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What is a Mixture of Gaussians?

Distribution on <n (w1,w2 ≥ 0,w1 + w2 = 1):
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F (x) = w1N (µ1,Σ1, x) + w2N (µ2,Σ2, x)



Pearson and the Naples Crabs

(figure due to Peter Macdonald)

0.58 0.60 0.62 0.64 0.66 0.68 0.70

0
5

10
15

20



Let F (x) = w1F1(x) + w2F2(x), where Fi (x) = N (µi , σ
2
i , x)

Definition

We will refer to Ex←Fi (x)[x
r ] as the r th-raw moment of Fi (x)

1 There are five unknown variables: w1, µ1, σ
2
1 , µ2, σ

2
2

2 The r th-raw moment of Fi (x) is a polynomial in µi , σi

Definition

Let Ex←Fi (x)[x
r ] = Mr (µi , σ

2
i )
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Question

What if we knew the r th-raw moment of F (x) perfectly?

Each value yields a constraint:

Ex←F (x)[x
r ] = w1Mr (µ1, σ

2
1) + w2Mr (µ2, σ
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We will refer to M̃r = 1
|S|
∑

i∈S x r
i as the empirical r th-raw moment of F (x)
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Pearson’s Sixth Moment Test

1 Compute the empirical r th-raw moments M̃r for r ∈ {1, 2, ...6}
2 Find all simultaneous roots of

{w1Mr (µ1, σ
2
1) + (1− w1)Mr (µ2, σ

2
2) = M̃r}r∈{1,2,...5}

3 This yields a list of candidate parameters ~θa, ~θb, ...

4 Choose the candidate that is closest in sixth moment:

w1M6(µ1, σ
2
1) + (1− w1)M6(µ2, σ

2
2) ≈ M̃6
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”Given the probable error of every ordinate of a frequency-curve, what
are the probable errors of the elements of the two normal curves into
which it may be dissected?” [Karl Pearson]

Question

How does noise in the empirical moments translate to noise in the derived
parameters?



Gaussian Mixture Models

Applictions in physics, biology, geology, social sciences ...

Goal

Estimate parameters in order to understand underlying process

Question

Can we PROVABLY recover the parameters EFFICIENTLY? (Dasgupta, 1999)

Definition

D(f (x), g(x)) = 1
2‖f (x)− g(x)‖1
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All previous results required D(F1,F2) ≈ 1...

... because the results relied on CLUSTERING

Question

Can we learn the parameters of the mixture without clustering?

Question

Can we learn the parameters when D(F1,F2) is close to ZERO?
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Goal

Learn a mixture F̂ = ŵ1F̂1 + ŵ2F̂2 so that there is a permutation
π : {1, 2} → {1, 2} and for i = {1, 2}

|wi − ŵπ(i)| ≤ ε,D(Fi , F̂π(i)) ≤ ε

We will call such a mixture F̂ ε-close to F .

Question

When can we hope to learn an ε-close estimate?
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Question

What if w1 = 0?

We never sample from F1!

Question

What if D(F1,F2) = 0?

For any w1,w2, F = w1F1 + w2F2 is the same distribution!

Definition

A mixture of Gaussians F = w1F1 + w2F2 is ε-statistically learnable if for
i = {1, 2}, wi ≥ ε and D(F1,F2) ≥ ε.
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Efficiently Learning Mixtures of Two Gaussians

Given oracle access to an ε-statistically learnable mixture of two Gaussians F :

Theorem (Kalai, M, Valiant)

There is an algorithm that (with probability at least 1− δ) learns a mixture of two
Gaussians F̂ that is an ε-close estimate to F , and the running time and data
requirements are poly( 1

ε , n,
1
δ ).

Previously, even no inverse exponential estimator known for univariate mixtures of
two Gaussians
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Question

What about mixtures of k Gaussians?

Definition

A mixture of k Gaussians F =
∑

i wiFi is ε-statistically learnable if for
i = {1, 2, .., k}, wi ≥ ε and for all i , j D(Fi ,Fj) ≥ ε.

Definition

An estimate F̂ =
∑

i ŵi F̂i mixture of k Gaussians is ε-close to F if there is a
permutation π : {1, 2, ..., k} → {1, 2, ..., k} and for i = {1, 2, ..., k}

|wi − ŵπ(i)| ≤ ε,D(Fi , F̂π(i)) ≤ ε
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|wi − ŵπ(i)| ≤ ε,D(Fi , F̂π(i)) ≤ ε



Question

What about mixtures of k Gaussians?

Definition

A mixture of k Gaussians F =
∑

i wiFi is ε-statistically learnable if for
i = {1, 2, .., k}, wi ≥ ε and for all i , j D(Fi ,Fj) ≥ ε.

Definition

An estimate F̂ =
∑
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no assumptions!
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Question

Can we give additive guarantees?

Cannot give additive guarantees without defining an appropriate normalization

Definition

A distribution F (x) is in isotropic position if

1 Ex←F (x)[x ] = ~0

2 Ex←F (x)[(uT x)2] = 1 for all ‖u‖ = 1

Fact

For any distribution F (x) on <n, there is an affine transformation T that places
F (x) in isotropic position
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Isotropic Position

F1 F2 F1 F2

Not Isotropic Isotropic



Given

Mixture F of two Gaussians, ε-statistically learnable, and in isotropic position

Output

F̂ = ŵ1F̂1 + ŵ2F̂2 s.t.

|wi − ŵπ(i)|, ‖µi − µ̂π(i)‖, ‖Σi − Σ̂π(i)‖F ≤ ε

Rough Idea

1 Consider a series of projections down to one dimension

2 Run a univariate learning algorithm

3 Use these estimates as constraints in a system of equations

4 Solve this system to obtain higher dimensional estimates
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Claim

Projr [F1] = N (rTµ1, r
T Σ1r , x)

Each univariate estimate yields an approximate linear constraint on the parameters

Definition

Dp(N (µ1, σ
2
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2
2)) = |µ1 − µ2|+ |σ2

1 − σ2
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Problem

What if we choose a direction r s.t. Dp(Projr [F1],Projr [F2]) is extremely small?
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Suppose F = w1F1 + w2F2 is in isotropic position and is ε-statistically learnable:

Lemma (Isotropic Projection Lemma)

With probability ≥ 1− δ over a randomly chosen direction r ,

Dp(Projr [F1],Projr [F2]) ≥ ε5δ2

50n2 = ε3.
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Suppose we learn estimates F̂ r , F̂ s from directions r , s

F̂ r
1 , F̂

s
1 each yield constraints on multidimensional parameters of one Gaussian in F

Problem

How do we know that they yield constraints on the SAME Gaussian?

Pairing Lemma: If we choose directions close enough, then pairing becomes
easy

(”close enough” depends on the Isotropic Projection Lemma)
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Suppose ‖r − s‖ ≤ ε2 (for ε2 << ε3)
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Each univariate estimate yields a linear constraint on the parameters:

Projr [F1] = N (rTµ1, r
T Σ1r)

Problem

What is the condition number of this system? (i.e. How do errors in univariate
estimates translate to errors in multidimensional estimates?)

Recovery Lemma: Condition number is polynomially bounded : O( n
ε22
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Question

Can we learn an additive approximation in one dimension?

How many free
parameters are there?

µ1, σ
2
1 , µ2, σ

2
2 ,w1

Additionally, each parameter is bounded:

Claim

1 w1,w2 ∈ [ε, 1]

2 |µ1|, |µ2| ≤ 1√
ε

3 σ2
1 , σ

2
2 ≤ 1

ε

In this case, we call the parameters ε-bounded
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So we can use a grid search over µ̂1 × σ̂2
1 × µ̂2 × σ̂2

2 × ŵ1

Question

How do we test if a candidate set of parameters is accurate?

1 Compute empirical moments r = {1, 2, ...6}: M̃r = 1
|S|
∑

i∈S x r
i

2 Compute the analytical moments Mr (F̂ ) = Ex←F̂ [x r ] where

F̂ = ŵ1N (µ̂1, σ̂
2
1 , x) + ŵ2N (µ̂2, σ̂

2
2 , x) for r ∈ {1, 2, ..., 6}

3 Accept if M̃r ≈ Mr (F̂ ) for all r ∈ {1, 2, ..., 6}
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Definition

The pair F , F̂ ε-standard if

1 the parameters of F , F̂ are ε-bounded

2 Dp(F1,F2),Dp(F̂1, F̂2) ≥ ε
3 ε ≤ minπ

∑
i

(
|wi − ŵπ(i)|+ Dp(Fi , F̂π(i))

)
Theorem

There is a constant c > 0 such that, for any any ε < c and any ε-standard F , F̂ ,

max
r∈{1,2,...,6}

|Mr (F )−Mr (F̂ )| ≥ ε67
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Question

Why does this imply one of the first six moment of F , F̂ is different?

0 <
∣∣∣ ∫

x

p(x)f (x)dx
∣∣∣

=
∣∣∣ ∫

x

6∑
r=1

pr x r f (x)dx
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≤
6∑

r=1

|pr ||Mr (F )−Mr (F̂ )|

So ∃r∈{1,2,...,6} s.t. |Mr (F )−Mr (F̂ )| > 0



Question

Why does this imply one of the first six moment of F , F̂ is different?

0 <
∣∣∣ ∫

x

p(x)f (x)dx
∣∣∣ =

∣∣∣ ∫
x

6∑
r=1

pr x r f (x)dx
∣∣∣

≤
6∑

r=1

|pr ||Mr (F )−Mr (F̂ )|

So ∃r∈{1,2,...,6} s.t. |Mr (F )−Mr (F̂ )| > 0



Question

Why does this imply one of the first six moment of F , F̂ is different?

0 <
∣∣∣ ∫

x

p(x)f (x)dx
∣∣∣ =

∣∣∣ ∫
x

6∑
r=1

pr x r f (x)dx
∣∣∣

≤
6∑

r=1

|pr ||Mr (F )−Mr (F̂ )|

So ∃r∈{1,2,...,6} s.t. |Mr (F )−Mr (F̂ )| > 0



Question

Why does this imply one of the first six moment of F , F̂ is different?

0 <
∣∣∣ ∫

x

p(x)f (x)dx
∣∣∣ =

∣∣∣ ∫
x

6∑
r=1

pr x r f (x)dx
∣∣∣

≤
6∑

r=1

|pr ||Mr (F )−Mr (F̂ )|

So ∃r∈{1,2,...,6} s.t. |Mr (F )−Mr (F̂ )| > 0



Proposition

Let f (x) =
∑k

i=1 αiN (µi , σ
2
i , x) be a linear combination of k Gaussians (αi can

be negative). Then if f (x) is not identically zero, f (x) has at most 2k − 2 zero
crossings.

Theorem (Hummel, Gidas)

Given f (x) : < → <, that is analytic and has n zeros, then for any σ2 > 0, the
function g(x) = f (x) ◦ N (0, σ2, x) has at most n zeros.

Convolving by a Gaussian does not increase the number of zero crossings!

Fact

N (0, σ2
1 , x) ◦ N (0, σ2

2 , x) = N (0, σ2
1 + σ2

2 , x)
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Generalized Isotropic Projection Lemma

Lemma (Generalized Isotropic Projection Lemma)

With probability ≥ 1− δ over a randomly chosen direction r , for all i 6= j ,
Dp(Projr [Fi ],Projr [Fj ]) ≥ ε3.
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Thanks!
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