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Let	me	tell	you	a	story	about	the	tension	between	sharp	thresholds
and	robustness
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� k	communities

� connection	probabilities

Q	=
Q11 Q12			 Q13

Q12 Q22			 Q32

Q13 Q32			 Q33

probability	Q13

probability	Q11

� edges	independent

Ubiquitous	model	studied	in	statistics,	computer	science,
information	theory,	statistical	physics
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Testbed for	diverse	range	of	algorithms

(1)	Combinatorial	Methods
e.g.	degree	counting	[Bui,	Chaudhuri,	Leighton,	Sipser ‘87]

(2)	Spectral	Methods e.g.	[McSherry ‘01]

(3)	Markov	chain	Monte	Carlo	(MCMC) e.g.	[Jerrum,	Sorkin ‘98]

(4)	Semidefinite Programs e.g.	[Boppana ‘87]

Can	we	reach	the	fundamental	limits	of	the	SBM?

These	algorithms	succeed	in	some	ranges	of	parameters
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let’s	study	the	sparse regime:

Remark:	The	degree	of	each	node	is	Poi(a/2+b/2)	hence	there
are	many	isolated	nodes	whose	community	we	cannot	find

Goal	(Partial	Recovery):	Find	a	partition	that	has	agreement	
better	than	½	with	true	community	structure	
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where	a,	b	=	O(1)	so	that	there	are	O(n)	edges

Conjecture:	Partial	recovery	is	possible	iff (a-b)2 >	2(a+b)	

Conjecture	is	based	on	fixed	points	of	belief	propagation…
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BELIEF	PROPAGATION

Introduced	by	Judea	Pearl	(1982):

“For	fundamental	
contributions	…	to	

probabilistic	and	causal
reasoning”



…
…

…

u

v

Adapted	to	community	detection:

Message	vèu

Probability	I	think
I	am	community	#1,
community	#2,	…

Do	same	for	all	nodes



…
…

…

u

v

Adapted	to	community	detection:

Message	vèu

Probability	I	think
I	am	community	#1,
community	#2,	…

update
beliefs

Do	same	for	all	nodes



…
…

…

u

v

Adapted	to	community	detection:

Message	vèu

Probability	I	think
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Message	uèv

New	probability	I	think
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community	#2,	…

update
beliefs

Do	same	for	all	nodesDo	same	for	all	nodes
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Claim:	No	one	knows	anything,	so	you	never	have	to	update
your	beliefs
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THE	TRIVIAL	FIXED	POINT
Belief	propagation	has	a	trivial	fixed	point	where	it	gets	stuck

Fact:	If	(a-b)2 >	2(a+b)	then	the	trivial	fixed	point	is	unstable	

Hope:	Whatever	it	finds,	solves	partial	recovery

And	if	(a-b)2 ≤ 2(a+b)	and	it	does	get	stuck,	then	maybe	partial
recovery	is	information	theoretically	impossible?			

Evidence	based	on	simulations
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Mossel,	Neeman and	Sly	(2013)	and	Massoulie (2013):

Theorem:	It	is	possible	to	find	a	partition	that	is	correlated
with	true	communities	iff (a-b)2 >	2(a+b)	

(a-b)2 >	C(a+b),	for	some	C	>	2	

Are	nonconvexmethods	better than	convex	programs?

How	do	predictions	of	statistical	physics	and	SDPs	compare?

Later	attempts	based	on	SDPs	only	get	to

Robustnesswill	be	a	key	player	in	the	answers
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SEMI-RANDOM	MODELS
Introduced	by	Blum	and	Spencer	(1995),	Feige and	Kilian (2001):

(1) Sample	graph	from	SBM	

(2)	Adversary	can	add	edges	
within	community
and	delete	edges	crossing

Algorithms	can	no	longer	over	tune	to	distribution
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SHARPNESS	VS.	ROBUSTNESS
Monotone	changes	break	most	algorithms,	in	fact	something
more	fundamental	is	happening:

Theorem	[Moitra,	Perry,	Wein ‘16]:	It	is	information	theoretically
impossible to	recover	a	partition	correlated	with	true	communities
for	(a-b)2 ≤	Ca,b(a+b)	for	some	Ca,b >	2	in	the	semirandommodel

But	SDPs	continue	to	work	in	semirandommodel

Being	robust	can	make	the	problem	strictly	harder,	but	why?

Reaching	the	sharp	threshold	for	community	detection	requires	
exploiting	the	structure	of	the	noise



Let’s	explore	robustness	vs.	sharpness	in	a	simpler	model
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BROADCAST	TREE	MODEL

(1)	Root	is	either	red/blue

(3)	Goal:	From	leaves	and	
unlabeled	tree,	guess	color
of	root	with	> ½ prob.	indep.	
of	n	(#	of	levels)

For	what	values	of	a	and	b	can	we	guess	the	root?

(2)	Each	node	gives	birth
to	Poi(a/2)	nodes	of	same
color	and	Poi(b/2)	nodes
of	opposite	color
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THE	KESTEN STIGUM BOUND

“Best	way	to	reconstruct	root	from	leaves	is	majority	vote”

Theorem	[Kesten,	Stigum,	‘66]:	Majority	vote	of	the	leaves	
succeeds	with	probability	>	½ iff (a-b)2 >	2(a+b)	

More	generally,	gave	a	limit	theorem	for	multi-type	branching
processes

Theorem	[Evans	et	al.,	‘00]:	Reconstruction	is	information	
theoretically	impossible	if	(a-b)2 ≤ 2(a+b)	

Local	view	in	SBM	=	Broadcast	Tree
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SEMIRANDOM BROADCAST	TREE	MODEL

Definition:	A	semirandomadversary	can	cut	edges	between	
nodes	of	opposite	colors	and	remove	entire	subtree

Can	the	adversary	usually	flip	the	majority	vote?	

Analogous	to	cutting	edges	between	communities,	and	changing
the	local	neighborhood	in	the	SBM
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Key	Observation:	Some	node’s	descendants	vote	oppositeway

By	cutting	these	edges,	adversary	can	usually	flip	majority	vote
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e.g.	If	we	cut	every	subtree
where	this	happens,	would
mess	up	independence	properties

More	likely	to	have	
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he	was	not	cut
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This	breaks	majority	vote,	but	how	do	we	move	the	information
theoretic	threshold?

Need	carefully	chosen	adversary	where	we	can	prove	things	
about	the	distribution	we	get	after	he’s	done

Need	to	design	adversary	that	puts	us	back	into	nicemodel

e.g.	a	model	on	a	tree	where	a	sharp	threshold	is	known

Following	[Mossel,	Neeman,	Sly]	we	can	embed	the	lower	bound
for	semi-random	BTM	in	semi-random	SBM

e.g.	Usual	complication:	once	I	reveal	colors	at	boundary	
of	neighborhood,	need	to	show	there’s	little	information	
you	can	get	from	rest	of	graph
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“Helpful”	changes	can	hurt:

Theorem	[Moitra,	Perry,	Wein ‘16]:	Reconstruction	in	semi-random	
broadcast	tree	model	is	information	theoretically	impossible	for	
(a-b)2 ≤	Ca,b(a+b)	for	some	Ca,b >	2

Theorem	[Moitra,	Perry,	Wein ‘16]:	Recursive	majority	succeeds	
in	semi-random	broadcasttree model	if	

log	 a+b
2

(a-b)2 >	(2	+	o(1))(a+b)

Is	there	any	algorithm	that	succeeds	in	semirandom BTM?
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Recursive	majority	is	used	in	practice,	despite	the	fact	that	it
is	known	not	to	achieve	the	KS	bound,	why?

Semi-random	models:	When	recursive	majority	works,	it’s	not
exploiting	the	structure	of	the	noise

Models	are	a	measuring	stick	to	compare	algorithms,	but	
are	we	studying	the	right	ones?

Average-case	models:	When	we	have	many	algorithms,	can
we	find	the	best one?

This	is	an	axis	on	which	recursive	majority	is	superior
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BETWEEN	WORST-CASE	AND	AVERAGE-CASE

“Explain	why	algorithms	work	well	in	
practice,	despite	bad	worst-case	behavior”

Spielman and	Teng (2001):	

Usually	called	Beyond	Worst-Case	Analysis

Semirandommodels	as	Above	Average-Case	 Analysis?	

What	else	are	we	missing,	if	we	only	study	problems	in	the	
average-case?
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Let	M	be	an	unknown,	low-rank	matrix	

≈ + … +M +

comedydrama sports

Model:We	are	given	random	observations	Mi,j for	all	i,j Ω

Is	there	an	efficient	algorithm	to	recover	M?

THE	NETFLIX	PROBLEM



[Fazel],	[Srebro,	Shraibman],	[Recht,	Fazel,	Parrilo],	[Candes,	Recht],
[Candes,	Tao],	[Candes,	Plan],	[Recht],	

min			X					s.t.
*

(i,j) Ω

|Xi,j–Mi,j|	≤	η (P)

Here	
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X is	the	nuclear	norm,	i.e.	sum	of	the	singular	values	of	X

CONVEX	PROGRAMMING	APPROACH



[Fazel],	[Srebro,	Shraibman],	[Recht,	Fazel,	Parrilo],	[Candes,	Recht],
[Candes,	Tao],	[Candes,	Plan],	[Recht],	

min			X					s.t.
*

(i,j) Ω

|Xi,j–Mi,j|	≤	η (P)

Theorem: If	M	is	n x	n and	has	rank	r,	and	is	C-incoherent	then	(P)	
recovers	M	exactly	from	C6nrlog2n	observations		

Here	
*

X is	the	nuclear	norm,	i.e.	sum	of	the	singular	values	of	X

CONVEX	PROGRAMMING	APPROACH
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ALTERNATING	MINIMIZATION

U
(i,j) Ω

|(UVT)i,j–Mi,j|
2

argmin
U

Repeat:

V
(i,j) Ω

|(UVT)i,j–Mi,j|
2

argmin
V

[Keshavan,	Montanari,	Oh],	[Jain,	Netrapalli,	Sanghavi],	[Hardt]

Theorem: If	M	is	n x	n and	has	rank	r,	and	is	C-incoherent	then	
alternating	minimizationapproximately	recovers	M	from	

Cnr2 F
M 2

σr2
observations

Running	time	and	space	complexity	are	better
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min			X					s.t.
*

(i,j) Ω

|Xi,j–Mi,j|	≤	η (P)

What	if	an	adversary	reveals	more	entries	of	M?

still	works,	it’s	just	more	constraints

Convex	program:

Alternating	minimization:

Are	there	variants	that	work	in	semi-random	models?



LOOKING	FORWARD

Are	there	nonconvexmethods	that	match	the	robustness
guarantees	of	convex	relaxations?



LOOKING	FORWARD

Are	there	nonconvexmethods	that	match	the	robustness
guarantees	of	convex	relaxations?

What	models	of	robustness	make	sense	for	your	favorite	
problems?



LOOKING	FORWARD

Are	there	nonconvexmethods	that	match	the	robustness
guarantees	of	convex	relaxations?

What	models	of	robustness	make	sense	for	your	favorite	
problems?

Thanks!	Any	Questions?


