Efficiently Learning Mixtures of Gaussians

Ankur Moitra, MIT

joint work with Adam Tauman Kalai and Gregory Valiant

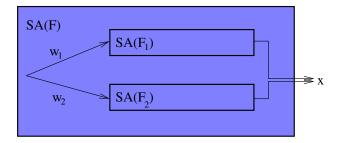
May 11, 2010

<ロト <回ト < 注ト < 注ト = 注

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ● | ● ○ ○ ○ ○

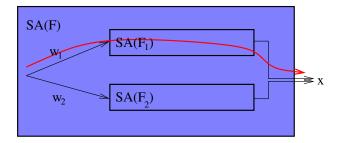
Distribution on \Re^n ($w_1, w_2 \ge 0, w_1 + w_2 = 1$):

Distribution on \Re^n ($w_1, w_2 \ge 0, w_1 + w_2 = 1$):



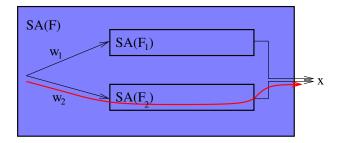
▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - のへで

Distribution on \Re^n ($w_1, w_2 \ge 0, w_1 + w_2 = 1$):

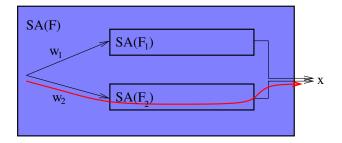


< ロ > (四 > (四 > (三 > (三 >))) 문 (-)

Distribution on \Re^n ($w_1, w_2 \ge 0, w_1 + w_2 = 1$):



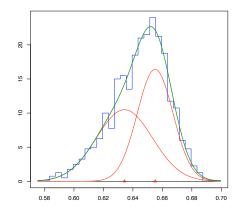
Distribution on \Re^n ($w_1, w_2 \ge 0, w_1 + w_2 = 1$):



 $F(x) = w_1 \mathcal{N}(\mu_1, \Sigma_1, x) + w_2 \mathcal{N}(\mu_2, \Sigma_2, x)$

Pearson and the Naples Crabs

(figure due to Peter Macdonald)



◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで

Let $F(x) = w_1F_1(x) + w_2F_2(x)$, where $F_i(x) = \mathcal{N}(\mu_i, \sigma_i^2, x)$

Let
$$F(x) = w_1 F_1(x) + w_2 F_2(x)$$
, where $F_i(x) = \mathcal{N}(\mu_i, \sigma_i^2, x)$

We will refer to $E_{x \leftarrow F_i(x)}[x^r]$ as the r^{th} -raw moment of $F_i(x)$

Let
$$F(x) = w_1 F_1(x) + w_2 F_2(x)$$
, where $F_i(x) = \mathcal{N}(\mu_i, \sigma_i^2, x)$

We will refer to $E_{x \leftarrow F_i(x)}[x^r]$ as the r^{th} -raw moment of $F_i(x)$

• There are five unknown variables: $w_1, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let
$$F(x) = w_1 F_1(x) + w_2 F_2(x)$$
, where $F_i(x) = \mathcal{N}(\mu_i, \sigma_i^2, x)$

We will refer to $E_{x \leftarrow F_i(x)}[x^r]$ as the r^{th} -raw moment of $F_i(x)$

- There are five unknown variables: $w_1, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2$
- **2** The r^{th} -raw moment of $F_i(x)$ is a polynomial in μ_i, σ_i

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let
$$F(x) = w_1 F_1(x) + w_2 F_2(x)$$
, where $F_i(x) = \mathcal{N}(\mu_i, \sigma_i^2, x)$

We will refer to $E_{x \leftarrow F_i(x)}[x^r]$ as the r^{th} -raw moment of $F_i(x)$

- There are five unknown variables: $w_1, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2$
- **2** The r^{th} -raw moment of $F_i(x)$ is a polynomial in μ_i, σ_i

▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - のへで

Definition

Let $E_{x \leftarrow F_i(x)}[x^r] = M_r(\mu_i, \sigma_i^2)$

Question

What if we knew the r^{th} -raw moment of F(x) perfectly?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Question

What if we knew the r^{th} -raw moment of F(x) perfectly?

Each value yields a constraint:

$$E_{x \leftarrow F(x)}[x^{r}] = w_{1}M_{r}(\mu_{1}, \sigma_{1}^{2}) + w_{2}M_{r}(\mu_{2}, \sigma_{2}^{2})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Question

What if we knew the r^{th} -raw moment of F(x) perfectly?

Each value yields a constraint:

$$E_{x \leftarrow F(x)}[x^{r}] = w_{1}M_{r}(\mu_{1}, \sigma_{1}^{2}) + w_{2}M_{r}(\mu_{2}, \sigma_{2}^{2})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Definition

We will refer to $\tilde{M}_r = \frac{1}{|S|} \sum_{i \in S} x_i^r$ as the empirical r^{th} -raw moment of F(x)

Pearson's Sixth Moment Test

- イロト イヨト イヨト イヨト ヨー のへの

• Compute the empirical r^{th} -raw moments \tilde{M}_r for $r \in \{1, 2, ...6\}$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

• Compute the empirical r^{th} -raw moments \tilde{M}_r for $r \in \{1, 2, ...6\}$ • Find all simultaneous roots of

$$\{w_1M_r(\mu_1,\sigma_1^2) + (1-w_1)M_r(\mu_2,\sigma_2^2) = \tilde{M}_r\}_{r \in \{1,2,\dots,5\}}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Gompute the empirical *rth*-raw moments *M̃*_r for *r* ∈ {1, 2, ...6}
Find all simultaneous roots of

$$\{w_1M_r(\mu_1,\sigma_1^2) + (1-w_1)M_r(\mu_2,\sigma_2^2) = \tilde{M}_r\}_{r \in \{1,2,\dots 5\}}$$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 _ 釣�?

• This yields a list of candidate parameters $\vec{\theta^a}, \vec{\theta^b}, \dots$

Q Compute the empirical *rth*-raw moments *M̃_r* for *r* ∈ {1, 2, ...6}
Q Find all simultaneous roots of

$$\{w_1M_r(\mu_1,\sigma_1^2) + (1-w_1)M_r(\mu_2,\sigma_2^2) = \tilde{M}_r\}_{r \in \{1,2,\dots 5\}}$$

- This yields a list of candidate parameters $\vec{\theta^a}, \vec{\theta^b}, \dots$
- Choose the candidate that is closest in sixth moment:

$$w_1 M_6(\mu_1, \sigma_1^2) + (1 - w_1) M_6(\mu_2, \sigma_2^2) \approx \tilde{M}_6$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

"Given the probable error of every ordinate of a frequency-curve, what are the probable errors of the elements of the two normal curves into which it may be dissected?" [Karl Pearson]

Question

How does noise in the empirical moments translate to noise in the derived parameters?

<ロト <四ト <注ト <注ト = 三

Goal

Estimate parameters in order to understand underlying process

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 _ 釣�?

Goal

Estimate parameters in order to understand underlying process

Question

Can we **PROVABLY** recover the parameters **EFFICIENTLY**? (Dasgupta, 1999)

《曰》 《圖》 《臣》 《臣》

Goal

Estimate parameters in order to understand underlying process

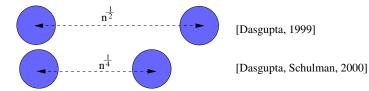
Question

Can we **PROVABLY** recover the parameters **EFFICIENTLY**? (Dasgupta, 1999)

《曰》 《問》 《臣》 《臣》 三臣

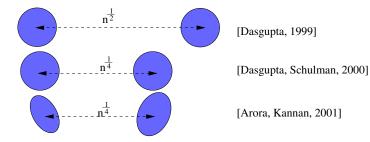
Definition

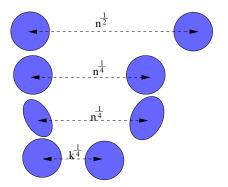
 $D(f(x),g(x)) = \frac{1}{2} ||f(x) - g(x)||_1$



<ロト (四) (三) (三) (三)

æ



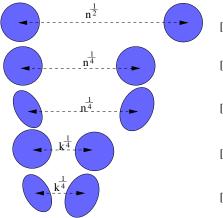


[Dasgupta, 1999]

[Dasgupta, Schulman, 2000]

[Arora, Kannan, 2001]

[Vempala, Wang, 2002]



[Dasgupta, 1999]

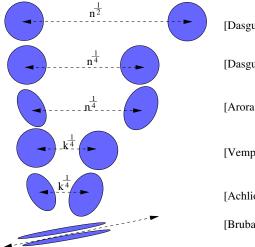
[Dasgupta, Schulman, 2000]

[Arora, Kannan, 2001]

[Vempala, Wang, 2002]

[Achlioptas, McSherry, 2005]

(ロ) (日) (日) (日) (日)



[Dasgupta, 1999]

[Dasgupta, Schulman, 2000]

[Arora, Kannan, 2001]

[Vempala, Wang, 2002]

[Achlioptas, McSherry, 2005]

[Brubaker, Vempala, 2008]

(日) (四) (三) (三) (三)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

... because the results relied on **CLUSTERING**

... because the results relied on **CLUSTERING**

Question

Can we learn the parameters of the mixture without clustering?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

... because the results relied on **CLUSTERING**

Question

Can we learn the parameters of the mixture without clustering?

Question

Can we learn the parameters when $D(F_1, F_2)$ is close to **ZERO**?

<ロト <回ト < 注ト < 注ト = 注

Goal

Learn a mixture $\hat{F} = \hat{w}_1 \hat{F}_1 + \hat{w}_2 \hat{F}_2$ so that there is a permutation $\pi : \{1,2\} \rightarrow \{1,2\}$ and for $i = \{1,2\}$

$$|w_i - \hat{w}_{\pi(i)}| \leq \epsilon, D(F_i, \hat{F}_{\pi(i)}) \leq \epsilon$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Goal

Learn a mixture $\hat{F} = \hat{w}_1 \hat{F}_1 + \hat{w}_2 \hat{F}_2$ so that there is a permutation $\pi : \{1, 2\} \rightarrow \{1, 2\}$ and for $i = \{1, 2\}$

$$|w_i - \hat{w}_{\pi(i)}| \leq \epsilon, D(F_i, \hat{F}_{\pi(i)}) \leq \epsilon$$

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

We will call such a mixture $\hat{F} \epsilon$ -close to F.

Goal

Learn a mixture $\hat{F} = \hat{w}_1 \hat{F}_1 + \hat{w}_2 \hat{F}_2$ so that there is a permutation $\pi : \{1,2\} \rightarrow \{1,2\}$ and for $i = \{1,2\}$

$$|w_i - \hat{w}_{\pi(i)}| \leq \epsilon, D(F_i, \hat{F}_{\pi(i)}) \leq \epsilon$$

<ロト <四ト <至ト <至ト = 至

We will call such a mixture $\hat{F} \epsilon$ -close to F.

Question

When can we hope to learn an ϵ -close estimate?

What if $w_1 = 0$?

What if $w_1 = 0$?

We never sample from F_1 !

What if $w_1 = 0$?

We never sample from F_1 !

Question

What if $D(F_1, F_2) = 0$?

What if $w_1 = 0$?

We never sample from F_1 !

Question

What if $D(F_1, F_2) = 0$?

For any $w_1, w_2, F = w_1F_1 + w_2F_2$ is the same distribution!

(日) (문) (문) (문) (문)

What if $w_1 = 0$?

We never sample from F_1 !

Question

What if $D(F_1, F_2) = 0$?

For any $w_1, w_2, F = w_1F_1 + w_2F_2$ is the same distribution!

Definition

A mixture of Gaussians $F = w_1F_1 + w_2F_2$ is ϵ -statistically learnable if for $i = \{1, 2\}$, $w_i \ge \epsilon$ and $D(F_1, F_2) \ge \epsilon$.

(日) (四) (문) (문) (문) (문)

Given oracle access to an ϵ -statistically learnable mixture of two Gaussians F:

Given oracle access to an ϵ -statistically learnable mixture of two Gaussians F:

Theorem (Kalai, M, Valiant)

There is an algorithm that (with probability at least $1-\delta$) learns a mixture of two Gaussians \hat{F} that is an ϵ -close estimate to F, and the running time and data requirements are $poly(\frac{1}{\epsilon}, n, \frac{1}{\delta})$.

(日) (四) (音) (音) (音)

Given oracle access to an ϵ -statistically learnable mixture of two Gaussians F:

Theorem (Kalai, M, Valiant)

There is an algorithm that (with probability at least $1 - \delta$) learns a mixture of two Gaussians \hat{F} that is an ϵ -close estimate to F, and the running time and data requirements are poly $(\frac{1}{\epsilon}, n, \frac{1}{\delta})$.

Previously, even no inverse exponential estimator known for $\underline{\text{univariate}}$ mixtures of two Gaussians

<ロト <四ト <注入 <注下 <注下 <

What about mixtures of k Gaussians?

What about mixtures of k Gaussians?

Definition

A mixture of k Gaussians $F = \sum_i w_i F_i$ is ϵ -statistically learnable if for $i = \{1, 2, ..., k\}$, $w_i \ge \epsilon$ and for all $i, j \ D(F_i, F_j) \ge \epsilon$.

《曰》 《聞》 《臣》 《臣》 三臣

What about mixtures of k Gaussians?

Definition

A mixture of k Gaussians $F = \sum_{i} w_i F_i$ is ϵ -statistically learnable if for $i = \{1, 2, ..., k\}, w_i \ge \epsilon$ and for all $i, j \ D(F_i, F_j) \ge \epsilon$.

Definition

An estimate $\hat{F} = \sum_{i} \hat{w}_{i} \hat{F}_{i}$ mixture of k Gaussians is ϵ -close to F if there is a permutation $\pi : \{1, 2, ..., k\} \rightarrow \{1, 2, ..., k\}$ and for $i = \{1, 2, ..., k\}$

$$|w_i - \hat{w}_{\pi(i)}| \leq \epsilon, D(F_i, \hat{F}_{\pi(i)}) \leq \epsilon$$

<ロト <回ト < 注ト < 注ト = 注

Given oracle access to an ϵ -statistically learnable mixture of k Gaussians F:

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Given oracle access to an ϵ -statistically learnable mixture of k Gaussians F:

Theorem (M, Valiant)

There is an algorithm that (with probability at least $1 - \delta$) learns a mixture of k Gaussians \hat{F} that is an ϵ -close estimate to F, and the running time and data requirements are poly $(\frac{1}{\epsilon}, n, \frac{1}{\delta})$.

<ロト <四ト <注ト <注ト = 三

Given oracle access to an ϵ -statistically learnable mixture of k Gaussians F:

Theorem (M, Valiant)

There is an algorithm that (with probability at least $1 - \delta$) learns a mixture of k Gaussians \hat{F} that is an ϵ -close estimate to F, and the running time and data requirements are poly $(\frac{1}{\epsilon}, n, \frac{1}{\delta})$.

The running time and sample complexity depends exponentially on k, but such a dependence is necessary!

・ロト ・四ト ・ヨト ・ヨト

Given oracle access to an ϵ -statistically learnable mixture of k Gaussians F:

Theorem (M, Valiant)

There is an algorithm that (with probability at least $1 - \delta$) learns a mixture of k Gaussians \hat{F} that is an ϵ -close estimate to F, and the running time and data requirements are poly $(\frac{1}{\epsilon}, n, \frac{1}{\delta})$.

The running time and sample complexity depends exponentially on k, but such a dependence is necessary!

Corollary: First polynomial time density estimation for mixtures of Gaussians with no assumptions!

<ロト <四ト <至ト <至ト = 至

Can we give additive guarantees?

Can we give additive guarantees?

Cannot give additive guarantees without defining an appropriate normalization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Can we give additive guarantees?

Cannot give additive guarantees without defining an appropriate normalization

<ロト <回ト < 注ト < 注ト = 注

Definition

A distribution F(x) is in isotropic position if

Can we give additive guarantees?

Cannot give additive guarantees without defining an appropriate normalization

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

Definition

A distribution F(x) is in isotropic position if

$$\bullet E_{x \leftarrow F(x)}[x] = \bar{0}$$

Can we give additive guarantees?

Cannot give additive guarantees without defining an appropriate normalization

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

Definition

A distribution F(x) is in isotropic position if

•
$$E_{x \leftarrow F(x)}[x] = \vec{0}$$

2
$$E_{x \leftarrow F(x)}[(u^T x)^2] = 1$$
 for all $||u|| = 1$

Can we give additive guarantees?

Cannot give additive guarantees without defining an appropriate normalization

Definition

A distribution F(x) is in isotropic position if

$$\bullet E_{x \leftarrow F(x)}[x] = \vec{0}$$

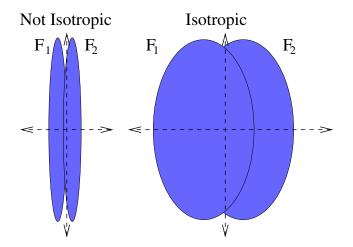
2
$$E_{x \leftarrow F(x)}[(u^T x)^2] = 1$$
 for all $||u|| = 1$

Fact

For any distribution F(x) on \Re^n , there is an affine transformation T that places F(x) in isotropic position

<ロト <四ト <注入 <注下 <注下 <

Isotropic Position



▲ロト ▲母ト ▲ヨト ▲ヨト 三日 - のへで

Mixture F of two Gaussians, ϵ -statistically learnable, and in isotropic position

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

Mixture F of two Gaussians, ϵ -statistically learnable, and in isotropic position

Output

$$\hat{F} = \hat{w}_1 \hat{F}_1 + \hat{w}_2 \hat{F}_2 \ s.t.$$

$$\|\boldsymbol{w}_{i} - \hat{\boldsymbol{w}}_{\pi(i)}\|, \|\boldsymbol{\mu}_{i} - \hat{\boldsymbol{\mu}}_{\pi(i)}\|, \|\boldsymbol{\Sigma}_{i} - \hat{\boldsymbol{\Sigma}}_{\pi(i)}\|_{F} \leq \epsilon$$

・ロト ・御ト ・ヨト ・ヨト

2

Mixture F of two Gaussians, ϵ -statistically learnable, and in isotropic position

Output

$$\hat{F} = \hat{w}_1 \hat{F}_1 + \hat{w}_2 \hat{F}_2 \ s.t.$$

$$\|w_{i} - \hat{w}_{\pi(i)}\|, \|\mu_{i} - \hat{\mu}_{\pi(i)}\|, \|\Sigma_{i} - \hat{\Sigma}_{\pi(i)}\|_{F} \le \epsilon$$

Rough Idea

Consider a series of projections down to one dimension

Mixture F of two Gaussians, ϵ -statistically learnable, and in isotropic position

Output

$$\hat{F} = \hat{w}_1 \hat{F}_1 + \hat{w}_2 \hat{F}_2 \ s.t.$$

$$\|\boldsymbol{w}_{i} - \hat{\boldsymbol{w}}_{\pi(i)}\|, \|\boldsymbol{\mu}_{i} - \hat{\boldsymbol{\mu}}_{\pi(i)}\|, \|\boldsymbol{\Sigma}_{i} - \hat{\boldsymbol{\Sigma}}_{\pi(i)}\|_{F} \leq \epsilon$$

Rough Idea

- Consider a series of projections down to one dimension
- 8 Run a univariate learning algorithm

Mixture F of two Gaussians, ϵ -statistically learnable, and in isotropic position

Output

$$\hat{F} = \hat{w}_1 \hat{F}_1 + \hat{w}_2 \hat{F}_2 \text{ s.t.}$$

$$\|\boldsymbol{w}_{i} - \hat{\boldsymbol{w}}_{\pi(i)}\|, \|\boldsymbol{\mu}_{i} - \hat{\boldsymbol{\mu}}_{\pi(i)}\|, \|\boldsymbol{\Sigma}_{i} - \hat{\boldsymbol{\Sigma}}_{\pi(i)}\|_{F} \leq \epsilon$$

<ロト <四ト <注ト <注ト = 三

Rough Idea

- Consider a series of projections down to one dimension
- 8 Run a univariate learning algorithm
- Use these estimates as constraints in a system of equations

Mixture F of two Gaussians, ϵ -statistically learnable, and in isotropic position

Output

$$\hat{F} = \hat{w}_1 \hat{F}_1 + \hat{w}_2 \hat{F}_2 \text{ s.t.}$$

$$\|\boldsymbol{w}_{i} - \hat{\boldsymbol{w}}_{\pi(i)}\|, \|\boldsymbol{\mu}_{i} - \hat{\boldsymbol{\mu}}_{\pi(i)}\|, \|\boldsymbol{\Sigma}_{i} - \hat{\boldsymbol{\Sigma}}_{\pi(i)}\|_{F} \leq \epsilon$$

イロト イヨト イヨト イヨト

臣

Rough Idea

- Consider a series of projections down to one dimension
- 8 Run a univariate learning algorithm
- Use these estimates as constraints in a system of equations
- Solve this system to obtain higher dimensional estimates

Claim $Proj_r[F_1] = \mathcal{N}(r^T \mu_1, r^T \Sigma_1 r, x)$

◆□▶ ◆□▶ ◆注▶ ◆注▶ - 注

Claim $Proj_r[F_1] = \mathcal{N}(r^T \mu_1, r^T \Sigma_1 r, x)$

Each univariate estimate yields an approximate linear constraint on the parameters

Claim

 $Proj_r[F_1] = \mathcal{N}(r^T \mu_1, r^T \Sigma_1 r, x)$

Each univariate estimate yields an approximate linear constraint on the parameters

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Definition

$$D_{\rho}(\mathcal{N}(\mu_1, \sigma_1^2), \mathcal{N}(\mu_2, \sigma_2^2)) = |\mu_1 - \mu_2| + |\sigma_1^2 - \sigma_2^2|$$

Problem

What if we choose a direction r s.t. $D_p(Proj_r[F_1], Proj_r[F_2])$ is extremely small?

<ロト <回ト < 注ト < 注ト = 注

Problem

What if we choose a direction r s.t. $D_p(Proj_r[F_1], Proj_r[F_2])$ is extremely small?

Then we would need to run the univariate algorithm with extremely fine precision!

<ロト <回ト < 注ト < 注ト = 注

Problem

What if we choose a direction r s.t. $D_p(Proj_r[F_1], Proj_r[F_2])$ is extremely small?

Then we would need to run the univariate algorithm with extremely fine precision!

Isotropic Projection Lemma: With high probability, $D_p(Proj_r[F_1], Proj_r[F_2])$ is at least polynomially large

《曰》 《聞》 《臣》 《臣》 三臣

Problem

What if we choose a direction r s.t. $D_p(Proj_r[F_1], Proj_r[F_2])$ is extremely small?

Then we would need to run the univariate algorithm with extremely fine precision!

Isotropic Projection Lemma: With high probability, $D_p(Proj_r[F_1], Proj_r[F_2])$ is at least polynomially large

<ロト <回ト < 注ト < 注ト = 注

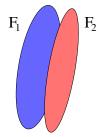
(i.e. at least $poly(\epsilon, \frac{1}{n})$)

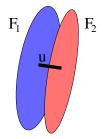
Suppose $F = w_1F_1 + w_2F_2$ is in isotropic position and is ϵ -statistically learnable:

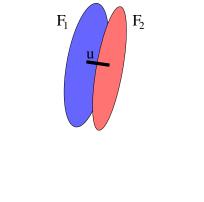
Suppose $F = w_1F_1 + w_2F_2$ is in isotropic position and is ϵ -statistically learnable:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

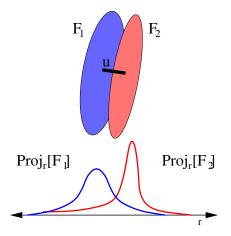
Lemma (Isotropic Projection Lemma) With probability $\geq 1 - \delta$ over a randomly chosen direction r, $D_p(\operatorname{Proj}_r[F_1], \operatorname{Proj}_r[F_2]) \geq \frac{\epsilon^5 \delta^2}{50n^2} = \epsilon_3.$



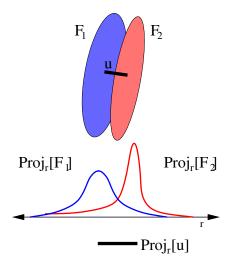




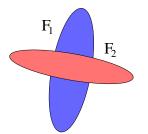
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

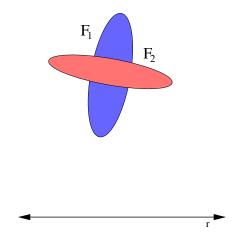


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

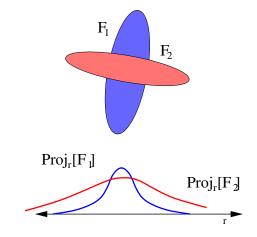


◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで





▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

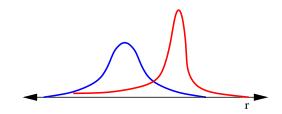


◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

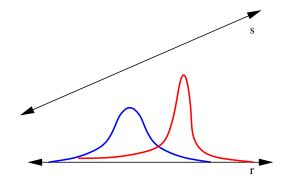
 \hat{F}_1^r,\hat{F}_1^s each yield constraints on multidimensional parameters of one Gaussian in F

 \hat{F}_1^r, \hat{F}_1^s each yield constraints on multidimensional parameters of one Gaussian in FProblem

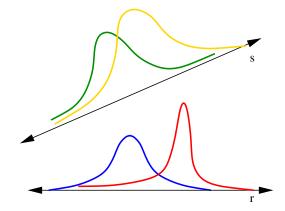
How do we know that they yield constraints on the SAME Gaussian?



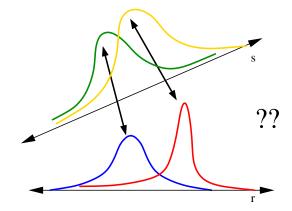
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



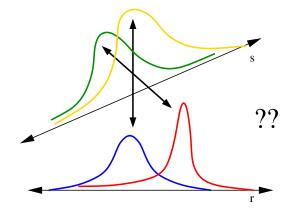
▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで



▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへで



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ つくで

 \hat{F}_1^r,\hat{F}_1^s each yield constraints on multidimensional parameters of one Gaussian in F

Problem

How do we know that they yield constraints on the SAME Gaussian?

 \hat{F}_1^r,\hat{F}_1^s each yield constraints on multidimensional parameters of one Gaussian in F

Problem

How do we know that they yield constraints on the SAME Gaussian?

Pairing Lemma: If we choose directions close enough, then pairing becomes easy

<ロト <四ト <注入 <注下 <注下 <

 \hat{F}_1^r,\hat{F}_1^s each yield constraints on multidimensional parameters of one Gaussian in F

Problem

How do we know that they yield constraints on the SAME Gaussian?

Pairing Lemma: If we choose directions close enough, then pairing becomes easy

<ロト <四ト <注入 <注下 <注下 <

("close enough" depends on the **Isotropic Projection Lemma**)

Suppose $||r - s|| \le \epsilon_2$ (for $\epsilon_2 << \epsilon_3$)

Suppose $||r - s|| \le \epsilon_2$ (for $\epsilon_2 << \epsilon_3$)

We still assume $F = w_1F_1 + w_2F_2$ is in isotropic position and is ϵ -statistically learnable

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

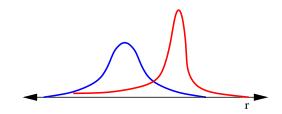
Suppose $\|r - s\| \le \epsilon_2$ (for $\epsilon_2 << \epsilon_3$)

We still assume $F = w_1F_1 + w_2F_2$ is in isotropic position and is ϵ -statistically learnable

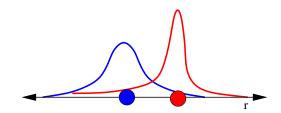
▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - のへで

Lemma (Pairing Lemma)

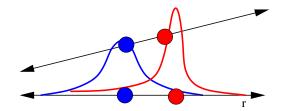
 $D_p(\operatorname{Proj}_r[F_i], \operatorname{Proj}_s[F_i]) \leq O(\frac{\epsilon_2}{\epsilon}) << \frac{\epsilon_3}{3}$



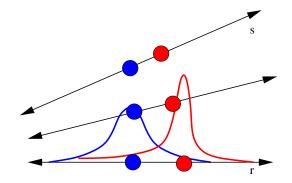
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



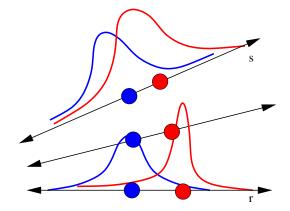
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの



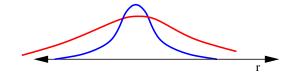
▲□▶ ▲□▶ ▲□▶ ▲□▶ 三臣 - のへで



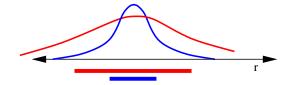
▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 のへで



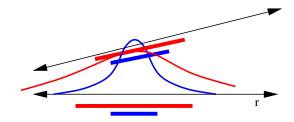
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



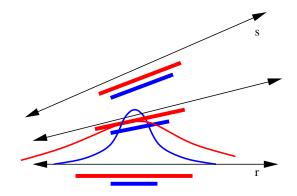
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの



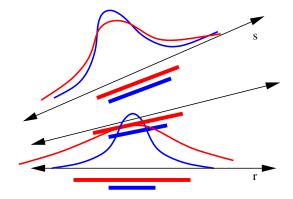
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - 釣�?



▲□▶ ▲□▶ ▲□▶ ▲□▶ 三臣 - のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

$$Proj_r[F_1] = \mathcal{N}(r^T \mu_1, r^T \Sigma_1 r)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

$$Proj_r[F_1] = \mathcal{N}(r^T \mu_1, r^T \Sigma_1 r)$$

Problem

What is the condition number of this system?

$$Proj_r[F_1] = \mathcal{N}(r^T \mu_1, r^T \Sigma_1 r)$$

Problem

What is the condition number of this system? (i.e. How do errors in univariate estimates translate to errors in multidimensional estimates?)

<ロト <四ト <至ト <至ト = 至

$$Proj_r[F_1] = \mathcal{N}(r^T \mu_1, r^T \Sigma_1 r)$$

Problem

What is the condition number of this system? (i.e. How do errors in univariate estimates translate to errors in multidimensional estimates?)

<ロト <回ト < 注ト < 注ト = 注

Recovery Lemma: Condition number is polynomially bounded

$$Proj_r[F_1] = \mathcal{N}(r^T \mu_1, r^T \Sigma_1 r)$$

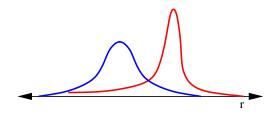
Problem

What is the condition number of this system? (i.e. How do errors in univariate estimates translate to errors in multidimensional estimates?)

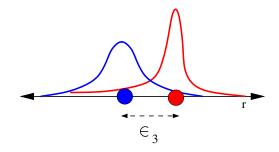
<ロト <回ト < 注ト < 注ト = 注

Recovery Lemma: Condition number is polynomially bounded : $O(\frac{n}{\epsilon_{2}^{2}})$

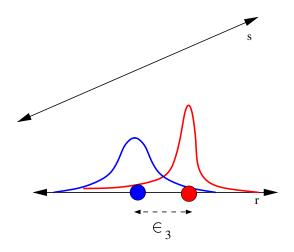
| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ● | ● ○ へ ○



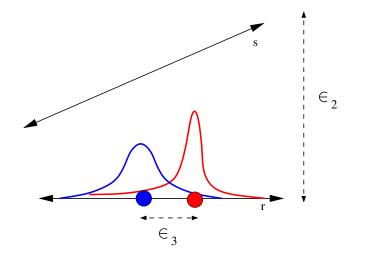
▲□▶ ▲□▶ ★臣▶ ★臣▶ 臣 の�?



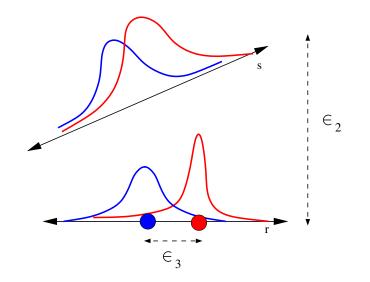
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



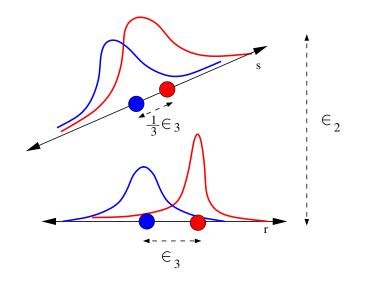
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - 釣�?



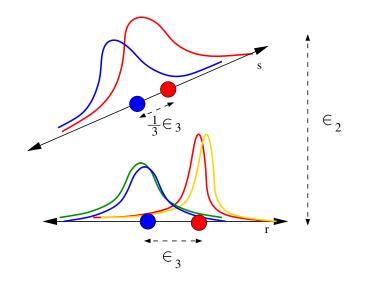
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの



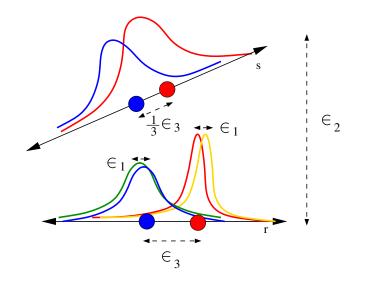
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへの



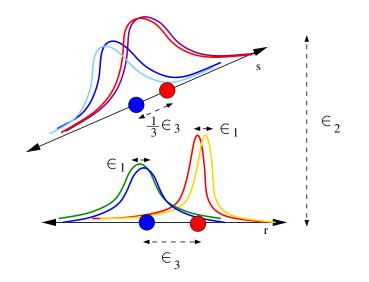
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



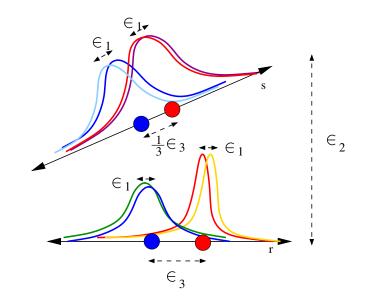
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - 釣�?



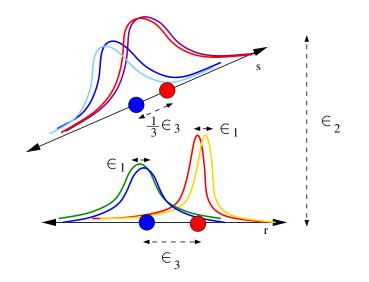
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



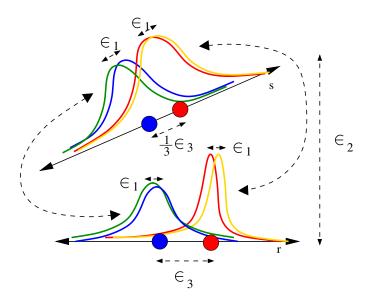
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



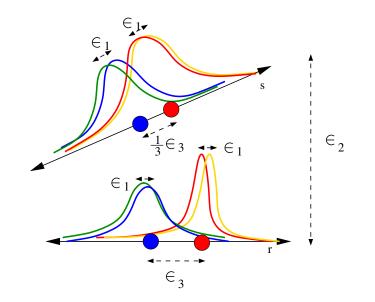
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの



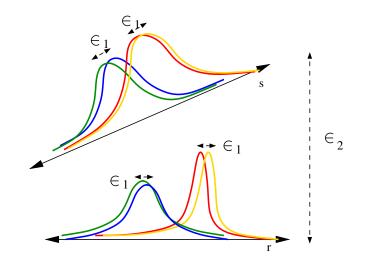
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



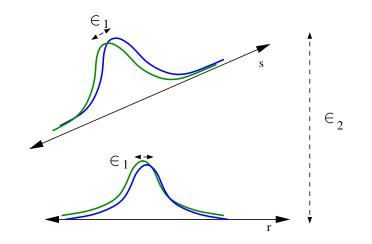
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



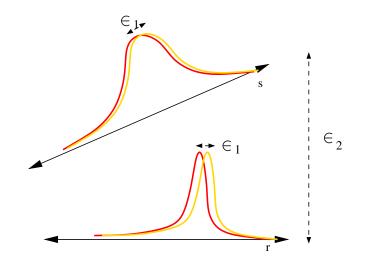
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへの



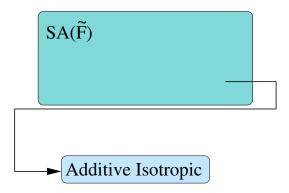
▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …の�?

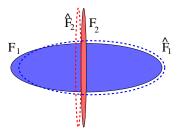


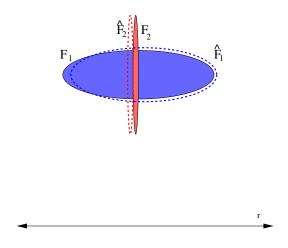
◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?



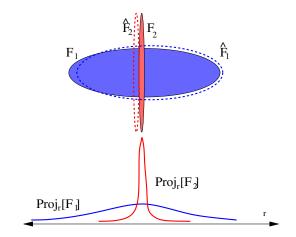
◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?



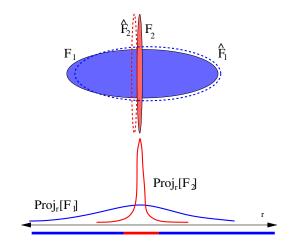




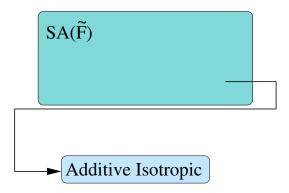
▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

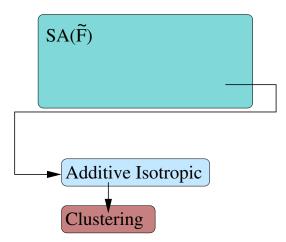


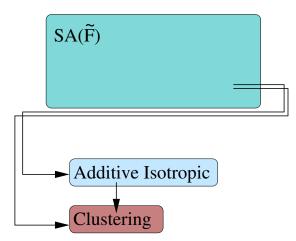
◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

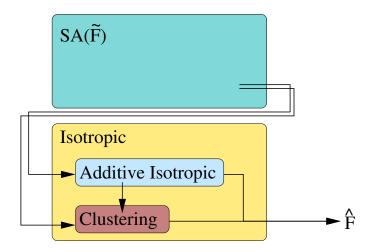


◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

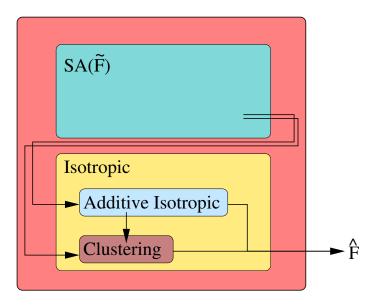




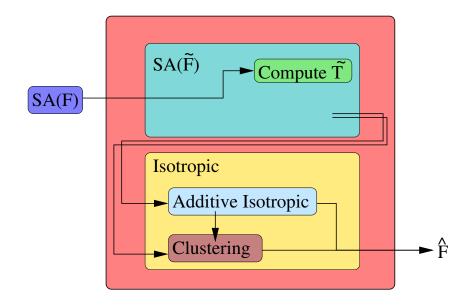




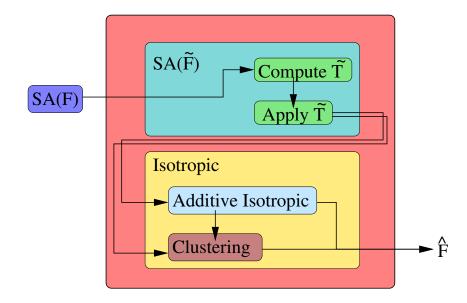
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで



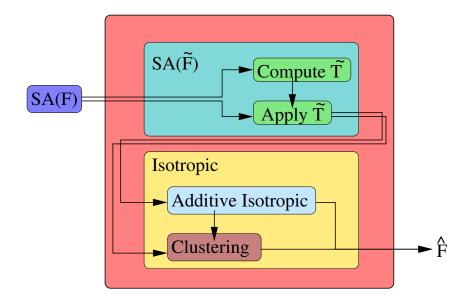
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



▲ロト ▲園ト ▲画ト ▲画ト 三国 - のへで



▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Question

Can we learn an additive approximation in one dimension?

Can we learn an additive approximation in one dimension? How many free parameters are there?

◆□▶ ◆御▶ ◆注▶ ◆注▶ … 注…

Can we learn an additive approximation in one dimension? How many free parameters are there?

 $\mu_1,\sigma_1^2,\mu_2,\sigma_2^2,\textit{w}_1$

Can we learn an additive approximation in one dimension? How many free parameters are there?

$$\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1$$

《曰》 《聞》 《臣》 《臣》 三臣

Additionally, each parameter is bounded:

Claim

Can we learn an additive approximation in one dimension? How many free parameters are there?

$$\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1$$

《曰》 《聞》 《臣》 《臣》 三臣

Additionally, each parameter is bounded:

Claim

 $\textcircled{0} \hspace{0.1in} \textit{w}_1,\textit{w}_2 \in [\epsilon,1]$

Can we learn an additive approximation in one dimension? How many free parameters are there?

$$\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1$$

《曰》 《聞》 《臣》 《臣》 三臣

Additionally, each parameter is bounded:

Claim

•
$$w_1, w_2 \in [\epsilon, 1]$$

• $|\mu_1|, |\mu_2| \le \frac{1}{\sqrt{\epsilon}}$

Can we learn an additive approximation in one dimension? How many free parameters are there?

$$\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1$$

《曰》 《聞》 《臣》 《臣》 三臣

Additionally, each parameter is bounded:

Claim

$$w_1, w_2 \in [\epsilon, 1]$$

2
$$|\mu_1|, |\mu_2| \le \frac{1}{\sqrt{\epsilon}}$$

$$\ \, {\mathfrak S} \ \, \sigma_1^2, \sigma_2^2 \leq \frac{1}{\epsilon}$$

Can we learn an additive approximation in one dimension? How many free parameters are there?

$$\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1$$

《曰》 《聞》 《臣》 《臣》 三臣

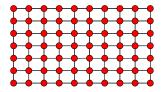
Additionally, each parameter is bounded:

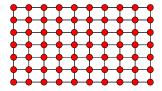
Claim

•
$$w_1, w_2 \in [\epsilon, 1]$$

$$|\mu_1|, |\mu_2| \le \frac{1}{\sqrt{\epsilon}}$$
$$\sigma_1^2, \sigma_2^2 \le \frac{1}{\epsilon}$$

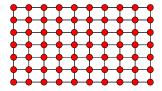
In this case, we call the parameters ϵ -bounded





Question

How do we test if a candidate set of parameters is accurate?

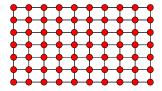


<ロト <回ト < 注ト < 注ト = 注

Question

How do we test if a candidate set of parameters is accurate?

• Compute empirical moments $r = \{1, 2, ...6\}$: $\tilde{M}_r = \frac{1}{|S|} \sum_{i \in S} x_i^r$

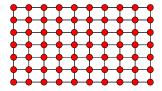


<ロト <四ト <至ト <至ト = 至

Question

How do we test if a candidate set of parameters is accurate?

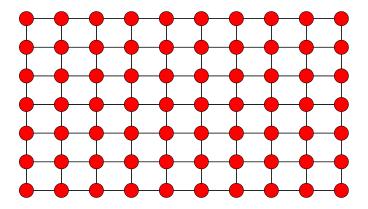
- Compute empirical moments $r = \{1, 2, ...6\}$: $\tilde{M}_r = \frac{1}{|S|} \sum_{i \in S} x_i^r$
- **Output** Compute the analytical moments $M_r(\hat{F}) = E_{x \leftarrow \hat{F}}[x^r]$ where $\hat{F} = \hat{w}_1 \mathcal{N}(\hat{\mu}_1, \hat{\sigma}_1^2, x) + \hat{w}_2 \mathcal{N}(\hat{\mu}_2, \hat{\sigma}_2^2, x)$ for $r \in \{1, 2, ..., 6\}$

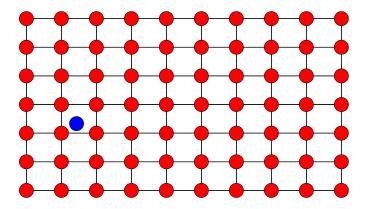


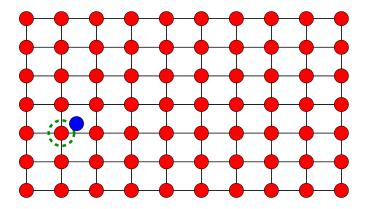
Question

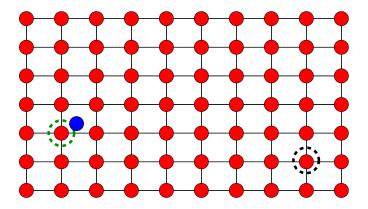
How do we test if a candidate set of parameters is accurate?

- Compute empirical moments $r = \{1, 2, ...6\}$: $\tilde{M}_r = \frac{1}{|S|} \sum_{i \in S} x_i^r$
- Compute the analytical moments $M_r(\hat{F}) = E_{x \leftarrow \hat{F}}[x^r]$ where $\hat{F} = \hat{w}_1 \mathcal{N}(\hat{\mu}_1, \hat{\sigma}_1^2, x) + \hat{w}_2 \mathcal{N}(\hat{\mu}_2, \hat{\sigma}_2^2, x)$ for $r \in \{1, 2, ..., 6\}$
- Accept if $\tilde{M}_r \approx M_r(\hat{F})$ for all $r \in \{1, 2, ..., 6\}$









The pair $F, \hat{F} \epsilon$ -standard if

() the parameters of F, \hat{F} are ϵ -bounded

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

The pair $F, \hat{F} \epsilon$ -standard if

the parameters of *F*, *F̂* are *ϵ*-bounded
 D_ρ(F₁, F₂), D_ρ(*F̂*₁, *F̂*₂) ≥ *ϵ*

The pair $F, \hat{F} \epsilon$ -standard if

- the parameters of *F*, *Ê* are *ϵ*-bounded *D_p*(*F*₁, *F*₂), *D_p*(*Ê*₁, *Ê*₂) ≥ *ϵ*

The pair $F, \hat{F} \epsilon$ -standard if

- the parameters of F, \hat{F} are ϵ -bounded • $D_{\rho}(F_1, F_2), D_{\rho}(\hat{F}_1, \hat{F}_2) \ge \epsilon$
- $\bullet \epsilon \leq \min_{\pi} \sum_{i} \left(|w_{i} \hat{w}_{\pi(i)}| + D_{p}(F_{i}, \hat{F}_{\pi(i)}) \right)$

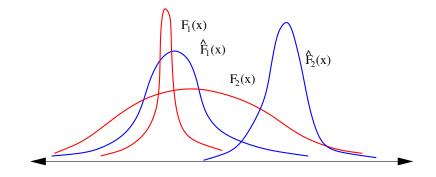
Theorem

There is a constant c > 0 such that, for any any $\epsilon < c$ and any ϵ -standard F, \hat{F} ,

$$\max_{r \in \{1,2,...,6\}} |M_r(F) - M_r(\hat{F})| \ge \epsilon^{67}$$

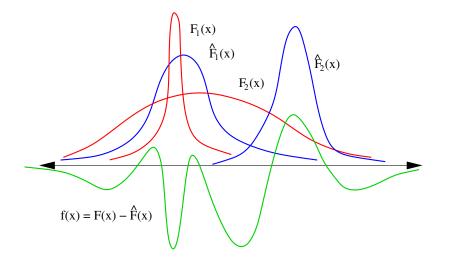
・ロト ・四ト ・ヨト ・ヨト

Method of Moments



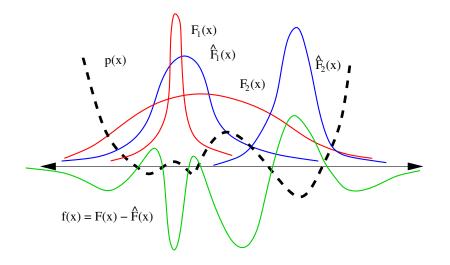
▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Method of Moments



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Method of Moments



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Why does this imply one of the first six moment of F, \hat{F} is different?

$$0 < \Big| \int_{x} p(x) f(x) dx \Big|$$

Why does this imply one of the first six moment of F, \hat{F} is different?

$$0 < \left| \int_{x} p(x)f(x)dx \right| = \left| \int_{x} \sum_{r=1}^{6} p_{r}x^{r}f(x)dx \right|$$

Why does this imply one of the first six moment of F, \hat{F} is different?

$$0 < \left| \int_{x} p(x)f(x)dx \right| = \left| \int_{x} \sum_{r=1}^{6} p_{r}x^{r}f(x)dx \right|$$
$$\leq \sum_{r=1}^{6} |p_{r}||M_{r}(F) - M_{r}(\hat{F})$$

Why does this imply one of the first six moment of F, \hat{F} is different?

$$0 < \left| \int_{x} p(x)f(x)dx \right| = \left| \int_{x} \sum_{r=1}^{6} p_{r}x^{r}f(x)dx \right|$$
$$\leq \sum_{r=1}^{6} |p_{r}||M_{r}(F) - M_{r}(\hat{F})$$

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

So $\exists_{r \in \{1,2,\ldots,6\}}$ s.t. $|M_r(F) - M_r(\hat{F})| > 0$

Let $f(x) = \sum_{i=1}^{k} \alpha_i \mathcal{N}(\mu_i, \sigma_i^2, x)$ be a linear combination of k Gaussians (α_i can be negative). Then if f(x) is not identically zero, f(x) has at most 2k - 2 zero crossings.

<ロト <四ト <至ト <至ト = 至

Let $f(x) = \sum_{i=1}^{k} \alpha_i \mathcal{N}(\mu_i, \sigma_i^2, x)$ be a linear combination of k Gaussians (α_i can be negative). Then if f(x) is not identically zero, f(x) has at most 2k - 2 zero crossings.

Theorem (Hummel, Gidas)

Given $f(x): \Re \to \Re$, that is analytic and has n zeros, then for any $\sigma^2 > 0$, the function $g(x) = f(x) \circ \mathcal{N}(0, \sigma^2, x)$ has at most n zeros.

《曰》 《圖》 《臣》 《臣》

Let $f(x) = \sum_{i=1}^{k} \alpha_i \mathcal{N}(\mu_i, \sigma_i^2, x)$ be a linear combination of k Gaussians (α_i can be negative). Then if f(x) is not identically zero, f(x) has at most 2k - 2 zero crossings.

Theorem (Hummel, Gidas)

Given $f(x): \Re \to \Re$, that is analytic and has n zeros, then for any $\sigma^2 > 0$, the function $g(x) = f(x) \circ \mathcal{N}(0, \sigma^2, x)$ has at most n zeros.

(日) (四) (音) (音) (音)

Convolving by a Gaussian does not increase the number of zero crossings!

Let $f(x) = \sum_{i=1}^{k} \alpha_i \mathcal{N}(\mu_i, \sigma_i^2, x)$ be a linear combination of k Gaussians (α_i can be negative). Then if f(x) is not identically zero, f(x) has at most 2k - 2 zero crossings.

Theorem (Hummel, Gidas)

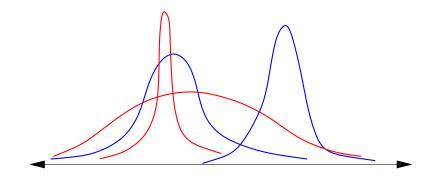
Given $f(x): \Re \to \Re$, that is analytic and has n zeros, then for any $\sigma^2 > 0$, the function $g(x) = f(x) \circ \mathcal{N}(0, \sigma^2, x)$ has at most n zeros.

<ロト (四) (三) (三) (三) 三

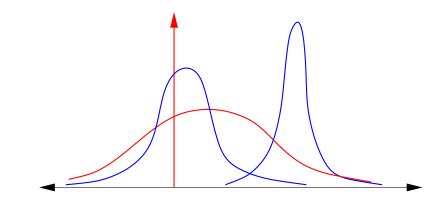
Convolving by a Gaussian does not increase the number of zero crossings!

Fact

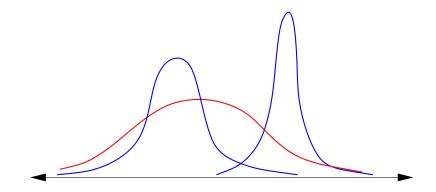
$$\mathcal{N}(0,\sigma_1^2,x) \circ \mathcal{N}(0,\sigma_2^2,x) = \mathcal{N}(0,\sigma_1^2+\sigma_2^2,x)$$



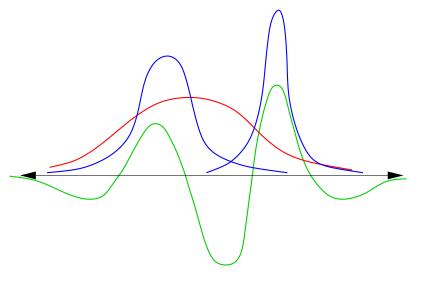
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで



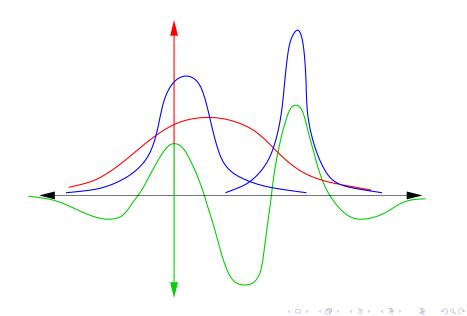
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで



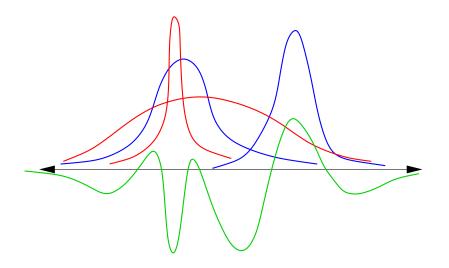
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

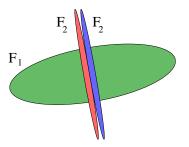


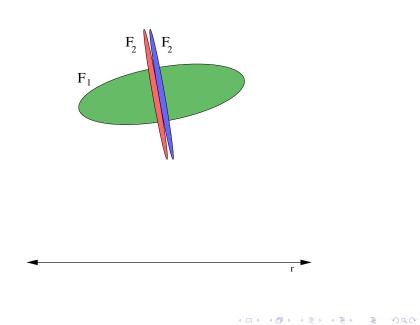
▲ロト 本部ト 本語ト 本語ト 注目 うんの

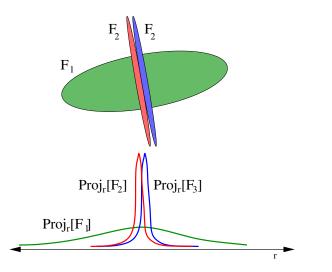


Zero Crossings and the Heat Equation

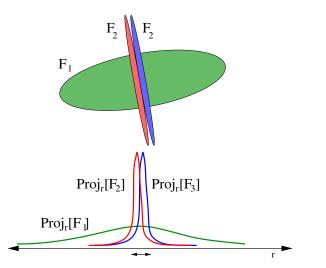


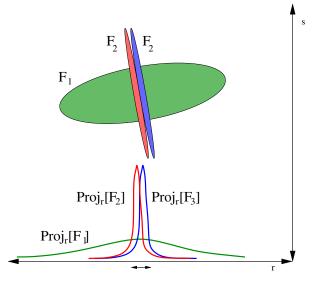




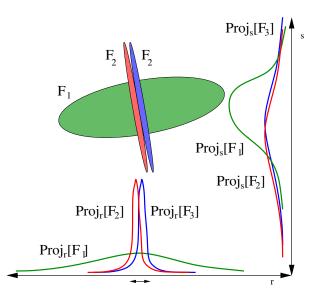


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

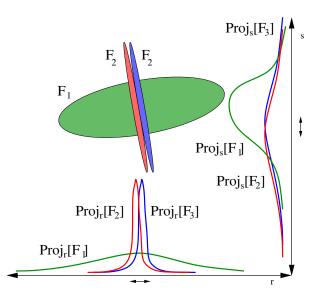




◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @



Lemma (Generalized Isotropic Projection Lemma)

With probability $\geq 1 - \delta$ over a randomly chosen direction r, for all $i \neq j$, $D_p(\operatorname{Proj}_r[F_i], \operatorname{Proj}_r[F_j]) \geq \epsilon_3$.

<ロト <回ト < 注ト < 注ト = 注

Lemma (Generalized Isotropic Projection Lemma)

With probability $\geq 1 - \delta$ over a randomly chosen direction r, for all $i \neq j$, $D_p(\operatorname{Proj}_r[F_i], \operatorname{Proj}_r[F_j]) \geq \epsilon_3$.

《曰》 《聞》 《臣》 《臣》 三臣

FALSE!

Lemma (Generalized Isotropic Projection Lemma)

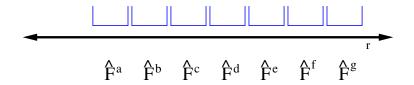
With probability $\geq 1 - \delta$ over a randomly chosen direction r, for all $i \neq j$, $D_p(\operatorname{Proj}_r[F_i], \operatorname{Proj}_r[F_j]) \geq \epsilon_3$.

FALSE!

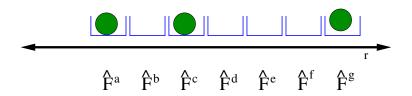
Lemma (Generalized Isotropic Projection Lemma)

With probability $\geq 1 - \delta$ over a randomly chosen direction r, for all there exists $i \neq j$, $D_p(\operatorname{Proj}_r[F_i], \operatorname{Proj}_r[F_j]) \geq \epsilon_3$.

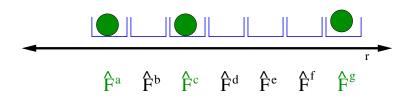
<ロト <四ト <注入 <注下 <注下 <



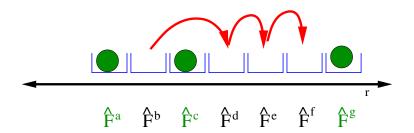
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

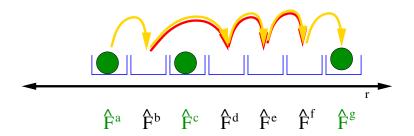


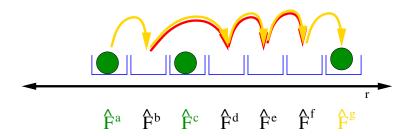
◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで

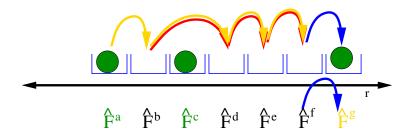


◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

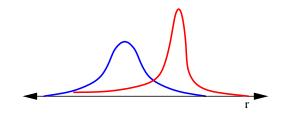






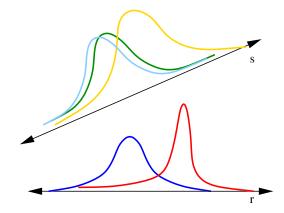


Pairing Lemma, Part 2?



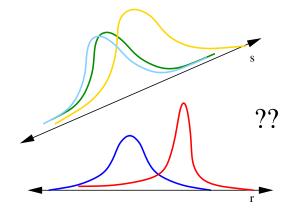
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Pairing Lemma, Part 2?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Pairing Lemma, Part 2?



▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Thanks!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?