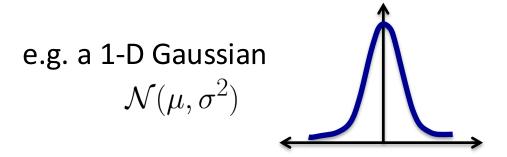
Robust Statistics, Revisited

Ankur Moitra (MIT)

joint work with Ilias Diakonikolas, Jerry Li, Gautam Kamath, Daniel Kane and Alistair Stewart

CLASSIC PARAMETER ESTIMATION

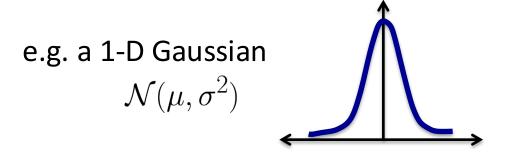
Given samples from an unknown distribution in some *class*



can we accurately estimate its parameters?

CLASSIC PARAMETER ESTIMATION

Given samples from an unknown distribution in some *class*

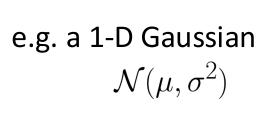


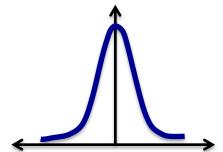
can we accurately estimate its parameters?

Yes!

CLASSIC PARAMETER ESTIMATION

Given samples from an unknown distribution in some *class*





can we accurately estimate its parameters?

Yes!

empirical mean:

$$\frac{1}{N} \sum_{i=1}^{N} X_i \to \mu$$

empirical variance:

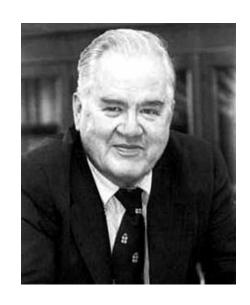
$$\frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2 \to \sigma^2$$

R. A. Fisher

The maximum likelihood estimator is asymptotically efficient (1910-1920)

R. A. Fisher

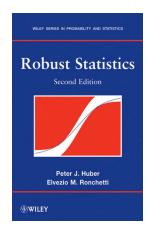
The maximum likelihood estimator is asymptotically efficient (1910-1920)

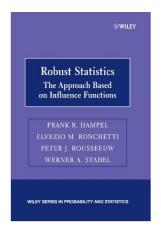


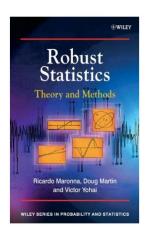
J. W. Tukey

What about **errors** in the model itself? (1960)

ROBUST STATISTICS

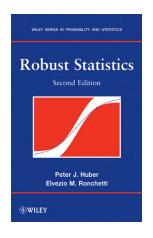


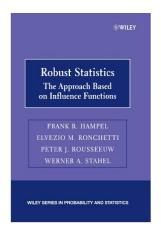


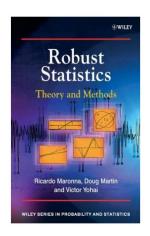


What estimators behave well in a **neighborhood** around the model?

ROBUST STATISTICS





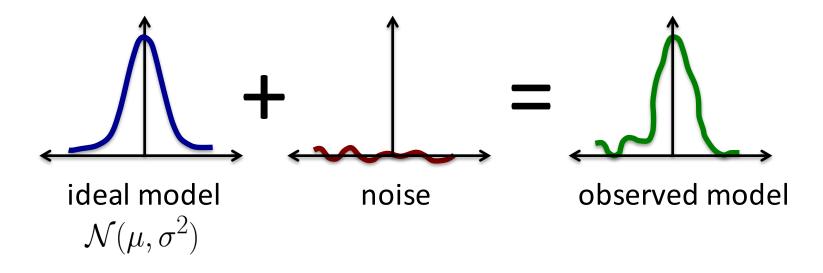


What estimators behave well in a **neighborhood** around the model?

Let's study a simple one-dimensional example....

ROBUST PARAMETER ESTIMATION

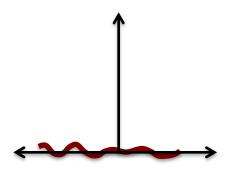
Given corrupted samples from a 1-D Gaussian:



can we accurately estimate its parameters?

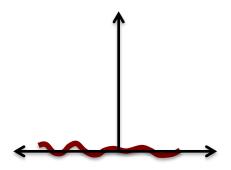
Equivalently:

 L_1 -norm of noise at most $O(\varepsilon)$

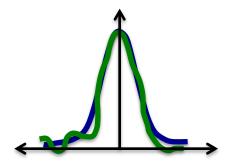


Equivalently:

 L_1 -norm of noise at most $O(\varepsilon)$

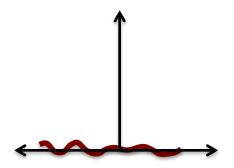


Arbitrarily corrupt $O(\varepsilon)$ -fraction of samples (in expectation)

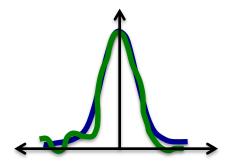


Equivalently:

 L_1 -norm of noise at most $O(\varepsilon)$



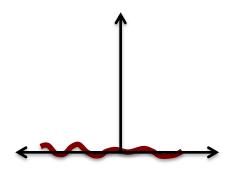
Arbitrarily corrupt $O(\varepsilon)$ -fraction of samples (in expectation)



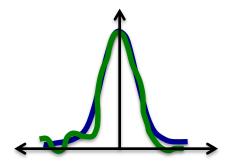
This generalizes **Huber's Contamination Model:** An adversary can add an ϵ -fraction of samples

Equivalently:

 L_1 -norm of noise at most $O(\varepsilon)$



Arbitrarily corrupt $O(\varepsilon)$ -fraction of samples (in expectation)



This generalizes Huber's Contamination Model: An adversary can add an ε -fraction of samples

Outliers: Points adversary has corrupted, Inliers: Points he hasn't

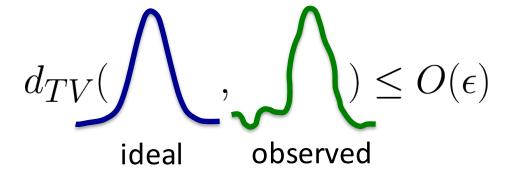
Definition: The total variation distance between two distributions with pdfs f(x) and g(x) is

$$d_{TV}(f(x), g(x)) \triangleq \frac{1}{2} \int_{-\infty}^{\infty} \left| f(x) - g(x) \right| dx$$

Definition: The total variation distance between two distributions with pdfs f(x) and g(x) is

$$d_{TV}(f(x), g(x)) \triangleq \frac{1}{2} \int_{-\infty}^{\infty} \left| f(x) - g(x) \right| dx$$

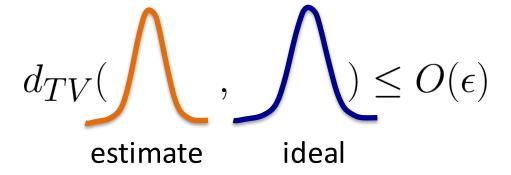
From the bound on the L_1 -norm of the noise, we have:



Definition: The total variation distance between two distributions with pdfs f(x) and g(x) is

$$d_{TV}(f(x), g(x)) \triangleq \frac{1}{2} \int_{-\infty}^{\infty} \left| f(x) - g(x) \right| dx$$

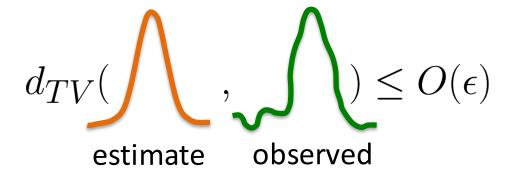
Goal: Find a 1-D Gaussian that satisfies



Definition: The total variation distance between two distributions with pdfs f(x) and g(x) is

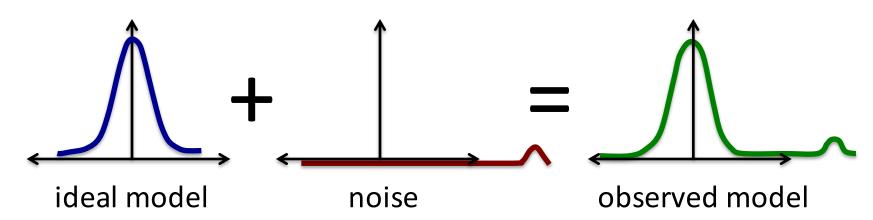
$$d_{TV}(f(x), g(x)) \triangleq \frac{1}{2} \int_{-\infty}^{\infty} \left| f(x) - g(x) \right| dx$$

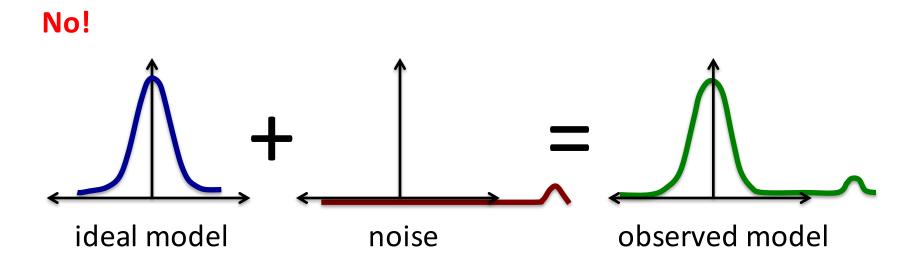
Equivalently, find a 1-D Gaussian that satisfies



No!

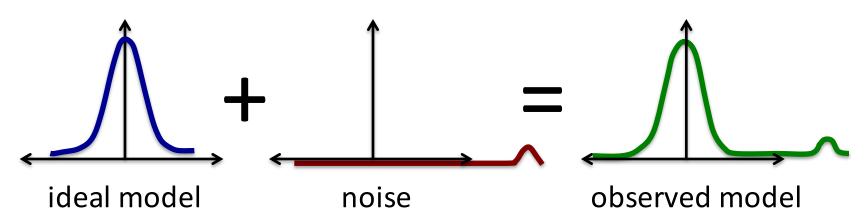
No!





A single corrupted sample can arbitrarily corrupt the estimates

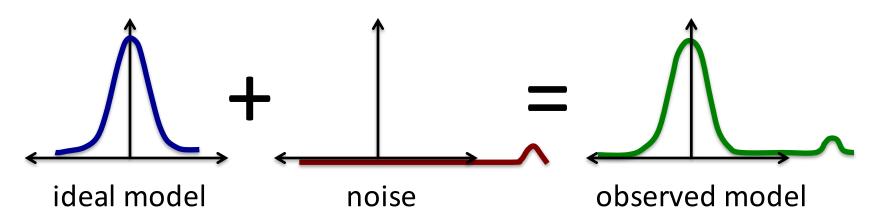
No!



A single corrupted sample can arbitrarily corrupt the estimates

But the **median** and **median absolute deviation** do work

No!



A single corrupted sample can arbitrarily corrupt the estimates

But the **median** and **median absolute deviation** do work

$$MAD = median(|X_i - median(X_1, X_2, ..., X_n)|)$$

$$\mathcal{N}(\mu, \sigma^2)$$

the median and MAD recover estimates that satisfy

$$d_{TV}(\mathcal{N}(\mu, \sigma^2), \mathcal{N}(\widehat{\mu}, \widehat{\sigma}^2)) \le O(\epsilon)$$

where
$$\widehat{\mu} = \mathrm{median}(X), \ \widehat{\sigma} = \frac{\mathrm{MAD}}{\Phi^{-1}(3/4)}$$

$$\mathcal{N}(\mu, \sigma^2)$$

the median and MAD recover estimates that satisfy

$$d_{TV}(\mathcal{N}(\mu, \sigma^2), \mathcal{N}(\widehat{\mu}, \widehat{\sigma}^2)) \le O(\epsilon)$$

where
$$\widehat{\mu} = \text{median}(X), \ \widehat{\sigma} = \frac{\text{MAD}}{\Phi^{-1}(3/4)}$$

Also called (properly) agnostically learning a 1-D Gaussian

$$\mathcal{N}(\mu, \sigma^2)$$

the median and MAD recover estimates that satisfy

$$d_{TV}(\mathcal{N}(\mu, \sigma^2), \mathcal{N}(\widehat{\mu}, \widehat{\sigma}^2)) \le O(\epsilon)$$

where
$$\widehat{\mu} = \text{median}(X), \ \widehat{\sigma} = \frac{\text{MAD}}{\Phi^{-1}(3/4)}$$

What about robust estimation in high-dimensions?

$$\mathcal{N}(\mu, \sigma^2)$$

the median and MAD recover estimates that satisfy

$$d_{TV}(\mathcal{N}(\mu, \sigma^2), \mathcal{N}(\widehat{\mu}, \widehat{\sigma}^2)) \le O(\epsilon)$$

where
$$\widehat{\mu} = \text{median}(X), \ \widehat{\sigma} = \frac{\text{MAD}}{\Phi^{-1}(3/4)}$$

What about robust estimation in high-dimensions?

e.g. microarrays with 10k genes

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Part III: Experiments and Extensions

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Part III: Experiments and Extensions

Main Problem: Given samples from a distribution that are ε-close in total variation distance to a d-dimensional Gaussian

$$\mathcal{N}(\mu, \Sigma)$$

give an efficient algorithm to find parameters that satisfy

$$d_{TV}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\widehat{\mu}, \widehat{\Sigma})) \leq \widetilde{O}(\epsilon)$$

Main Problem: Given samples from a distribution that are ε -close in total variation distance to a d-dimensional Gaussian

$$\mathcal{N}(\mu, \Sigma)$$

give an efficient algorithm to find parameters that satisfy

$$d_{TV}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\widehat{\mu}, \widehat{\Sigma})) \leq \widetilde{O}(\epsilon)$$

Special Cases:

- (1) Unknown mean $\mathcal{N}(\mu, I)$
- (2) Unknown covariance $\mathcal{N}(0,\Sigma)$

A COMPENDIUM OF APPROACHES

Unknown Mean	Error Guarantee	Running Time

A COMPENDIUM OF APPROACHES

Unknown Mean	Error Guarantee	Running Time
Tukey Median		

A COMPENDIUM OF APPROACHES

Unknown Mean	Error Guarantee	Running Time
Tukey Median	Ο(ε) 🗸	

Unknown Mean	Error Guarantee	Running Time
Tukey Median	Ο(ε) 🗸	NP-Hard 🗙

Unknown Mean	Error Guarantee	Running Time
Tukey Median	Ο(ε) 🗸	NP-Hard X
Geometric Median		

Unknown Mean	Error Guarantee	Running Time
Tukey Median	Ο(ε) 🗸	NP-Hard X
Geometric Median		poly(d,N)

Unknown Mean	Error Guarantee	Running Time
Tukey Median	Ο(ε) 🗸	NP-Hard X
Geometric Median	Ο(ε√व) 💢	poly(d,N)

	Unknown Mean	Error Guarantee	Running Time
Tuk	ey Median	Ο(ε) 🗸	NP-Hard X
Geomet	ric Median	Ο(ε√ਰ) 💢	poly(d,N)
То	urnament	Ο(ε) 🗸	N ^{O(d)}

Unknowr Mean	າ 	Error Guarantee	Running Time	
Tukey Mediar	n	Ο(ε) 🗸	NP-Hard	X
Geometric Media	n	Ο(ε√व) 💢	poly(d,N)	/
Tournament	:	Ο(ε) 🗸	N _{O(q)}	X
Pruning	3	Ο(ε√व) 💢	O(dN)	/

	Unknown Mean	Error Guarantee	Running Time
-	Tukey Median	Ο(ε) 🗸	NP-Hard X
Geor	netric Median	Ο(ε√व) 💢	poly(d,N) 🗸
	Tournament	Ο(ε) 🗸	N ^{O(d)}
	Pruning	Ο(ε√ਰੋ) 💢	O(dN)
	•		

All known estimators are **hard to compute** or lose **polynomial** factors in the dimension

All known estimators are **hard to compute** or lose **polynomial** factors in the dimension

Equivalently: Computationally efficient estimators can only handle

$$\epsilon \le \frac{1}{\sqrt{d}}$$

fraction of errors and get **non-trivial** (TV < 1) guarantees

All known estimators are **hard to compute** or lose **polynomial** factors in the dimension

Equivalently: Computationally efficient estimators can only handle

$$\epsilon \le \frac{1}{100} \text{ for } d = 10,000$$

fraction of errors and get **non-trivial** (TV < 1) guarantees

All known estimators are **hard to compute** or lose **polynomial** factors in the dimension

Equivalently: Computationally efficient estimators can only handle

$$\epsilon \le \frac{1}{100} \text{ for } d = 10,000$$

fraction of errors and get **non-trivial** (TV < 1) guarantees

Is robust estimation algorithmically possible in high-dimensions?

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

OUR RESULTS

Robust estimation is high-dimensions is algorithmically possible!

Theorem [Diakonikolas, Li, Kamath, Kane, Moitra, Stewart '16]:

There is an algorithm when given $N=\widetilde{O}(d^3/\epsilon^2)$ samples from a distribution that is ϵ -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu,\Sigma)$ finds parameters that satisfy

$$d_{TV}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\widehat{\mu}, \widehat{\Sigma})) \le O(\epsilon \log^{3/2} 1/\epsilon)$$

Moreover the algorithm runs in time poly(N, d)

OUR RESULTS

Robust estimation is high-dimensions is algorithmically possible!

Theorem [Diakonikolas, Li, Kamath, Kane, Moitra, Stewart '16]:

There is an algorithm when given $N=\widetilde{O}(d^3/\epsilon^2)$ samples from a distribution that is ϵ -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu,\Sigma)$ finds parameters that satisfy

$$d_{TV}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\widehat{\mu}, \widehat{\Sigma})) \le O(\epsilon \log^{3/2} 1/\epsilon)$$

Moreover the algorithm runs in time poly(N, d)

Alternatively: Can approximate the Tukey median, etc, in interesting semi-random models

Simultaneously [Lai, Rao, Vempala '16] gave agnostic algorithms that achieve:

$$\|\mu - \widehat{\mu}\|_{2} \le C\epsilon^{1/2} \|\Sigma\|_{2}^{1/2} \log^{1/2} d$$
$$\|\Sigma - \widehat{\Sigma}\|_{F} \le C\epsilon^{1/2} \|\Sigma\|_{2} \log^{1/2} d$$

and work for non-Gaussian distributions too

Simultaneously [Lai, Rao, Vempala '16] gave agnostic algorithms that achieve:

$$\|\mu - \widehat{\mu}\|_{2} \le C\epsilon^{1/2} \|\Sigma\|_{2}^{1/2} \log^{1/2} d$$
$$\|\Sigma - \widehat{\Sigma}\|_{F} \le C\epsilon^{1/2} \|\Sigma\|_{2} \log^{1/2} d$$

and work for non-Gaussian distributions too

Many other applications across both papers: product distributions, mixtures of spherical Gaussians, SVD, ICA

A GENERAL RECIPE

Robust estimation in high-dimensions:

- Step #1: Find an appropriate parameter distance
- Step #2: Detect when the naïve estimator has been compromised
- Step #3: Find good parameters, or make progress

Filtering: Fast and practical

Convex Programming: Better sample complexity

A GENERAL RECIPE

Robust estimation in high-dimensions:

- Step #1: Find an appropriate parameter distance
- Step #2: Detect when the naïve estimator has been compromised
- Step #3: Find good parameters, or make progress

Filtering: Fast and practical

Convex Programming: Better sample complexity

Let's see how this works for unknown mean...

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Step #1: Find an appropriate parameter distance for Gaussians

Step #1: Find an appropriate parameter distance for Gaussians

A Basic Fact:

(1)
$$d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \frac{\|\mu - \widehat{\mu}\|_2}{2}$$

Step #1: Find an appropriate parameter distance for Gaussians

A Basic Fact:

(1)
$$d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \frac{\|\mu - \widehat{\mu}\|_2}{2}$$

This can be proven using Pinsker's Inequality

$$d_{TV}(f,g)^2 \le \frac{1}{2} d_{KL}(f,g)$$

and the well-known formula for KL-divergence between Gaussians

Step #1: Find an appropriate parameter distance for Gaussians

A Basic Fact:

(1)
$$d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \frac{\|\mu - \widehat{\mu}\|_2}{2}$$

Step #1: Find an appropriate parameter distance for Gaussians

A Basic Fact:

(1)
$$d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \frac{\|\mu - \widehat{\mu}\|_2}{2}$$

Corollary: If our estimate (in the unknown mean case) satisfies

$$\|\mu - \widehat{\mu}\|_2 \le \widetilde{O}(\epsilon)$$

then $d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \widetilde{O}(\epsilon)$

Step #1: Find an appropriate parameter distance for Gaussians

A Basic Fact:

(1)
$$d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \frac{\|\mu - \widehat{\mu}\|_2}{2}$$

Corollary: If our estimate (in the unknown mean case) satisfies

$$\|\mu - \widehat{\mu}\|_2 \le \widetilde{O}(\epsilon)$$

then
$$d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \widetilde{O}(\epsilon)$$

Our new goal is to be close in **Euclidean distance**

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

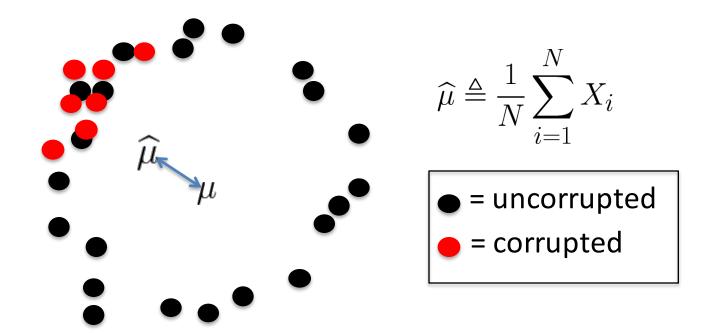
- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

DETECTING CORRUPTIONS

Step #2: Detect when the naïve estimator has been compromised

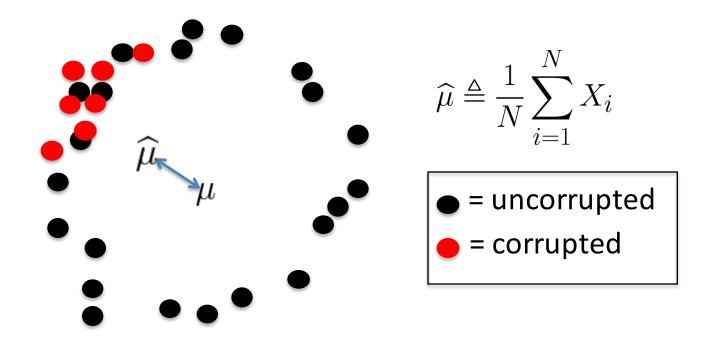
DETECTING CORRUPTIONS

Step #2: Detect when the naïve estimator has been compromised



DETECTING CORRUPTIONS

Step #2: Detect when the naïve estimator has been compromised



There is a direction of large (> 1) variance

Key Lemma: If X_1 , X_2 , ... X_N come from a distribution that is ϵ -close to $\mathcal{N}(\mu, I)$ and $N \geq 10(d + \log 1/\delta)/\epsilon^2$ then for

(1)
$$\widehat{\mu} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i$$
 (2) $\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} (X_i - \widehat{\mu})(X_i - \widehat{\mu})^T$

with probability at least $1-\delta$

$$\|\mu - \widehat{\mu}\|_2 \ge C\epsilon \sqrt{\log 1/\epsilon} \longrightarrow \|\widehat{\Sigma} - I\|_2 \ge C'\epsilon \log 1/\epsilon$$

Key Lemma: If X_1 , X_2 , ... X_N come from a distribution that is ϵ -close to $\mathcal{N}(\mu, I)$ and $N \geq 10(d + \log 1/\delta)/\epsilon^2$ then for

(1)
$$\widehat{\mu} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i$$
 (2) $\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} (X_i - \widehat{\mu})(X_i - \widehat{\mu})^T$

with probability at least $1-\delta$

$$\|\mu - \widehat{\mu}\|_2 \ge C\epsilon \sqrt{\log 1/\epsilon} \longrightarrow \|\widehat{\Sigma} - I\|_2 \ge C'\epsilon \log 1/\epsilon$$

Take-away: An adversary needs to mess up the second moment in order to corrupt the first moment

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Step #3: Either find good parameters, or remove many outliers

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

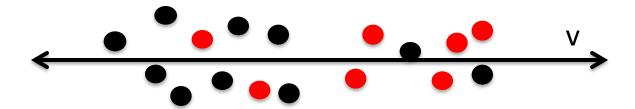
$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points:



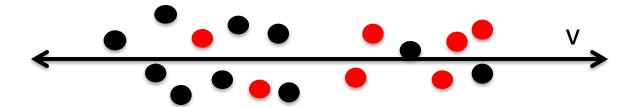
where v is the direction of largest variance

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points:



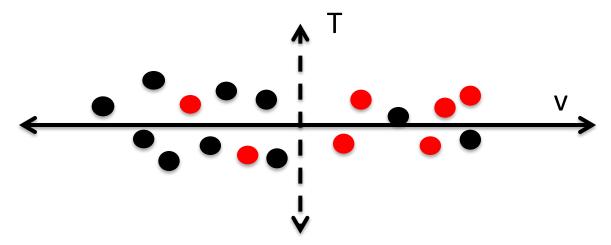
where v is the direction of largest variance, and T has a formula

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points:



where v is the direction of largest variance, and T has a formula

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points If we continue too long, we'd have no corrupted points left!

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points If we continue too long, we'd have no corrupted points left!

Eventually we find (certifiably) good parameters

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points If we continue too long, we'd have no corrupted points left!

Eventually we find (certifiably) good parameters

Running Time: $\widetilde{O}(Nd^2)$ Sample Complexity: $\widetilde{O}(d^2/\epsilon^2)$

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points If we continue too long, we'd have no corrupted points left!

Eventually we find (certifiably) good parameters

Running Time: $\widetilde{O}(Nd^2)$ Sample Complexity: $\widetilde{O}(d^2/\epsilon^2)$ Concentration of LTFs

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Part III: Experiments and Extensions

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Part III: Experiments and Extensions

A GENERAL RECIPE

Robust estimation in high-dimensions:

- Step #1: Find an appropriate parameter distance
- Step #2: Detect when the naïve estimator has been compromised
- Step #3: Find good parameters, or make progress

Filtering: Fast and practical

Convex Programming: Better sample complexity

A GENERAL RECIPE

Robust estimation in high-dimensions:

- Step #1: Find an appropriate parameter distance
- Step #2: Detect when the naïve estimator has been compromised
- Step #3: Find good parameters, or make progress

Filtering: Fast and practical

Convex Programming: Better sample complexity

How about for unknown covariance?

Step #1: Find an appropriate parameter distance for Gaussians

Step #1: Find an appropriate parameter distance for Gaussians

Another Basic Fact:

(2)
$$d_{TV}(\mathcal{N}(0,\Sigma),\mathcal{N}(0,\widehat{\Sigma})) \leq O(\|I-\widehat{\Sigma}^{-1/2}\Sigma\widehat{\Sigma}^{-1/2}\|_F)$$

Step #1: Find an appropriate parameter distance for Gaussians

Another Basic Fact:

(2)
$$d_{TV}(\mathcal{N}(0,\Sigma),\mathcal{N}(0,\widehat{\Sigma})) \leq O(\|I-\widehat{\Sigma}^{-1/2}\Sigma\widehat{\Sigma}^{-1/2}\|_F)$$

Again, proven using Pinsker's Inequality

Step #1: Find an appropriate parameter distance for Gaussians

Another Basic Fact:

(2)
$$d_{TV}(\mathcal{N}(0,\Sigma),\mathcal{N}(0,\widehat{\Sigma})) \leq O(\|I - \widehat{\Sigma}^{-1/2} \Sigma \widehat{\Sigma}^{-1/2}\|_F)$$

Again, proven using Pinsker's Inequality

Our new goal is to find an estimate that satisfies:

$$||I - \widehat{\Sigma}^{-1/2} \Sigma \widehat{\Sigma}^{-1/2}||_F \le \widetilde{O}(\epsilon)$$

Step #1: Find an appropriate parameter distance for Gaussians

Another Basic Fact:

(2)
$$d_{TV}(\mathcal{N}(0,\Sigma),\mathcal{N}(0,\widehat{\Sigma})) \leq O(\|I - \widehat{\Sigma}^{-1/2} \Sigma \widehat{\Sigma}^{-1/2}\|_F)$$

Again, proven using Pinsker's Inequality

Our new goal is to find an estimate that satisfies:

$$||I - \widehat{\Sigma}^{-1/2} \Sigma \widehat{\Sigma}^{-1/2}||_F \le \widetilde{O}(\epsilon)$$

Distance seems strange, but it's the right one to use to bound TV

What if we are given samples from $\mathcal{N}(0,\Sigma)$?

What if we are given samples from $\mathcal{N}(0,\Sigma)$?

How do we detect if the naïve estimator is compromised?

$$\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i X_i^T$$

What if we are given samples from $\mathcal{N}(0,\Sigma)$?

How do we detect if the naïve estimator is compromised?

$$\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i X_i^T$$

Key Fact: Let $X_i \sim \mathcal{N}(0,\Sigma)$ and $M = \mathbb{E}[(X_i \otimes X_i)(X_i \otimes X_i)^T]$

Then restricted to flattenings of d x d symmetric matrices

$$M = 2\Sigma^{\otimes 2} + \left(\Sigma^{\flat}\right) \left(\Sigma^{\flat}\right)^{T}$$

What if we are given samples from $\mathcal{N}(0,\Sigma)$?

How do we detect if the naïve estimator is compromised?

$$\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i X_i^T$$

Key Fact: Let $X_i \sim \mathcal{N}(0,\Sigma)$ and $M = \mathbb{E}[(X_i \otimes X_i)(X_i \otimes X_i)^T]$

Then restricted to flattenings of d x d symmetric matrices

$$M = 2\Sigma^{\otimes 2} + \left(\Sigma^{\flat}\right) \left(\Sigma^{\flat}\right)^{T}$$

Proof uses Isserlis's Theorem

What if we are given samples from $\mathcal{N}(0,\Sigma)$?

How do we detect if the naïve estimator is compromised?

$$\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i X_i^T$$

Key Fact: Let $X_i \sim \mathcal{N}(0,\Sigma)$ and $M = \mathbb{E}[(X_i \otimes X_i)(X_i \otimes X_i)^T]$

Then restricted to flattenings of d x d symmetric matrices

$$M = 2\Sigma^{\otimes 2} + \left(\Sigma^{\flat}\right) \left(\Sigma^{\flat}\right)^{T}$$

need to project out

$$Y_i \triangleq (\widehat{\Sigma})^{-1/2} X_i$$

$$Y_i \triangleq (\widehat{\Sigma})^{-1/2} X_i$$

If $\widehat{\Sigma}$ were the true covariance, we would have $Y_i \sim N(0,I)$ for inliers

$$Y_i \triangleq (\widehat{\Sigma})^{-1/2} X_i$$

If $\widehat{\Sigma}$ were the true covariance, we would have $Y_i \sim N(0,I)$ for inliers, in which case:

$$\frac{1}{N} \sum_{i=1}^{N} (Y_i \otimes Y_i) (Y_i \otimes Y_i)^T - 2I$$

would have small restricted eigenvalues

$$Y_i \triangleq (\widehat{\Sigma})^{-1/2} X_i$$

If $\widehat{\Sigma}$ were the true covariance, we would have $Y_i \sim N(0,I)$ for inliers, in which case:

$$\frac{1}{N} \sum_{i=1}^{N} (Y_i \otimes Y_i) (Y_i \otimes Y_i)^T - 2I$$

would have small restricted eigenvalues

Take-away: An adversary needs to mess up the (restricted) **fourth** moment in order to corrupt the **second** moment

Given samples that are $\epsilon\text{-close}$ in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu,\Sigma)$

Given samples that are ϵ -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu,\Sigma)$

Step #1: Doubling trick $X_i - X_i' \sim_{\epsilon} \mathcal{N}(0, 2\Sigma)$

Given samples that are ϵ -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$

Step #1: Doubling trick
$$X_i - X_i' \sim_{\epsilon} \mathcal{N}(0, 2\Sigma)$$

Now use algorithm for unknown covariance

Given samples that are ϵ -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu,\Sigma)$

Step #1: Doubling trick
$$X_i - X_i' \sim_{\epsilon} \mathcal{N}(0, 2\Sigma)$$

Now use algorithm for unknown covariance

Step #2: (Agnostic) isotropic position

$$\widehat{\Sigma}^{-1/2} X_i \sim_{\epsilon} \mathcal{N}(\widehat{\Sigma}^{-1/2} \mu, I)$$

Given samples that are ϵ -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu,\Sigma)$

Step #1: Doubling trick
$$X_i - X_i' \sim_{\epsilon} \mathcal{N}(0, 2\Sigma)$$

Now use algorithm for unknown covariance

Step #2: (Agnostic) isotropic position

$$\widehat{\Sigma}^{-1/2} X_i \sim_{\epsilon} \mathcal{N}(\widehat{\Sigma}^{-1/2} \mu, I)$$

right distance, in general case

Given samples that are ϵ -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$

Step #1: Doubling trick
$$X_i - X_i' \sim_{\epsilon} \mathcal{N}(0, 2\Sigma)$$

Now use algorithm for unknown covariance

Step #2: (Agnostic) isotropic position

$$\widehat{\Sigma}^{-1/2} X_i \sim_{\epsilon} \mathcal{N}(\widehat{\Sigma}^{-1/2} \mu, I)$$

right distance, in general case

Now use algorithm for unknown mean

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Part III: Experiments and Extensions

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Our Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- Filtering and Convex Programming
- Unknown Covariance

Part III: Experiments and Extensions

Use restricted eigenvalue problems to detect outliers

Use restricted eigenvalue problems to detect outliers

Binary Product Distributions:

$$d_{TV}(\Pi, \widehat{\Pi}) \le C\sqrt{\epsilon \log 1/\epsilon}$$

Use restricted eigenvalue problems to detect outliers

Binary Product Distributions:

$$d_{TV}(\Pi, \widehat{\Pi}) \le C\sqrt{\epsilon \log 1/\epsilon}$$

Mixtures of Two c-Balanced Binary Product Distributions:

$$d_{TV}(\Pi, \widehat{\Pi}) \le C\epsilon^{1/6}$$

Use restricted eigenvalue problems to detect outliers

Binary Product Distributions:

$$d_{TV}(\Pi, \widehat{\Pi}) \le C\sqrt{\epsilon \log 1/\epsilon}$$

Mixtures of Two c-Balanced Binary Product Distributions:

$$d_{TV}(\Pi, \widehat{\Pi}) \le C\epsilon^{1/6}$$

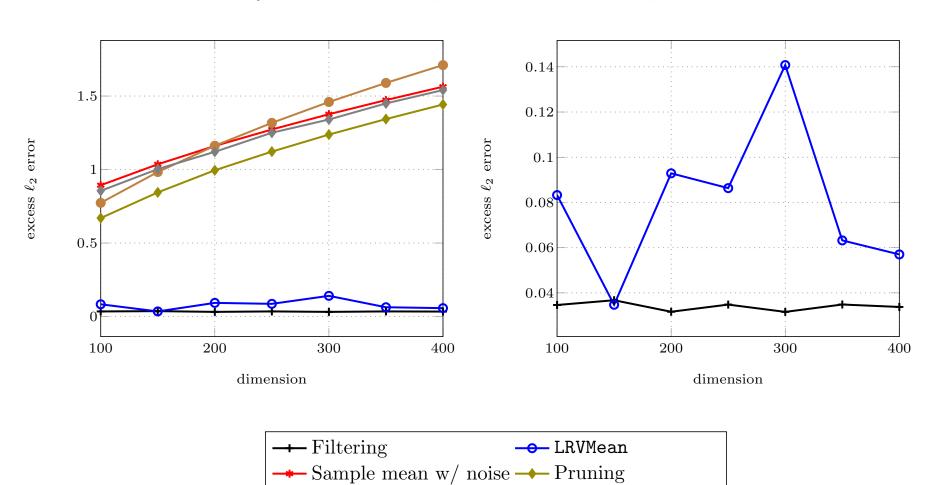
Mixtures of k Spherical Gaussians:

$$d_{TV}(\mathcal{M}, \widehat{\mathcal{M}}) \le C \text{ poly}(k) \sqrt{\epsilon} \log 1/\epsilon$$

Error rates on synthetic data (unknown mean):

$$\mathcal{N}(\mu,I)$$
 + 10% noise

Error rates on synthetic data (unknown mean):

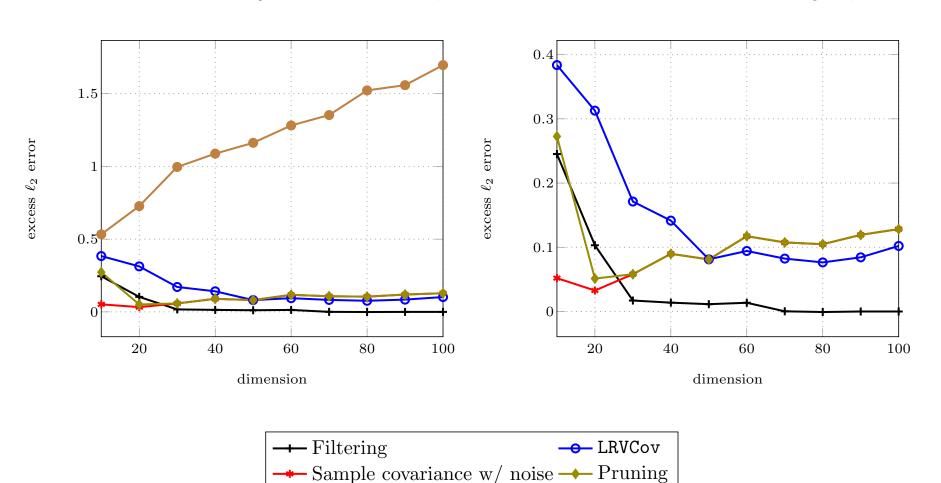


→ Geometric Median

Error rates on synthetic data (unknown covariance, isotropic):

$$\mathcal{N}(0,\Sigma)$$
 + 10% noise close to identity

Error rates on synthetic data (unknown covariance, isotropic):

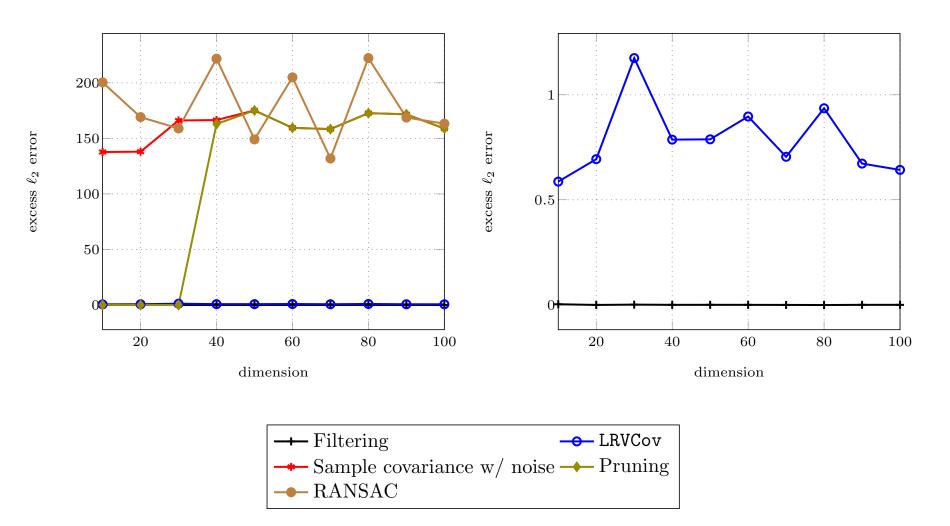


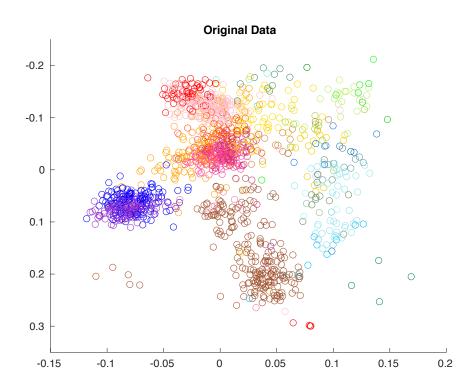
- RANSAC

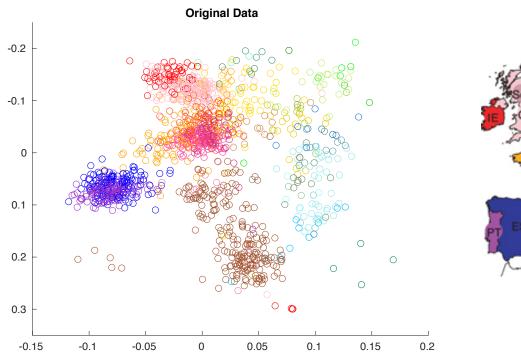
Error rates on synthetic data (unknown covariance, anisotropic):

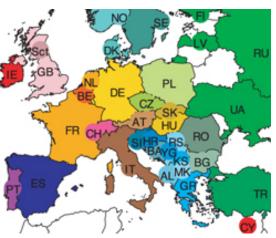
$$\mathcal{N}(0, \Sigma)$$
 + 10% noise far from identity

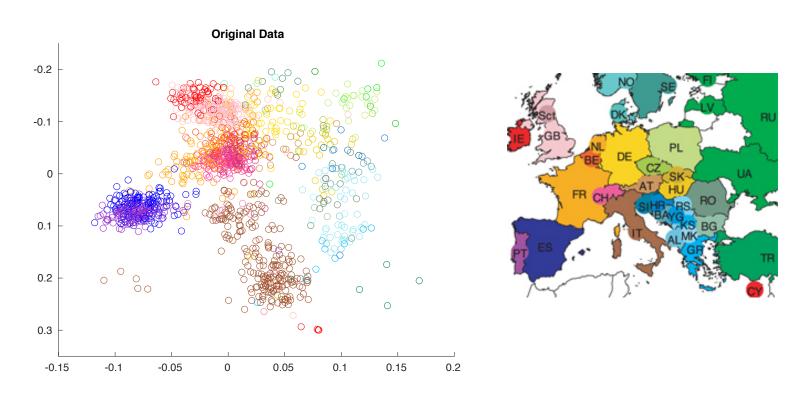
Error rates on synthetic data (unknown covariance, anisotropic):



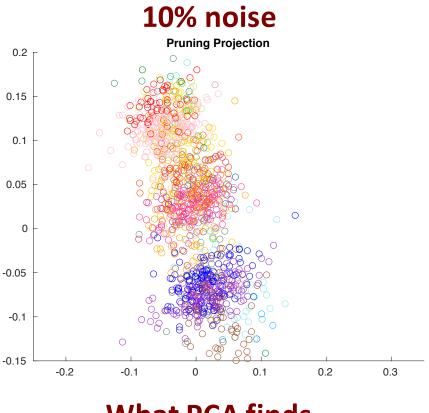




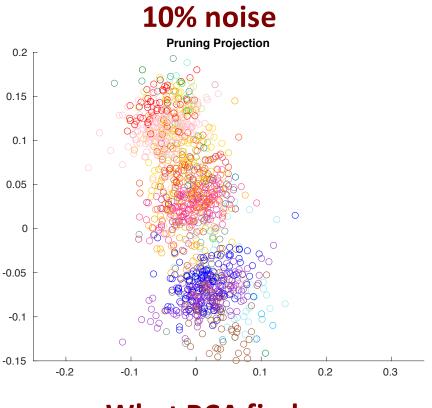




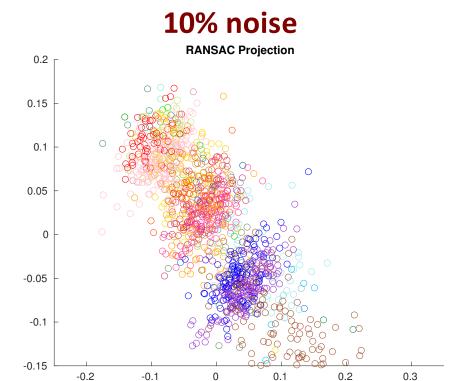
"Genes Mirror Geography in Europe"



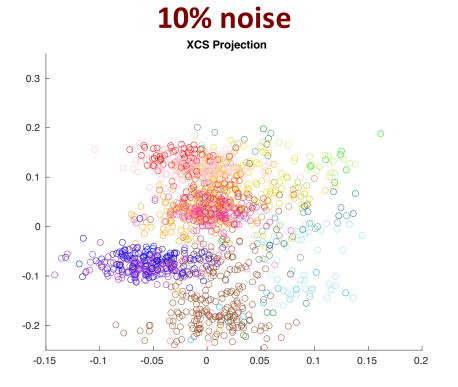
What PCA finds

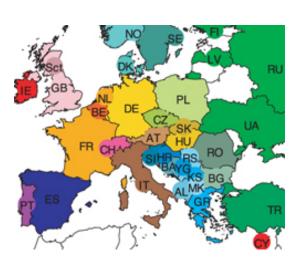


What PCA finds

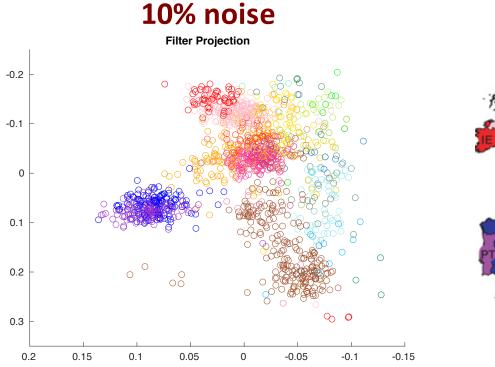


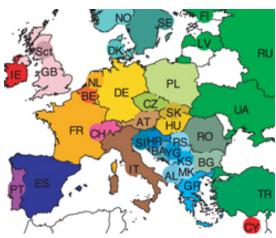
What RANSAC finds





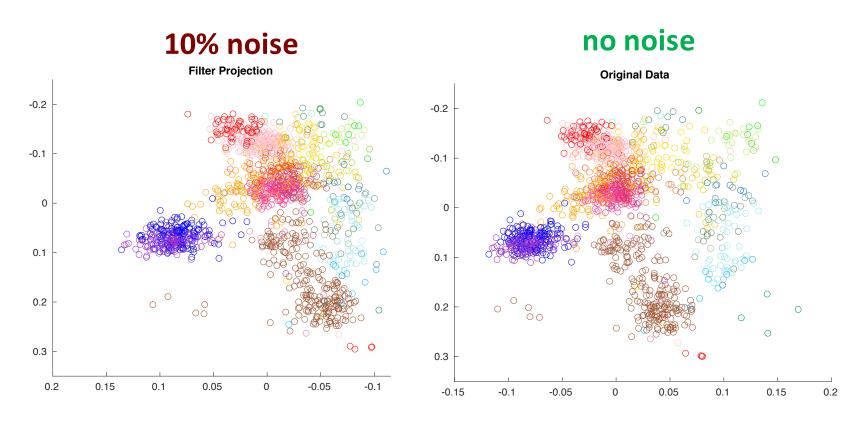
What robust PCA (via SDPs) finds





What our methods find

The power of provably robust estimation:



What our methods find

LOOKING FORWARD

Can algorithms for agnostically learning a Gaussian help in **exploratory data analysis** in high-dimensions?

LOOKING FORWARD

Can algorithms for agnostically learning a Gaussian help in **exploratory data analysis** in high-dimensions?

Isn't this what we would have been doing with robust statistical estimators, if we had them all along?

Summary:

- Nearly optimal algorithm for agnostically learning a high-dimensional Gaussian
- General recipe using restricted eigenvalue problems
- Further applications to other mixture models
- Is practical, robust statistics within reach?

Thanks! Any Questions?