What Does Robustness Say About Algorithms?

Ankur Moitra (MIT)

ICML 2017 Tutorial, August 6 ${ }^{\text {th }}$

Let me tell you a story about the tension between sharp thresholds and robustness

THE STOCHASTIC BLOCK MODEL

Introduced by Holland, Laskey and Leinhardt (1983):

- k communities
- connection probabilities

- edges independent

THE STOCHASTIC BLOCK MODEL

 Introduced by Holland, Laskey and Leinhardt (1983):

- k communities
- connection probabilities

- edges independent

Ubiquitous model studied in statistics, computer science, information theory, statistical physics

Testbed for diverse range of algorithms
(1) Combinatorial Methods e.g. degree counting [Bui, Chaudhuri, Leighton, Sipser '87]

Testbed for diverse range of algorithms
(1) Combinatorial Methods
e.g. degree counting [Bui, Chaudhuri, Leighton, Sipser '87]
(2) Spectral Methods e.g. [McSherry '01]

Testbed for diverse range of algorithms
(1) Combinatorial Methods
e.g. degree counting [Bui, Chaudhuri, Leighton, Sipser '87]
(2) Spectral Methods e.g. [McSherry '01]
(3) Markov chain Monte Carlo (MCMC) e.g. [Jerrum, Sorkin '98]

Testbed for diverse range of algorithms
(1) Combinatorial Methods
e.g. degree counting [Bui, Chaudhuri, Leighton, Sipser '87]
(2) Spectral Methods e.g. [McSherry '01]
(3) Markov chain Monte Carlo (MCMC) e.g. [Jerrum, Sorkin '98]
(4) Semidefinite Programs e.g. [Boppana '87]

Testbed for diverse range of algorithms
(1) Combinatorial Methods
e.g. degree counting [Bui, Chaudhuri, Leighton, Sipser '87]
(2) Spectral Methods e.g. [McSherry '01]
(3) Markov chain Monte Carlo (MCMC) e.g. [Jerrum, Sorkin '98]
(4) Semidefinite Programs e.g. [Boppana '87]

These algorithms succeed in some ranges of parameters

Testbed for diverse range of algorithms
(1) Combinatorial Methods e.g. degree counting [Bui, Chaudhuri, Leighton, Sipser '87]
(2) Spectral Methods e.g. [McSherry '01]
(3) Markov chain Monte Carlo (MCMC) e.g. [Jerrum, Sorkin '98]
(4) Semidefinite Programs e.g. [Boppana '87]

These algorithms succeed in some ranges of parameters

> Can we reach the fundamental limits of the SBM?

Following Decelle, Krzakala, Moore and Zdeborová (2011), let's study the sparse regime:

where $a, b=O(1)$ so that there are $O(n)$ edges

Following Decelle, Krzakala, Moore and Zdeborová (2011), let's study the sparse regime:

where $a, b=O(1)$ so that there are $O(n)$ edges
Remark: The degree of each node is Poi($a / 2+b / 2$) hence there are many isolated nodes whose community we cannot find

Following Decelle, Krzakala, Moore and Zdeborová (2011), let's study the sparse regime:

where $a, b=O(1)$ so that there are $O(n)$ edges
Remark: The degree of each node is Poi $(a / 2+b / 2)$ hence there are many isolated nodes whose community we cannot find

Goal (Partial Recovery): Find a partition that has agreement better than $1 / 2$ with true community structure

Following Decelle, Krzakala, Moore and Zdeborová (2011), let's study the sparse regime:

where $a, b=O(1)$ so that there are $O(n)$ edges
Conjecture: Partial recovery is possible iff $(a-b)^{2}>2(a+b)$

Following Decelle, Krzakala, Moore and Zdeborová (2011), let's study the sparse regime:

where $a, b=O(1)$ so that there are $O(n)$ edges
Conjecture: Partial recovery is possible iff $(a-b)^{2}>2(a+b)$

Conjecture is based on fixed points of belief propagation...

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

BELIEF PROPAGATION

Introduced by Judea Pearl (1982):

"For fundamental contributions ... to probabilistic and causal reasoning"

Adapted to community detection:

Do same for all nodes

Adapted to community detection:

Do same for all nodes

Adapted to community detection:

Do same for all nodes

Message $u \rightarrow v$

New probabilityl think
I am community \#1, community \#2, ...

Do same for all nodes

THE TRIVIAL FIXED POINT

Belief propagation has a trivial fixed point where it gets stuck

THE TRIVIAL FIXED POINT

Belief propagation has a trivial fixed point where it gets stuck

$$
\begin{gathered}
\operatorname{Pr}[\text { red }]=1 / 2 \\
\operatorname{Pr}[\text { blue }]=1 / 2 \\
\operatorname{Pr}[\text { blued }]=1 / 2 \\
\operatorname{Pr}[\text { red }]=1 / 2 \\
\operatorname{Pr}[\text { blue }]=1 / 2 \\
\operatorname{Pr}[\text { red }]=1 / 2 \\
\operatorname{Pr}[\text { blue }]=1 / 2
\end{gathered}
$$

THE TRIVIAL FIXED POINT

Belief propagation has a trivial fixed point where it gets stuck

$$
\begin{gathered}
\operatorname{Pr}[\text { red }]=1 / 2 \\
\operatorname{Pr}[\text { blue }]=1 / 2 \\
\operatorname{Pr}[\text { red }]=1 / 2 \\
\operatorname{Pr} \text { blue }]=1 / 2
\end{gathered}
$$

Claim: No one knows anything, so you never have to update your beliefs

THE TRIVIAL FIXED POINT

Belief propagation has a trivial fixed point where it gets stuck

Fact: If $(a-b)^{2}>2(a+b)$ then the trivial fixed point is unstable

THE TRIVIAL FIXED POINT

Belief propagation has a trivial fixed point where it gets stuck

Fact: If $(a-b)^{2}>2(a+b)$ then the trivial fixed point is unstable

Hope: Whatever it finds, solves partial recovery

THE TRIVIAL FIXED POINT

Belief propagation has a trivial fixed point where it gets stuck

Fact: If $(a-b)^{2}>2(a+b)$ then the trivial fixed point is unstable

Hope: Whatever it finds, solves partial recovery

Evidence based on simulations

THE TRIVIAL FIXED POINT

Belief propagation has a trivial fixed point where it gets stuck

Fact: If $(a-b)^{2}>2(a+b)$ then the trivial fixed point is unstable

Hope: Whatever it finds, solves partial recovery

Evidence based on simulations

And if $(a-b)^{2} \leq 2(a+b)$ and it does get stuck, then maybe partial recovery is information theoretically impossible?

CONJECTURE IS PROVED!

Mossel, Neeman and Sly (2013) and Massoulie (2013):

Theorem: It is possible to find a partition that is correlated with true communities iff $(a-b)^{2}>2(a+b)$

CONJECTURE IS PROVED!

Mossel, Neeman and Sly (2013) and Massoulie (2013):
Theorem: It is possible to find a partition that is correlated with true communities iff $(a-b)^{2}>2(a+b)$

Later attempts based on SDPs only get to

$$
(\mathrm{a}-\mathrm{b})^{2}>\mathrm{C}(\mathrm{a}+\mathrm{b}) \text {, for some } \mathrm{C}>2
$$

CONJECTURE IS PROVED!

Mossel, Neeman and Sly (2013) and Massoulie (2013):
Theorem: It is possible to find a partition that is correlated with true communities iff $(a-b)^{2}>2(a+b)$

Later attempts based on SDPs only get to

$$
(a-b)^{2}>C(a+b) \text {, for some } C>2
$$

Are nonconvex methods better than convex programs?

CONJECTURE IS PROVED!

Mossel, Neeman and Sly (2013) and Massoulie (2013):
Theorem: It is possible to find a partition that is correlated with true communities iff $(a-b)^{2}>2(a+b)$

Later attempts based on SDPs only get to

$$
(a-b)^{2}>C(a+b) \text {, for some } C>2
$$

Are nonconvex methods better than convex programs?

How do predictions of statistical physics and SDPs compare?

CONJECTURE IS PROVED!

Mossel, Neeman and Sly (2013) and Massoulie (2013):
Theorem: It is possible to find a partition that is correlated with true communities iff $(a-b)^{2}>2(a+b)$

Later attempts based on SDPs only get to

$$
(a-b)^{2}>C(a+b) \text {, for some } C>2
$$

Are nonconvex methods better than convex programs?

How do predictions of statistical physics and SDPs compare?

Robustness will be a key player in the answers

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

SEMI-RANDOM MODELS

Introduced by Blum and Spencer (1995), Feige and Kilian (2001):

SEMI-RANDOM MODELS

Introduced by Blum and Spencer (1995), Feige and Kilian (2001):
(1) Sample graph from SBM

SEMI-RANDOM MODELS

Introduced by Blum and Spencer (1995), Feige and Kilian (2001):
(1) Sample graph from SBM

(2) Adversary can add edges within community and delete edges crossing

SEMI-RANDOM MODELS

Introduced by Blum and Spencer (1995), Feige and Kilian (2001):
(1) Sample graph from SBM

(2) Adversary can add edges within community and delete edges crossing

SEMI-RANDOM MODELS

Introduced by Blum and Spencer (1995), Feige and Kilian (2001):
(1) Sample graph from SBM

(2) Adversary can add edges within community and delete edges crossing

SEMI-RANDOM MODELS

Introduced by Blum and Spencer (1995), Feige and Kilian (2001):
(1) Sample graph from SBM

(2) Adversary can add edges within community and delete edges crossing

Algorithms can no longer over tune to distribution

A NON-ROBUST ALGORITHM

Consider the following SBM:

A NON-ROBUST ALGORITHM

Consider the followingSBM:

Number of common neighbors
Nodes from same community: $\left(\frac{1}{2}\right)^{2} \frac{n}{2}+\left(\frac{1}{4}\right)^{2} \frac{n}{2}$

A NON-ROBUST ALGORITHM

Consider the followingSBM:

Number of common neighbors
Nodes from same community: $\left(\frac{1}{2}\right)^{2} \frac{n}{2}+\left(\frac{1}{4}\right)^{2} \frac{n}{2}$
Nodes from diff. community: $\left(\frac{1}{2}\right)\left(\frac{1}{4}\right) n$

A NON-ROBUST ALGORITHM

Consider the followingSBM:

Number of common neighbors
Nodes from same community: $\left(\frac{1}{2}\right)^{2} \frac{n}{2}+\left(\frac{1}{4}\right)^{2} \frac{n}{2}$
Nodes from diff. community: $\left(\frac{1}{2}\right)\left(\frac{1}{4}\right) n$

A NON-ROBUST ALGORITHM

Semi-random adversary: Add clique to red community

A NON-ROBUST ALGORITHM

Semi-random adversary: Add clique to red community

Number of common neighbors

Nodes from blue community: $\left(\frac{1}{2}\right)^{2} \frac{n}{2}+\left(\frac{1}{4}\right)^{2} \frac{n}{2}$

A NON-ROBUST ALGORITHM

Semi-random adversary: Add clique to red community

Number of common neighbors

Nodes from blue community: $\left(\frac{1}{2}\right)^{2} \frac{n}{2}+\left(\frac{1}{4}\right)^{2} \frac{n}{2}$
Nodes from diff. community: $\left(\frac{1}{2}\right)\left(\frac{1}{4}\right) \frac{n}{2}+\left(\frac{1}{4}\right) \frac{n}{2}$

A NON-ROBUST ALGORITHM

Semi-random adversary: Add clique to red community

Number of common neighbors

Nodes from blue community: $\left(\frac{1}{2}\right)^{2} \frac{n}{2}+\left(\frac{1}{4}\right)^{2} \frac{n}{2}$
Nodes from diff. community: $\left(\frac{1}{2}\right)\left(\frac{1}{4}\right) \frac{n}{2}+\left(\frac{1}{4}\right) \frac{n}{2}$

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

SHARPNESS VS. ROBUSTNESS

Monotone changes break most algorithms, in fact something more fundamental is happening:

SHARPNESS VS. ROBUSTNESS

Monotone changes break most algorithms, in fact something more fundamental is happening:

Theorem [Moitra, Perry, Wein '16]: It is information theoretically impossible to recover a partition correlated with true communities for $(a-b)^{2} \leq C_{a, b}(a+b)$ for some $C_{a, b}>2$ in the semirandom model

SHARPNESS VS. ROBUSTNESS

Monotone changes break most algorithms, in fact something more fundamental is happening:

Theorem [Moitra, Perry, Wein '16]: It is information theoretically impossible to recover a partition correlated with true communities for ($a-b)^{2} \leq C_{a, b}(a+b)$ for some $C_{a, b}>2$ in the semirandom model

But SDPs continue to work in semirandom model

SHARPNESS VS. ROBUSTNESS

Monotone changes break most algorithms, in fact something more fundamental is happening:

Theorem [Moitra, Perry, Wein '16]: It is information theoretically impossible to recover a partition correlated with true communities for ($a-b)^{2} \leq C_{a, b}(a+b)$ for some $C_{a, b}>2$ in the semirandom model

But SDPs continue to work in semirandom model

Being robust can make the problem strictly harder, but why?

SHARPNESS VS. ROBUSTNESS

Monotone changes break most algorithms, in fact something more fundamental is happening:

Theorem [Moitra, Perry, Wein '16]: It is information theoretically impossible to recover a partition correlated with true communities for $(a-b)^{2} \leq C_{a, b}(a+b)$ for some $C_{a, b}>2$ in the semirandom model

But SDPs continue to work in semirandom model

Being robust can make the problem strictly harder, but why?
Reaching the sharp threshold for community detection requires exploiting the structure of the noise

Let's explore robustness vs. sharpness in a simpler model

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

BROADCAST TREE MODEL

(1) Root is either red/blue

BROADCAST TREE MODEL

(1) Root is either red/blue
(2) Each node gives birth to Poi(a/2) nodes of same color and Poi(b/2) nodes of opposite color

BROADCAST TREE MODEL

(1) Root is either red/blue
(2) Each node gives birth to Poi(a/2) nodes of same color and Poi(b/2) nodes of opposite color

BROADCAST TREE MODEL

(1) Root is either red/blue
(2) Each node gives birth to Poi(a/2) nodes of same color and Poi(b/2) nodes of opposite color

BROADCAST TREE MODEL

(1) Root is either red/blue
(2) Each node gives birth to Poi(a/2) nodes of same color and Poi(b/2) nodes of opposite color

BROADCAST TREE MODEL

(1) Root is either red/blue
(2) Each node gives birth to Poi(a/2) nodes of same color and Poi(b/2) nodes of opposite color

BROADCAST TREE MODEL

(1) Root is either red/blue
(2) Each node gives birth to Poi(a/2) nodes of same color and Poi(b/2) nodes of opposite color
(3) Goal: From leaves and unlabeled tree, guess color of root with > $1 / 2$ prob. indep. of n (\# of levels)

BROADCAST TREE MODEL

(1) Root is either red/blue
(2) Each node gives birth to Poi(a/2) nodes of same color and Poi(b/2) nodes of opposite color
(3) Goal: From leaves and unlabeled tree, guess color of root with > $1 / 2$ prob. indep. of n (\# of levels)

This is the natural analogue for partial recovery

BROADCAST TREE MODEL

(1) Root is either red/blue
(2) Each node gives birth to Poi(a/2) nodes of same color and Poi(b/2) nodes of opposite color
(3) Goal: From leaves and unlabeled tree, guess color of root with > $1 / 2$ prob. indep. of n (\# of levels)

For what values of a and b can we guess the root?

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

THE KESTEN STIGUM BOUND

"Best way to reconstruct root from leaves is majority vote"

THE KESTEN STIGUM BOUND

"Best way to reconstruct root from leaves is majority vote"

Theorem [Kesten, Stigum, '66]: Majority vote of the leaves succeeds with probability $>1 / 2$ iff $(a-b)^{2}>2(a+b)$

THE KESTEN STIGUM BOUND

"Best way to reconstruct root from leaves is majority vote"
Theorem [Kesten, Stigum, '66]: Majority vote of the leaves succeeds with probability $>1 / 2$ iff $(a-b)^{2}>2(a+b)$

More generally, gave a limit theorem for multi-type branching processes

THE KESTEN STIGUM BOUND

"Best way to reconstruct root from leaves is majority vote"
Theorem [Kesten, Stigum, '66]: Majority vote of the leaves succeeds with probability $>1 / 2$ iff $(a-b)^{2}>2(a+b)$

More generally, gave a limit theorem for multi-type branching processes

Theorem [Evans et al., '00]: Reconstruction is information theoretically impossible if $(a-b)^{2} \leq 2(a+b)$

THE KESTEN STIGUM BOUND

"Best way to reconstruct root from leaves is majority vote"
Theorem [Kesten, Stigum, '66]: Majority vote of the leaves succeeds with probability $>1 / 2$ iff $(a-b)^{2}>2(a+b)$

More generally, gave a limit theorem for multi-type branching processes

Theorem [Evans et al., '00]: Reconstruction is information theoretically impossible if $(a-b)^{2} \leq 2(a+b)$

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

SEMIRANDOM BROADCAST TREE MODEL

Definition: A semirandom adversary can cut edges between nodes of opposite colors and remove entire subtree

SEMIRANDOM BROADCAST TREE MODEL

Definition: A semirandom adversary can cut edges between nodes of opposite colors and remove entire subtree

SEMIRANDOM BROADCAST TREE MODEL

Definition: A semirandom adversary can cut edges between nodes of opposite colors and remove entire subtree

SEMIRANDOM BROADCAST TREE MODEL

Definition: A semirandom adversary can cut edges between nodes of opposite colors and remove entire subtree

Analogous to cutting edges between communities, and changing the local neighborhood in the SBM

SEMIRANDOM BROADCAST TREE MODEL

Definition: A semirandom adversary can cut edges between nodes of opposite colors and remove entire subtree

Analogous to cutting edges between communities, and changing the local neighborhood in the SBM

Can the adversary usually flip the majority vote?

Key Observation: Some node’s descendants vote opposite way

Key Observation: Some node’s descendants vote opposite way

Key Observation: Some node’s descendants vote opposite way

Near the Kesten-Stigum bound, this happens everywhere

Key Observation: Some node’s descendants vote opposite way

By cutting these edges, adversary can usually flip majority vote

This breaks majority vote, but how do we move the information theoretic threshold?

This breaks majority vote, but how do we move the information theoretic threshold?

Need carefully chosen adversary where we can prove things about the distribution we get after he's done

This breaks majority vote, but how do we move the information theoretic threshold?

Need carefully chosen adversary where we can prove things about the distribution we get after he's done
e.g. If we cut every subtree where this happens, would mess up independence properties

More likely to have red children, given his parent is red and he was not cut

This breaks majority vote, but how do we move the information theoretic threshold?

Need carefully chosen adversary where we can prove things about the distribution we get after he's done

Need to design adversary that puts us back into nice model
e.g. a model on a tree where a sharp threshold is known

This breaks majority vote, but how do we move the information theoretic threshold?

Need carefully chosen adversary where we can prove things about the distribution we get after he's done

Need to design adversary that puts us back into nice model
e.g. a model on a tree where a sharp threshold is known

Following [Mossel, Neeman, Sly] we can embed the lower bound for semi-random BTM in semi-random SBM

This breaks majority vote, but how do we move the information theoretic threshold?

Need carefully chosen adversary where we can prove things about the distribution we get after he's done

Need to design adversary that puts us back into nice model
e.g. a model on a tree where a sharp threshold is known

Following [Mossel, Neeman, Sly] we can embed the lower bound for semi-random BTM in semi-random SBM
e.g. Usual complication: once I reveal colors at boundary of neighborhood, need to show there's little information you can get from rest of graph

SHARPNESS VS. ROBUSTNESS, CONTINUED

"Helpful" changes can hurt:
Theorem [Moitra, Perry, Wein '16]: Reconstruction in semi-random broadcast tree model is information theoretically impossible for $(a-b)^{2} \leq C_{a, b}(a+b)$ for some $C_{a, b}>2$

SHARPNESS VS. ROBUSTNESS, CONTINUED

"Helpful" changes can hurt:
Theorem [Moitra, Perry, Wein '16]: Reconstruction in semi-random broadcast tree model is information theoretically impossible for $(a-b)^{2} \leq C_{a, b}(a+b)$ for some $C_{a, b}>2$

Is there any algorithm that succeeds in semirandom BTM?

SHARPNESS VS. ROBUSTNESS, CONTINUED

"Helpful" changes can hurt:
Theorem [Moitra, Perry, Wein '16]: Reconstruction in semi-random broadcast tree model is information theoretically impossible for $(a-b)^{2} \leq C_{a, b}(a+b)$ for some $C_{a, b}>2$

Is there any algorithm that succeeds in semirandom BTM?

Theorem [Moitra, Perry, Wein '16]: Recursive majority succeeds in semi-random broadcasttree model if

$$
(a-b)^{2}>(2+o(1))(a+b) \log \frac{a+b}{2}
$$

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

OUTLINE

Part I: Introduction

- The Stochastic Block Model
- Belief Propagation and its Predictions
- Semi-Random Models
- Sharpness vs. Robustness

Part II: Broadcast Tree Model

- The Kesten-Stigum Bound
- Non-Robustness of Majority

Part III: Above Average-Case?

Recursive majority is used in practice, despite the fact that it is known not to achieve the KS bound, why?

Recursive majority is used in practice, despite the fact that it is known not to achieve the KS bound, why?

Models are a measuring stick to compare algorithms, but are we studying the right ones?

Recursive majority is used in practice, despite the fact that it is known not to achieve the KS bound, why?

Models are a measuring stick to compare algorithms, but are we studying the right ones?

Average-case models: When we have many algorithms, can we find the best one?

Recursive majority is used in practice, despite the fact that it is known not to achieve the KS bound, why?

Models are a measuring stick to compare algorithms, but are we studying the right ones?

Average-case models: When we have many algorithms, can we find the best one?

Semi-random models: When recursive majority works, it's not exploiting the structure of the noise

Recursive majority is used in practice, despite the fact that it is known not to achieve the KS bound, why?

Models are a measuring stick to compare algorithms, but are we studying the right ones?

Average-case models: When we have many algorithms, can we find the best one?

Semi-random models: When recursive majority works, it's not exploiting the structure of the noise

This is an axis on which recursive majority is superior

BETWEEN WORST-CASE AND AVERAGE-CASE

Spielman and Teng (2001):
"Explain why algorithms work well in practice, despite bad worst-case behavior"

Usually called Beyond Worst-Case Analysis

BETWEEN WORST-CASE AND AVERAGE-CASE

Spielman and Teng (2001):

> "Explain why algorithms work well in practice, despite bad worst-case behavior"

Usually called Beyond Worst-Case Analysis

Semirandom models as Above Average-Case Analysis?

BETWEEN WORST-CASE AND AVERAGE-CASE

Spielman and Teng (2001):
"Explain why algorithms work well in practice, despite bad worst-case behavior"

Usually called Beyond Worst-Case Analysis

Semirandom models as Above Average-Case Analysis?

What else are we missing, if we only study problems in the average-case?

THE NETFLIX PROBLEM

Let M be an unknown, low-rank matrix

THE NETFLIX PROBLEM

Let M be an unknown, low-rank matrix

Model: We are given random observations $\mathrm{M}_{\mathrm{i}, \mathrm{j}}$ for all $\mathrm{i}, \mathrm{j} \in \Omega$

THE NETFLIX PROBLEM

Let M be an unknown, low-rank matrix

Model: We are given random observations $\mathrm{M}_{\mathrm{i}, \mathrm{j}}$ for all $\mathrm{i}, \mathrm{j} \in \Omega$
Is there an efficient algorithm to recover M?

CONVEX PROGRAMMING APPROACH

$$
\begin{equation*}
\min \|x\|_{*} \text { s.t. } \sum_{(i, j) \in \Omega}\left|X_{i, j}-M_{i, j}\right| \leq \eta \tag{P}
\end{equation*}
$$

Here $\|x\|_{*}$ is the nuclear norm, i.e. sum of the singular values of X
[Fazel], [Srebro, Shraibman], [Recht, Fazel, Parrilo], [Candes, Recht], [Candes, Tao], [Candes, Plan], [Recht],

CONVEX PROGRAMMING APPROACH

$$
\min \|x\|_{*} \text { s.t. } \sum_{(i, j) \in \Omega}\left|X_{i, j}-M_{i, j}\right| \leq \eta \quad \text { (P) }
$$

Here $\|x\|_{*}$ is the nuclear norm, i.e. sum of the singular values of X
[Fazel], [Srebro, Shraibman], [Recht, Fazel, Parrilo], [Candes, Recht], [Candes, Tao], [Candes, Plan], [Recht],

Theorem: If M is $\mathrm{n} \times \mathrm{n}$ and has rank r , and is C -incoherent then (P) recovers M exactly from $C^{6} n$ rlog $^{2} n$ observations

ALTERNATING MINIMIZATION

Repeat:

$$
\begin{aligned}
& U \leftarrow \underset{U}{\operatorname{argmin}} \sum_{(i, j) \in \Omega}\left|\left(U V^{\top}\right)_{i, j}-M_{i, j}\right|^{2} \\
& V \leftarrow \underset{V}{\operatorname{argmin}} \sum_{(i, j) \in \Omega}\left|\left(U V^{\top}\right)_{i, j}-M_{i, j}\right|^{2}
\end{aligned}
$$

[Keshavan, Montanari, Oh], [Jain, Netrapalli, Sanghavi], [Hardt]

ALTERNATING MINIMIZATION

Repeat:

$$
\begin{aligned}
& U \leftarrow \underset{U}{\operatorname{argmin}} \sum_{(i, j) \in \Omega}\left|\left(U V^{\top}\right)_{i, j}-M_{i, j}\right|^{2} \\
& V \leftarrow \underset{V}{\operatorname{argmin}} \sum_{(i, j) \in \Omega}\left|\left(U V^{\top}\right)_{i, j}-M_{i, j}\right|^{2}
\end{aligned}
$$

[Keshavan, Montanari, Oh], [Jain, Netrapalli, Sanghavi], [Hardt]

Theorem: If M is nxn and has rank r , and is C -incoherent then alternating minimization approximately recovers M from

$$
\mathrm{Cnr}^{2} \frac{\|\mathrm{M}\|_{\mathrm{F}}^{2}}{\sigma_{\mathrm{r}}^{2}} \text { observations }
$$

ALTERNATING MINIMIZATION

Repeat:

$$
\begin{aligned}
& U \leftarrow \underset{U}{\operatorname{argmin}} \sum_{(i, j) \in \Omega}\left|\left(U V^{\top}\right)_{i, j}-M_{i, j}\right|^{2} \\
& V \leftarrow \underset{V}{\operatorname{argmin}} \sum_{(i, j) \in \Omega}\left|\left(U V^{\top}\right)_{i, j}-M_{i, j}\right|^{2}
\end{aligned}
$$

[Keshavan, Montanari, Oh], [Jain, Netrapalli, Sanghavi], [Hardt]

Theorem: If M is $\mathrm{n} \times \mathrm{n}$ and has rank r , and is C -incoherent then alternating minimization approximately recovers M from

$$
\mathrm{Cnr}^{2} \frac{\|\mathrm{M}\|_{\mathrm{F}}^{2}}{\sigma_{\mathrm{r}}^{2}} \text { observations }
$$

Running time and space complexity are better

What if an adversary reveals more entries of M ?

What if an adversary reveals more entries of M ?

Convex program:

$$
\min \|x\|_{*} \text { s.t. } \sum_{(i, j) \in \Omega}\left|X_{i, j}-M_{i, j}\right| \leq \eta \quad(P)
$$

still works, it's just more constraints

What if an adversary reveals more entries of M ?

Convex program:

$$
\min \|x\|_{*} \text { s.t. } \sum_{(i, j) \in \Omega}\left|X_{i, j}-M_{i, j}\right| \leq \eta \quad(P)
$$

still works, it's just more constraints

Alternating minimization:

Analysis completely breaks down

observed matrix is no longer good spectral approx. to M

What if an adversary reveals more entries of M ?

Convex program:

$$
\min \|x\|_{*} \text { s.t. } \sum_{(i, j) \in \Omega}\left|X_{i, j}-M_{i, j}\right| \leq \eta \quad(P)
$$

still works, it's just more constraints

Alternating minimization:

Are there variants that work in semi-random models?

LOOKING FORWARD

Are there nonconvex methods that match the robustness guarantees of convex relaxations?

LOOKING FORWARD

Are there nonconvex methods that match the robustness guarantees of convex relaxations?

What models of robustness make sense for your favorite problems?

LOOKING FORWARD

Are there nonconvex methods that match the robustness guarantees of convex relaxations?

What models of robustness make sense for your favorite problems?

Thanks! Any Questions?

