
VERTEX SPARSIFICATION AND OBLIVIOUS REDUCTIONS ∗

ANKUR MOITRA †

Abstract. Given an undirected, capacitated graph G = (V,E) and a set K ⊂ V of terminals
of size k, we construct an undirected, capacitated graph G′ = (K,E′) for which the cut-function
approximates the value of every minimum cut separating any subset U of terminals from the re-
maining terminals K −U . We refer to this graph G′ as a cut-sparsifier, and we prove that there are
cut-sparsifiers that can approximate all these minimum cuts in G to within an approximation factor
that only depends poly-logarithmically on k, the number of terminals. We prove such cut-sparsifiers
exist through a zero-sum game, and we construct such sparsifiers through oblivious routing guaran-
tees. These results allow us to derive a more general theory of Steiner cut and flow problems, and
allow us to obtain approximation algorithms with guarantees independent of the size of the graph
for a number of graph partitioning, graph layout and multicommodity flow problems for which such
guarantees were previously unknown.

Key words. sparsification, approximation algorithm, graph partitioning, routing, metric space

AMS subject classifications.

1. Introduction.

1.1. Background. In the seminal paper of [29], Leighton and Rao established
an O(log n) approximate min-cut max-flow theorem for uniform maximum concurrent
flows (where n is the size of the graph) and used this to gave an O(log n) approxima-
tion algorithm for uniform sparsest cut. The sparsest cut problem is a fundamental
primitive in many divide-and-conquer based approximation algorithms (see also [38]).
In fact through the divide-and-conquer paradigm, Leighton and Rao were able to
give the first polylog(n) approximation algorithms for a variety of NP-hard graph
partitioning and graph layout problems - including balanced separators, min-cut lin-
ear arrangement, crossing number, VLSI layout and minimum feedback arc set. It
is hard to over-state the influence of this approximate min-cut max-flow theorem in
theoretical computer science; this theorem has found applications in everything from
approximating how quickly a Markov chain mixes [22], [23], [37], to bounding the
all-pairs network coding rate in an undirected graph [1].

A number of subsequent papers considered the question of giving an approximate
min-cut max-flow theorem in a more general setting. Klein, Rao, Agrawal and Ravi
[26] considered the general maximum concurrent flow problem in which the demands
can be arbitrary, rather than a fixed, constant demand between all pairs as in the
uniform maximum concurrent flow problem. In the case in which all capacities and
all demands are integer, [26] gave an O(logC logD) approximate min-cut max-flow
theorem, where C and D are the sum of all capacities and all demands respectively.
[26] then used this result to give polylog(n) approximation algorithms for generalized
multi-way edge-cut and node-cut problems. Note that this result is weak when either
the ratio of the largest capacity to the smallest capacity or the ratio of the largest
demand to the smallest demand is very large compared to the graph size. Plotkin and

∗This article previously appeared in the conference proceedings for FOCS 2009, under the title
”Approximation Algorithms for Multicommodity-Type Problems with Guarantees Independent of
the Graph Size.”
†moitra@mit.edu. Massachusetts Institute of Technology, Department of Electrical Engineer-

ing and Computer Science (EECS) and Computer Science and Artificial Intelligence Laboratory
(CSAIL), Cambridge, MA 02139. This research was supported in part by a Fannie and John Hertz
Foundation Fellowship.

1

2 A. Moitra

Tardos [34] combined the results of [29], [26], [17], and [25] with a variety of intricate
flow scaling techniques for handling demands of varying quantity, and were able to
given an O(log2 k) approximate min-cut max-flow theorem, where k is the number of
demands to be routed (i.e. the number of commodities).

Linial, London and Rabinovich [30] and Aumann and Rabani [6] solved a major
open question and gave an optimal O(log k) approximate min-cut max-flow theorem
for general maximum concurrent flow problems. This bound does not require the
capacities or demands to be integer, and both [30] and [6] use discrete metric embed-
dings as an elegant way to handle demands of varying quantity without re-scaling.
Also Garg, Vazirani and Yannakakis [17] gave an O(log k) approximate min-cut max
flow theorem for maximum multi-flow using a combinatorial approach based on region
growing.

Here we derive a more general theory of Steiner cut and flow problems, and
we prove bounds that are poly-logarithmic in k. These bounds apply to a much
broader class of multicommodity flow and cut problems, rather than to just maximum
concurrent flow (as in [30] and [6]) or maximum multi-flow (as in [17]). Our results
are motivated by the following meta question:

Meta Question 1. Suppose we are given a polylog(n) approximation algorithm
for a flow or cut problem - when can we give a polylog(k) approximation algorithm
for a generalization of this problem to a Steiner cut or flow problem?

In particular, if we are given a polylog(n) approximation algorithm and if we
consider an instance in which there are only k ”interesting” nodes (which we will
refer to as terminals), can we give a polylog(k) approximation algorithm for this
problem using the previous approximation algorithm as a black box?

Thus our goal is an approximation guarantee that is independent of the size of the
graph, and only depends on the number of commodities (or the number of terminals
in a Steiner cut problem). For many natural applications of multicommodity flows
and cuts, we expect that the number of commodities k is much smaller than n, and for
such problems we get approximation algorithms that have much stronger guarantees.
In §4, we give a more detailed argument for why such guarantees are likely to be more
applicable in practice (to the sample problem of oblivious routing).

1.2. Vertex Sparsification. The key to this paper is a structural result, which
we can use to map an optimization problem over cuts or flows (for which there are only
k ”interesting” nodes) to a corresponding optimization problem on a graph on exactly
k nodes while approximately preserving the cost of the optimal solution. Actually,
this mapping will be oblivious to the particular optimization problem that we want
to solve, and will only require that the problem be approximately characterized by
the values of minimum cuts separating subsets of terminals.

If our mapping doesn’t depend on the particular optimization problem, in order
to guarantee that this mapping approximately preserves the optimum, we will need to
ensure that this mapping approximately preserves everything that the optimization
problem could possibly depend on! But how well can we do this? This is the question
which we formalize in this section, and the answer to this question is central to this
paper and all approximation algorithms that we derive.

Suppose we are given an undirected, capacitated graph G = (V,E) and a set
K ⊂ V of terminals of size k. Let h : 2V → R+ denote the cut function of G:

h(A) =
∑

e∈δ(A)

c(e)

Vertex Sparsification 3

where δ(A) denotes the set of edges crossing the cut (A, V −A). We define the function
hK : 2K → R+ which we refer to as the terminal cut function on K:

hK(U) = min
A⊂V s.t. A∩K=U

h(A)

We will also use δK(U) to denote the set of pairs (a, b) ∈ K which cross the partition
(U,K − U). The combinatorial interpretation of the terminal cut function is that
hK(U) is just the minimum edge cut separating U from K − U in G. Note that U is
required to be a subset of K and that we can compute the value and cut achieving
hK(U) using any max-flow algorithm. We prove that there is an undirected, capaci-
tated graph G′ = (K,E′) on just the terminals so that the cut function h′ : 2K → R+

satisfies

hK(U) ≤ h′(U) ≤ O
(

log k

log log k

)
hK(U)

for all U ⊂ K. So we can approximate the terminal cuts in G on a graph G′ on k nodes
and this approximation factor is independent of the size of the graph G. Note that
h′(U) is just the value of a cut, and there is no longer any optimization problem that
is implicit in this function. This is in contrast to the terminal cut function hK(U), for
which we need to compute a max-flow to find any particular value of this function.
So even though there is an optimization problem implicit in hK(U) and there is no
optimization problem implicit in h′(U), h′ still approximates hK everywhere! Also,
note that there are in principle exponentially (in k) many degrees of freedom for the
terminal cut function, yet there are only

(
k
2

)
degrees of freedom for h′ - one degree of

freedom for each choice of an edge capacity in G′.
We will refer to such a graph G′ = (K,E′) as a vertex sparsifier for cuts, or

cut-sparsifier and we will refer to the multiplicative factor by which h′ approximates
hK as the quality. In fact, if G is planar or if G excludes a fixed minor, then this
bound improves and there are O(1)-quality cut-sparsifiers. Many naturally occurring
networks do in fact exclude a small, fixed minor: road networks are often (close to)
planar, the internet graph is well-known to have small treewidth, and even social
networks have the so-called padded decomposition property which is also enough to
guarantee that constant quality cut-sparsifiers exist.

This question is quite different from more classical questions in combinatorial
optimization. In particular, many previously considered questions only attempt to
approximate small terminal-cuts (i.e. approximating local connectivity in Mader’s
Theorem). Yet approximating these small terminal-cuts in general says nothing non-
trivial about approximating the terminal cut function everywhere. We give a more
detailed discussion in §2, and we also relate this question posed here to the notion of
distortion in metric embeddings.

Our approach to proving this result is through metric geometry. Even though
this question is a purely structural question about graphs, constructing good cut-
sparsifiers by reasoning directly about the terminal cut function hK seems daunting.
Approximation is necessary - in fact the best known lower bounds (Ω̃(

√
log k) due

to Makarychev and Makarychev [31]) are polynomially related to the upper bound
that we give here. There are exponentially many min-cuts in G that we are required
to (approximately) preserve, and the structure of a good quality cut-sparsifier seems
to depend not only on all these values, but also on how big and small min-cuts in

4 A. Moitra

G interact. Instead, our approach is to prove this result using a zero-sum game
to transform this global, structural question about graph cut functions into a local
question about metric spaces. In fact, this dual question turns out to be a special
case of the well-studied 0-extension problem [24], [9], [13].

Also, for the applications of cut-sparsification in this paper there is no reason to
restrict a cut-sparsifier to be a graph on just the terminals as opposed to the relaxed
restriction that the number of total nodes be at most poly(k). Yet even if we allow
poly(k) nodes in addition to the terminals, we do not know how to better approximate
the terminal-cut function beyond the results presented here.

1.3. Constructive Results and Oblivious Reductions. The result asserted
in the previous section is non-constructive because we prove existence by bounding
the game value of a zero-sum game. In this game, both players have strategy sets of
exponential size, and the best response question in both cases is NP -hard. Even the
width of the game can be unbounded with respect to n and k.

So we need to do considerably more work to give a polynomial time construction
of a cut-sparsifier G′ that approximates the terminal cut function of the original graph
G (to within a worse but still polylog(k) factor). Perhaps of independent interest, our
construction uses oblivious routing in a somewhat surprising way: Given polytopes
Q,P ⊂ Rpoly(k) (that are given by a separation oracle), consider the question of
finding a unit vector u ∈ Rpoly(k) that maximizes the ratio

maxλP s.t. λPu ∈ P
maxλQ s.t. λQu ∈ Q

We call this question the Max-Min Congestion Problem for P,Q. We could use
Lowner-John ellipsoids to get an O(poly(k))-approximation to this problem [20], but
in the special case in which Q is the set of demand vectors that are routable in an
undirected, capacitated graph G′ (on k nodes) with congestion at most 1, we give
an O(log k) approximation algorithm for this problem. This approximation guaran-
tee is based on using oblivious routing schemes to give a geometric relaxation Q′ for
Q. We believe that this notion of interpreting oblivious routing as a geometric phe-
nomenon is of independent interest and may be useful in the context of designing
other approximation algorithms.

The outline of our constructive result is to use the existential result to show
that a certain polytope (which captures the question of whether there is a good
quality cut-sparsifier) is non-empty. Thus our constructive result is predicated on
our existential result. We then use the approximation algorithm mentioned above to
give an approximate separation oracle for this polytope, and this in turn allows us to
find an approximately feasible point, and hence a good quality cut-sparsifier for the
original graph.

This construction allows us to reduce a broad class of multicommodity-type prob-
lems to a uniform case (on k nodes) at the cost of a multiplicative loss of a polylog(k)
in the approximation guarantee. Interestingly, these reductions are oblivious to the
actual optimization problem that we want to solve. All that we require is that our
optimization problem be (at least approximately) characterized by the terminal cut
function. Some optimization problems depend very explicitly on just the terminal
cut function. In such cases it is clear that mapping the optimization problem to a
good cut-sparsifier approximately preserves the value of the optimum. Yet there are
many other optimization problems which at first do not appear to depend on just

Vertex Sparsification 5

the terminal cut function but nevertheless can be (approximately) re-written as an
optimization problem that only depends on hK .

We give three main patterns for how to perform this re-writing. In §6 we do
this for graph partitioning problems and for graph layout problems, and in §4 we do
this for multicommodity flow problems (using the approximate relationship between
generalized sparsest cut and maximum concurrent flow). For these general categories
of problems, mapping the optimization problem to a good cut-sparsifier approximately
preserves the optimum and as it turns out, we will also be able to find a good solution
in the original graph based on a good solution in the cut-sparsifier as well. So this
mapping is independent of the actual optimization problem that we want to solve,
and utilizing our re-writing techniques we will see that this reduction is successful for
basically all non-pathological cut or flow problems.

Using these patterns for how to apply our result, we give polylog(k) approximation
algorithms for a number of problems for which such results were previously unknown,
such as requirement cut2, `-multicut, and natural Steiner generalizations of oblivious
routing, min-cut linear arrangement and minimum linear arrangement.

2. Preliminaries.

2.1. Cut-Sparsifiers and Quality. Here we formalize the notion of a cut-
sparsifier and the quality of a cut-sparsifier. Suppose we are given an undirected,
capacitated graph G = (V,E) and a set K ⊂ V of terminals of size k. Let h : 2V → R+

denote the cut function of G:

h(A) =
∑

e∈δ(A)

c(e)

We define the function hK : 2K → R+ which we refer to as the terminal cut function
on K:

hK(U) = min
A⊂V s.t. A∩K=U

h(A)

Definition 2.1. G′ is a cut-sparsifier for the graph G = (V,E) and the terminal
set K if G′ is a graph on just the terminal set K (i.e. G′ = (K,E′)) and if the cut
function h′ : 2K → R+ of G′ satisfies (for all U ⊂ K)

hK(U) ≤ h′(U).

The goal of a cut-sparsifier is to everywhere approximate the terminal cut func-
tion. So then we can define a notion of quality for any particular cut-sparsifier, which
captures how faithfully the cut function of G′ everywhere approximates the terminal
cut function:

2Subject to the mild technical restriction that the number of groups g be at most quasi-polynomial
in k. Otherwise we give an O(polylog(k) log g)-approximation algorithm and if g is not quasi-
polynomial in k then this approximation algorithm is dominated by O(log g) and there is a lower
bound of Ω(log g) for the approximability of this problem via a reduction from set cover [33]. Inde-
pendently, [18] also considered the question of giving an approximation algorithm for Requirement
Cut with guarantees independent of the graph size, and were able to directly improve the previous
best approximation algorithm due to [33] and give a better polylog(k)-approximation algorithm than
the one we present here.

6 A. Moitra

Definition 2.2. The quality of a cut-sparsifier G′ is defined as

maxU⊂K
h′(U)

hK(U)
.

We will abuse notation and define 0
0 = 1 so that when U is disconnected from

K − U in G or if U = ∅ or U = K, the ratio of the two cut functions is 1 and we
ignore these cases when computing the worst-case ratio and consequently the quality
of a cut-sparsifier.

The starting point of this paper is to prove that in general, for any capacited
graph G = (V,E) and any set K ⊂ V of |K| = k terminals, there is an O(log k

log log k)-

quality cut-sparsifier. In fact, this bound improves to O(r2) in the case in which G
excludes Kr,r as a minor.

There are many results in combinatorial optimization that demonstrate that cer-
tain graph connectivity properties can be approximated on a smaller graph. For
example, if we define the local connectivity of two terminals a, b ∈ K as the minimum
cut in G separating a and b, then Mader’s Theorem (see [27]) implies that there is a
graph G′ = (K,E′) so that for all pairs of terminals a, b ∈ K, G′ exactly preserves
the local connectivity.

Yet results of this form only guarantee that G′ preserves minimum cuts separating
subsets of terminals for small subsets of terminals. Here, preserving the local connec-
tivity only requires preserving the minimum cuts separating single pairs of terminals
from each other. Consider, for example, the graph G which is the complete bipartite
graph with the k terminals on one side and 2 nodes on the other. The local con-
nectivity between any pair of terminals is 2, and applying the splitting-off operation
in Mader’s Theorem iteratively results in the graph G′ = (K,E′) which is a cycle.
This preserves the local connectivity exactly, and yet if we bisect the cycle we get an
edge cut of size 2 in G′ that cuts the graph into two Ω(k)-sized sets of terminals U
and K − U . But the capacity of the minimum cut separating U from K − U in G is
Ω(k). So the cut function of G′ does not well approximate the terminal cut function
everywhere. And in general, results in combinatorial optimization about preserving
minimum cuts separating small subsets of terminals will be useless for our purposes.

We also note that many graph partitioning problems (for example generalized
sparsest cut, or generalized bisection type problems) depend on minimum cuts sep-
arating U and K − U for large sized sets U . So if we are given a graph G′ which
approximately preserves just the small terminal cuts, we cannot guarantee that map-
ping, say, a generalized sparsest cut problem to G′ approximately preserves the value
of the optimum. So if we want to perform reductions that are oblivious to the partic-
ular optimization problem, we really do need to preserve all minimum cuts separating
every subset of terminals, and the above question really is the right question in this
context.

2.2. Relations to Distortion. This notion of the quality of a cut-sparsifier
should be regarded as very similar to the notion of distortion in discrete metric em-
beddings. The canonical approach to applying discrete metric embeddings to an op-
timization problem is to embed a complicated metric into (usually a distribution on)
simpler metrics. Then one can often solve the problem exactly (or within a constant
factor) on this simpler class of metrics, but one pays a price in the approximation
guarantee that is proportional to distortion.

Similarly, the way in which we will apply cut-sparsifiers to the problems considered
in this paper is to take an optimization problem in the original graph and map this to a

Vertex Sparsification 7

corresponding problem on the cut-sparsifier. As long as the optimization problem can
be (at least approximately) characterized by the terminal cut function, this mapping
will approximately preserve the cost of the optimal solution.

Both quality and distortion capture how faithfully a ”simpler” optimization prob-
lem approximates the original optimization problem. In fact, as we will see the notion
of quality and the notion of distortion should be thought of as duals to each other.

This analogy can be extended: our reductions are oblivious to the specifics of
the optimization problem. This resembles the way in which metric embeddings are
applied to on-line optimization problems: A distribution on simpler metrics is chosen
in a way that depends only on the original metric space, and is oblivious to the
actual requests in an on-line optimization problem. See Bartal’s seminal paper [8] for
applications of low-distortion embeddings to problems such as metrical task systems,
server problems, distributed paging and dynamic storage rearrangement.

2.3. Maximum Concurrent Flow. A basic object of study in this paper will
be the maximum concurrent flow problem. An instance of this problem consists of
an undirected graph G = (V,E), a capacity function c : E → R+ that assigns a non-
negative capacity to each edge, and a set of demands {(si, ti, di)} where si, ti ∈ V
and di is a non-negative real value. For such problems we set K = ∪i{si, ti} and let
k denote |K|. The maximum concurrent flow question asks, given such an instance,
what is the largest fraction of the demand that can be simultaneously satisfied? This
problem can be formulated as a polynomial-sized linear program, and hence can be
solved in polynomial time. However, a more natural formulation of the maximum
concurrent flow problem can be written using an exponential number of variables.

For any a, b ∈ V let Pa,b be the set of all (simple) paths from a to b in G. Then
the maximum concurrent flow problem can be written as :

max λ
s.t. ∑

p∈Psi,ti
x(p) ≥ λdi∑

p3e x(p) ≤ c(e)
x(p) ≥ 0.

For a maximum concurrent flow problem, let λ∗ denote the optimum. We defined the
cut function h and the terminal cut function hK in §1.2. We also define the demand
function d : 2K → R+ as

d(U) =
∑

(si,ti)∈δK(U)

di

which given U ⊂ K is just the total demand that has exactly one endpoint in U and
one endpoint in K − U (since si, ti ∈ K).

Theorem 2.3. [30] [6] If all demands are supported in K, and |K| = k, then
there exists a cut A ⊂ V such that

h(A)

d(A ∩K)
≤ O(log k)λ∗.

We are interested in multicommodity-type problems, which we informally define
as problems that are only a function of the terminal cut function hK and the conges-
tion of multicommodity flows with demands supported in the set K. We want to find

8 A. Moitra

a graph G′ = (K,E′) and a capacity function c′ : E′ → R+ such that for all U ⊂ K:

hK(U) ≤ h′(U) ≤ polylog(k)hK(U)

where h′ : K → R+ is the cut function defined on the graph G′. For non-pathological
Steiner cut problems (such as, for example the requirement cut problem), mapping so-
lutions between G and G′ will preserve the value of the solution to within a polylog(k)
factor. This strategy is the basis for the approximation algorithms designed in this
paper.

But for multicommodity-type problems which depend on the congestion of certain
multicommodity flows, we need a method to preserve the congestion of all multicom-
modity flows within a polylog(k) factor. The above theorem due to Linial, London and
Rabinovich [30] and Aumann and Rabani [6] gives an O(log k)-approximate min-cut
max-flow relation for maximum concurrent flows, and this theorem allows us to use
reductions that approximately preserve the terminal cut function to approximately
preserve the congestion of all multicommodity flows too, within a worse but still
polylog(k) factor.

Throughout we will use the notation that graphs G1, G2 (on the same node set)
are ”summed” by taking the union of their edge set (and allowing parallel edges).

3. Good Cut-Sparsifiers Exist.
Here we prove that there are O(log k

log log k)-quality cut-sparsifiers. This is a global
structural result, but we prove this by introducing a zero-sum game between an ex-
tension player and a cut player. The extension player attempts to construct such a
graph G′, and the cut player verifies that the cut function of this graph approximates
the terminal cut function. We define this game in such a way that bounding the game
value of this game implies the above structural result.

We can then bound the game value of this game by proving that there is a good
response for the extension player for every distribution on checks that the cut player
makes. We use a rounding procedure due to Fakcharoenphol, Harrelson, Rao and
Talwar [13] for the 0-extension problem to produce such a good response.

Thus, the intuition for why good quality cut-sparsifiers should exist does not come
from looking at a graph G, and a set K ⊂ V of terminals, and determining that there
is some way to approximately preserve all these exponentially many minimum cuts on
a graph G′ on just the set of terminals. Rather, the intuition comes from imagining an
adversary trying to disprove the statement that G has a good quality cut-sparsifier,
and showing that this adversary in fact cannot disprove this statement. The beauty of
the Min-Max Theorem is that this is enough to imply that good quality cut-sparsifiers
exist.

3.1. 0-Extensions. The 0-extension problem was originally formulated in [24]
by Karzanov who introduced the problem as a natural generalization of the minimum
multiway cut problem. Suppose we are given an undirected, capacitated graph G =
(V,E), c : E → R+, a set of terminals K ⊂ V and a semi-metric D on the terminals.
Then the goal of the 0-extension problem is to assign each node in V to a terminal
in K (and each terminal t ∈ K must be assigned to itself) such that the sum over
all edges (u, v) of c(u, v) times the distance between u and v under the metric D is
minimized.

Formally, the goal is to find a function f : V → K (such that f(t) = t for
all t ∈ K) so that

∑
(u,v)∈E c(u, v)D(f(u), f(v)) is minimized over all such functions.

Then when D is just the uniform metric on the terminals K, this exactly the minimum

Vertex Sparsification 9

multiway cut problem. Karzanov gave a (semi)metric relaxation of the 0-extension
problem [24]:

min
∑

(u,v)∈E c(u, v)β(u, v)

s.t.
β is a semi-metric on V
∀t,t′∈Kβ(t, t′) = D(t, t′).

Note that the semi-metric β is defined on V while D is defined only on K. Let
OPT ∗ denote the value of an optimal solution to the above linear programming re-
laxation of the 0-extension problem. Clearly OPT ∗ ≤ OPT . Calinescu, Karloff and
Rabani [9] gave a randomized rounding procedure to round any feasible solution β of
value C to a 0-extension that has expected value at most O(log k)C. Fakcharoenphol,
Harrelson, Rao and Talwar [13] gave an improved randomized rounding procedure
that achieves an O(log k

log log k) approximation ratio:

Theorem 3.1. [13]

OPT ∗ ≤ OPT ≤ O
(

log k

log log k

)
OPT ∗

Given a function f : V → K such that f(t) = t for all t ∈ K, we can define the
capacitated graph Gf on K that results from the function f as:

cf (a, b) =
∑

u,v|f(u)=a,f(v)=b

c(u, v)

We will abuse notation and refer to the graph Gf generated by f as a 0-extension
of the graph G. We will use hf to denote the cut function of the resulting graph Gf .
Then in fact, for any 0-extension f , the graph Gf is a cut-sparsifier:

Claim 1. For any subset of terminals U ⊂ K,

hK(U) ≤ hf (U).

Proof. For any u ∈ K, let f−1(u) = {a | f(a) = u}. Let A = ∪u∈Uf−1(u). By
definition, hf (U) = h(A) and because A ∩K = U this implies that h(A) ≥ hK(U),
because the cut A, V − A is a cut separating U from K − U so it is at least the
minimum cut-separating U from K − U .

We will use the above theorem due to Fakcharoenphol, Harrelson, Rao and
Talwar to show that, existentially, there is a graph G′ such that for all U ⊂ K
hK(U) ≤ h′(U) ≤ O(log k

log log k)hK(U). In fact, this graph will be a convex combination
of 0-extensions of G. Since for any 0-extension f , the graph Gf is a cut-sparsifier
this implies that all graphs that can be realized as a convex combination of graphs
generated by 0-extensions are also cut-sparsifiers. So all that remains is to show that
there is some distribution γ on 0-extensions f for which the resulting average graph
G′ =

∑
f γ(f)Gf is never too much larger.

10 A. Moitra

3.2. A Zero-Sum Game. Here we introduce and analyze an appropriately cho-
sen zero-sum game, so that a bound on the game value of this game will imply the
desired structural graph theory result.

Given an undirected, capacitated graph G = (V,E) and a set K ⊂ V of terminals,
an extension player (P1) and a cut player (P2) play the following zero-sum game that
we will refer to as the extension-cut game:

The extension player (P1) chooses a 0-extension f : V → K such that
f(t) = t for all terminals t

The cut player (P2) chooses a cut from 2K

Given a strategy f for P1 and a strategy A for P2, P2 wins 1
hK(A) units for each

unit of capacity crossing the cut (A,K −A) in P1’s 0-extension. Also, we restrict P2
to play only strategies A for which hK(A) 6= 0. So if P1 plays a strategy f and P2
plays a strategy A then P2 wins:

N(f,A) =
∑

(u,v)∈E

1(f(u),f(v))∈δK(A)c(u, v)

hK(A)

Definition 3.2. Let ν denote the game value of the extension-cut game.
Using von Neumann’s Min-Max Theorem, we can bound the game value by bound-

ing the cost of P1’s best response to any fixed, randomized strategy for P2. So consider
any randomized strategy µ for P2. µ is just a probability distribution on 2K . We can
define an `1 metric on K:

Dµ(t, t′) =
∑
A⊂K

µ(A)
1(t,t′)∈δK(A)

hK(A)

Dµ is just a weighted sum of cut-metrics on K. Given Dµ we can define a semi-
metric β that is roughly consistent with Dµ. This semi-metric will serve as a feasible
solution to the linear programming relaxation for the 0-extension problem. A bound
on the cost of this feasible solution will imply that there is a 0-extension that has not
too much cost, and this will imply that the extension player has a good response to
the strategy µ. We define β as:

Initially set all edge distances d(u, v) to zero. Then for each A ⊂ K, if there
is no unique minimum cut separating A and K − A, choose one such minimum cut
arbitrarily. For this minimum cut, for each edge (u, v) crossing the cut, increment the

distance d(u, v) by µ(A)
hK(A) .

Then let β be the semi-metric defined as the shortest path metric on G when
distances are d(u, v).

Claim 2. β(t, t′) ≥ Dµ(t, t′) for all terminals t, t′.
Proof. Consider any particular pair of terminals t, t′. Consider the contribution

of any particular A ⊂ K to the semi-metric Dµ. A only contributes if t and t′ are
separated with respect to A - i.e. if exactly one of {t, t′} is in A. We will show that
any set A that contributes to Dµ, has at least as large a contribution to β. So consider
a set A that contains t but not t′. Then any path in G from t to t′ must cross the cut
in G that actually achieves the minimum hK(A). But when considering the set A, we

increased the distance on all edges crossing this cut by µ(A)
hK(A) , so the contribution to

β(t, t′) of the set A is at least as large as the contribution of A to Dµ(t, t′) and this
implies the claim.

Vertex Sparsification 11

Claim 3. β is an `1 semi-metric
Proof. Using the description of β, one can easily write this semi-metric as a linear

combination of cut-metrics on the set V , and this implies the claim.
Claim 4.

∑
(u,v)∈E(G) β(u, v)c(u, v) = 1

Proof. Again, for each set A ⊂ K consider the total distances × capacity units
that are allocated when we increase the distances of all edges crossing the cut that

achieves hK(A) by µ(A)
hK(A) . We know that the total capacity crossing this cut is hK(A)

and for each such edge, the distance on that edge (according to β) is incremented

by µ(A)
hK(A) . So this implies that the total contribution of the set A ⊂ K to the total

distance × capacity units is µ(A) and if we sum over all A we get the desired claim,
because µ is a probability distribution.

Theorem 3.3.

ν ≤ O
(

log k

log log k

)

Proof. Using Theorem 3.1, there exists a 0-extension f : V → K (such that
f(t) = t for all terminals t) and such that

∑
(u,v)∈E

c(u, v)β(f(u), f(v)) ≤ O
(

log k

log log k

)

Then suppose P1 plays such a strategy f :

EA←µ[N(f,A)]

=
∑

(u,v)∈E

∑
A

1(f(u),f(v))∈δK(A)c(u, v)µ(A)

hK(A)

=
∑

(u,v)∈E

c(u, v)Dµ(f(u), f(v))

≤
∑

(u,v)∈E

c(u, v)β(f(u), f(v)) ≤ O
(

log k

log log k

)

We can improve this result by noticing that the semi-metric Dµ corresponding to
the cost function associated with the randomized strategy µ for P2 and the feasible so-
lution β that we produced are both `1. In particular, let G = (V,E) be an undirected,
capacitated graph and let K ⊂ V be a subset of terminals. Let η denote a bound on
the maximum integrality gap of the semi-metric relaxation when the semi-metric D
is `1 and the feasible solution to the linear program β is also `1.

Corollary 3.4. ν ≤ η
Also, we can use a rounding procedure due to Calinescu, Karloff and Rabani [9]

that improves upon the one in [13] in the case in which G excludes a fixed minor.
Theorem 3.5. [9] If G excludes Kr,r as a minor then

OPT ∗ ≤ OPT ≤ O(r2)OPT ∗

12 A. Moitra

The bound of O(r3) is implicit in [9], and can be immediately improved to O(r2)
using the results of [15] (which provide improved bounds for padded decompositions
for graphs excluding Kr,r over those in [25]). Then this immediately implies as a
corollary:

Corollary 3.6. For any capacitated graph G = (V,E) that excludes Kr,r as a
minor,

ν ≤ O(r2).

We can immediately use any bound on the game value to obtain the desired
structural result:

Theorem 3.7. For any capacitated graph G = (V,E), for any set K ⊂ V of
|K| = k terminals, there is an ν-quality cut-sparsifier G′ = (K,E′) and in fact such a
graph can be realized as a convex combination of graphs Gf generated by 0-extensions
f .

Proof. We can again apply von Neumann’s Min-Max Theorem, and get that there
exists a distribution γ on 0-extensions (f : V → K s.t. f(t) = t for all t ∈ K) such
that for all A ⊂ K: Ef←γ [N(f,A)] ≤ ν.

For any 0-extension f , let Gf be the corresponding 0-extension of G generated
by f , and let hf : 2K → R+ be the cut function defined on this graph. Further, let
G′ =

∑
f∈supp(γ) γ(f)Gf . Then for any A ⊂ K:

hK(A) ≤ hf (A) and hK(A) ≤ h′(A) =
∑

f∈supp(γ)

γ(f)hf (A)

Also because Ef←γ [N(f,A)] ≤ ν:

∑
(u,v)∈E

∑
f∈supp(γ)

γ(f)
1(f(u),f(v))∈δK(A)c(u, v)

hK(A)
=

1

hK(A)

∑
f∈supp(γ)

γ(f)hf (A) =
h′(A)

hK(A)

and so for any A ⊂ K: h′(A) ≤ νhK(A).
In particular, in general there are O(log k

log log k)-quality cut-sparsifiers. If G excludes

Kr,r as a minor, then there is an O(r2)-quality cut-sparsifier. And if η is an upper
bound on the maximum integrality gap of the 0-extension LP when both the semi-
metric ∆ and the feasible solution D are required to be `1, then there is an η-quality
cut-sparsifier.

We will eventually use this existential result to prove that a certain polytope
(with exponentially many constraints) is feasible, and then use entirely different tech-
niques to find a point in the polytope and to constructively find such a graph G′ that
approximates the terminal cut function to within polylog(k).

4. Applications to Oblivious Routing. Here we give a sample application of
cut-sparsification to a question of oblivious routing. We give additional applications
to graph partitioning and graph layout problems in §6. But the application we give
here is somewhat different in that we do not require a constructive result for cut-
sparsifiers. Rather, the existential result proven in §3 is enough to guarantee a good
oblivious routing scheme exists (for the variant of the problem we consider) and we
can use an alternative method due to [7] to actually construct the oblivious routing
scheme.

Vertex Sparsification 13

More generally, this section gives a pattern for how to apply our results on cut-
sparsification to questions about the congestion of multicommodity flows. In partic-
ular, we can use the approximate relationship between generalized sparsest cut and
maximum concurrent flow to re-write multicommodity flow questions as cut questions
and this in turn implies that our cut-sparsifiers also preserve the value of all maximum
concurrent flow problems to within a polylog(k) factor.

4.1. A Variant of Oblivious Routing. An oblivious routing scheme makes
routing decisions based only on the starting and ending nodes of a routing request (and
independently of the current load in the network and what other routing requests have
been made). So routing decisions are based only on local knowledge, and consequently
an oblivious routing scheme can be easily implemented in a distributed manner. We
consider the routing goal of minimizing the congestion in a network - i.e. minimizing
the maximum ratio of load to capacity on any edge.

Then the competitive ratio of an oblivious routing scheme is measured by how well
the oblivious routing scheme performs (with respect to congestion) compared to the
performance of the optimal routing scheme with fore-knowledge of what demands need
to be routed. Valiant and Brebner [39] were the first to prove any performance guaran-
tees for oblivious routing on any network topology, and gave an O(log n)-competitive
oblivious routing algorithm for the hypercube (on n nodes). In a breakthrough pa-
per, Räcke [35] proved that for arbitrary graphs, there are oblivious routing algorithms
that are polylog(n)-competitive. Recently, Räcke [36] proved that there are in fact
O(log n)-competitive oblivious routing algorithms for general graphs. This perfor-
mance guarantee even matches the competitive ratio of (optimal) adaptive routing
algorithms that are given updated knowledge of the loads in the network before being
asked to route each successive request!

But consider a related problem: Suppose a service provider is only responsible
for routing requests between some small set of clients. In this setting, an oblivious
routing protocol can make the assumption that all routing requests will have endpoints
in some small set of terminals K. Suppose that |K| = k, and that k2 � O(log n).
These routing requests are certainly allowed to use paths that contain nodes in the
entire (web)graph. In this restricted scenario, how well can oblivious routing perform?
We could ignore this promise that all routing requests will be between terminals in
K, and we can use the oblivious routing scheme in [36] and get an oblivious routing
scheme that is O(log n)-competitive, and still based only on local knowledge. But
if k2 � O(log n), then this is a trivial guarantee: For each pair (a, b) of terminals,
we could alternatively find a minimum congestion routing of a unit flow from a to
b. Then a naive union bound over all

(
k
2

)
pairs yields a performance guarantee that

outperforms the O(log n)-competitive oblivious routing guarantee!
But here, an oblivious routing protocol (which only needs to pre-define a routing

for all pairs of terminals) that can achieve a polylog(k)-competitive ratio would pro-
vide a much more powerful guarantee in this practical scenario. This would provide
a competitive guarantee that is polylogarithmic in the number of clients, and not
logarithmic in the number of nodes in the entire (web)graph. Using this example as a
guide, getting approximation guarantees for multicommodity-flow and cut problems
that only depend (poly-logarithmically) on the number of interesting nodes can be
crucial in making powerful theoretical algorithms powerful in practice too.

4.2. Existential Results. Suppose we are given a capacitated, undirected graph
G and a subset K ⊂ V of size k. Suppose also that we are promised all the demands
we will be asked to route will have both endpoints in K. Here we prove that for

14 A. Moitra

this problem there is an oblivious routing scheme that is O(log3 k
log log k)-competitive. In

the next subsection, we also give a polynomial (in n and k) time algorithm for con-
structing such schemes. There are many previously known oblivious routing schemes,
but if k2 � log n then these schemes cannot beat the trivial

(
k
2

)
competitive ratio

resulting from choosing
(
k
2

)
independent minimum congestion unit flows (one for each

a, b ∈ K).
Let G′ be a convex combination of 0-extensions of G, and suppose that for all

A ⊂ K:

hK(A) ≤ h′(A) ≤ O
(

log k

log log k

)
hK(A)

Here we consider G′ to be a demand graph on the terminals K.
Lemma 4.1. The demands in G′ can be routed in G with congestion at most

O(log2 k
log log k).

Proof. Let T ⊂ V be arbitrary. Let A = T ∩K and also let d(T) be the demands
in G′ that cross the cut (T, V − T) .Then h(T) ≥ hK(A). So

Ω

(
log log k

log k

)
≤ hK(A)

h′(A)
≤ h(T)

d(T)

and this holds for all T ⊂ V , so the sparsity of a cut in G (when demands are given
by G′) is at least

Ω

(
log log k

log k

)
Using the Theorem 2.3 due to Linal, London and Rabinovich [30] and Aumann

and Rabani [6], this implies that all the demands in G′ can be routed using congestion
at most

O

(
log2 k

log log k

)

We also note that G′ is a better communication network than G:
Lemma 4.2. Any set of demands (which have support only in K) that can be

routed with congestion at most C, can also be routed in G′ with congestion at most
C.

Proof. We have that

G′ =
∑

f∈supp(γ)

γ(f)Gf

and each Gf is a 0-extension of G. So given a flow that satisfies the demands and
achieves a congestion of at most C in G, we can take a flow path decomposition of
this flow. Then consider any path in the flow decomposition and suppose that this
flow path carries δ units of flow. Decompose this path into subpaths that connect
nodes in K and contain no nodes of K as internal nodes. For each such subpath,
suppose that the subpath connects a and b in K, then add δ units of flow along the

Vertex Sparsification 15

edge (a, b) in Gf . This scheme will satisfy all demands because the original flow paths
in G satisfied all demands. And also, each edge in Gf will have congestion at most
C because the edges in Gf are just a subset of the edges in G and each edge in Gf is
assigned exactly the same total amount of flow as it is in the flow in G.

So for each f ∈ supp(γ), route γ(f) fraction of all demands according to the
routing scheme given for Gf above. The contribution to the congestion of any edge
(u, v) ∈ E′ from any f is at most γ(f)C, and so the total congestion on any edge is
at most C. Yet all demands are met because

∑
f∈supp(γ) γ(f) = 1.

We can now construct an oblivious routing scheme in G′ and compose this with
the embedding of G′ into G to get an oblivious Steiner routing scheme in G:

Theorem 4.3. [36] There is an oblivious routing scheme for G′ (on k nodes) that
on any set of demands incurs congestion at most O(log k) times the off-line optimum.

Theorem 4.4. There is an oblivious Steiner routing scheme that on any set

of demands (supported in K) incurs congestion at most O(log3 k
log log k) times the off-line

optimum.
Proof. Given G′, use Räcke’s Theorem [36] to construct an oblivious routing

scheme in G′. This can be mapped to an oblivious routing scheme in G using the
existence of a low-congestion routing for the demand graph G′ in G: Given a, b ∈ K,
if the oblivious routing scheme in G′ assigns δ units of flow to a path Pa,b in G′, then
construct a set of paths in G that in total carry δ units of flow as follows:

Let Pa,b = (a, p1), (p1, p2), ...(pl, b). Let p0 = a and pl+1 = b. Then consider an
edge (pi, pi+1) contained in this path and suppose that c′(pi, pi+1) is α in G′. Then
for each flow path P connecting pi to pi+1 in the low-congestion routing of G′ in G,
add the same path and multiply the weight by δ

α . The union of these flow paths sends
δ units of flow from a to b in G. Räcke’s oblivious routing scheme sends one unit of
flow from a to b for all a, b ∈ K in G′. So this implies that we have constructed a set
of flows in G such that for all a, b ∈ K, one unit of flow is sent from a to b in G.

So consider any set of demands that have support contained in K. Suppose that
this set of demands can be routed in G with congestion C. Then there exists a
flow satisfying these demands that can be routed in G′ with congestion at most C
using Lemma 2. Räcke’s oblivious routing guarantees imply that the oblivious routing
scheme in G′ incurs congestion at most O(log k)C on any edge in G′. This implies
that we have scaled up each edge in G′ by at most O(log k)C and so we have scaled up
the amount of flow transported on each path in an optimal routing of the (demand)
graph G′ into G by at most O(log k)C. So the congestion incurred by this oblivious
routing scheme is at most

O

(
log3 k

log log k

)
C

This result is non-constructive, because the proof of Theorem 3.7 is non-constructive.

4.3. Constructive Results. Azar et al [7] formulate the problem of deciding
(for a given graph G) whether there exists an oblivious routing scheme that is T -
competitive against the off-line optimal algorithm as a linear program. This algorithm
can be adapted to yield:

Theorem 4.5. An optimal oblivious Steiner routing scheme can be constructed

in polynomial (in n and k) time. So an O(log3 k
log log k)-competitive oblivious Steiner

routing scheme can be constructed in polynomial time.

16 A. Moitra

5. Constructing a Vertex Sparsifier. In this section we consider the problem
of constructing - in time polynomial in n and k - an undirected, capacitated graph
G′ = (K,E′) for which the cut function h′ approximates the terminal cut function
hK . We will use existential results (in Theorem 3.7) to conclude that a particular
polytope is non-empty, and we will design approximate separation oracles for this
polytope to give a polynomial time construction for finding such a graph G′.

Rather surprisingly, we use oblivious routing guarantees to design an approximate
separation oracle. So apart from the original motivation for studying oblivious routing
schemes, we actually use oblivious routing to solve an optimization problem. These
ideas lead us to believe that the remarkable oblivious routing guarantees due to Räcke
[36] can also be understood as a geometric phenomenon particular to undirected
multicommodity polytopes.

The constructive results in this section have been subsequently improved in [31],
[11] and [12], which independently give three separate techniques for efficiently con-
structing cut-sparsifiers that match the existential results in Theorem 3.7. However,
these techniques do not improve upon the approximate separation oracles constructed
in this section, and our geometric interpretation of oblivious routing may be of inde-
pendent interest.

5.1. The Terminal Cut Polytope. Constructing such a graph G′ can be nat-
urally represented as a feasibility question for a linear program. We can define a
non-negative variable xa,b for each pair a, b ∈ K. Then finding a G′ for which the cut
function h′ f(k)g(k)-approximates the terminal cut function is equivalent to finding
a feasible point in the polytope:

Type 1:
∑

(a,b)∈δK(A) xa,b ≤ f(k)hK(A) for all A ⊂ K
Type 2: hK(A) ≤ g(k)

∑
(a,b)∈δK(A) xa,b for all A ⊂ K

0 ≤ xa,b for all a, b ∈ K

Theorem 3.7 implies that this polytope is non-empty for f(k) = O(log k
log log k),

g(k) = 1. However there are 2k+1 linear constraints, and we cannot check all con-
straints in time polynomial in n and k. We will construct approximate separation
oracles for both Type 1 and Type 2 Inequalities. Then we can use the ellipsoid
algorithm to find feasible edge weights. And we will choose f(k) and g(k) to be
polylogarithmic in k.

Lemma 5.1. There is a polynomial time algorithm to find a Type 1 Inequality
that is within an O(

√
log k log log k) factor approximately the maximally violated Type

1 Inequality.
Proof. Given non-negative edge weights xa,b we can consider the problem of

(approximately) minimizing

hK(A)

h′(A)

over all sets A ⊂ K. This is exactly the sparsest cut problem when the graph G′

(with edge weights xa,b) is considered to be the demand graph and we are attempting
to route this demand with low congestion in G. Then we can use the current best
approximation algorithm to sparsest cut due to [4] which is an O(

√
log k log log k)

approximation algorithm to this problem, and we will find a set B for which

Vertex Sparsification 17

hK(B)

h′(B)
≤ O(

√
log k log log k) min

A⊂K

hK(A)

h′(A)

And so the Type 1 Inequality for the set B is within an O(
√

log k log log k) factor
approximately the maximally violated Type 1 Inequality, and we can find such a set
constructively (with high probability).

We will use (constructive) algorithms for oblivious routing to find an approxi-
mately maximally violated Type 2 Inequality. Suppose there is a Type 2 constraint
that is violated by a factor OPT . Then there exists a terminal cut A such that
hK(A) ≥ OPTh′(A).

Lemma 5.2. There exists a maximum concurrent flow ~f that can be routed with
congestion 1 in G, but cannot be routed with congestion less than OPT in G′.

Proof. Place a super-source s and connect s via infinite capacity (directed) edges
to each node in A. Also place a super-sink t and connect each node in K −A via an
infinite capacity (directed) edge to t. Compute a maximum s − t flow. The value of

this flow is hK(A). So choose a maximum concurrent flow problem ~f in which fa,b is
just the amount of a to b flow in a path decomposition of the above maximum flow.
In particular, fa,b = 0 if a and b are either both in A or both in K − A. This flow
can clearly be routed in G with congestion at most 1, because we constructed this
demand vector from such a routing.

However because h′(A)
hK(A) ≤

1
OPT there is a cut of sparsity 1

OPT and so ~f cannot

be routed with congestion less than OPT in G′.
Hence we consider the problem of finding a demand vector ~f that can be routed

with congestion 1 in G, but cannot be routed with congestion ≤ O(log k)g(k) in G′.

Given such a demand vector ~f , we can find a cut of sparsity at most ≤ 1
g(k) in G′ i.e.

we can find a cut A ⊂ K for which

h′(A)

d(A)
≤ 1

g(k)

where d(A) is the total demand in ~f with one endpoint in A and one in K − A.

Because ~f can be routed with congestion 1 in G, we are guaranteed:

hK(A)

d(A)
≥ 1

So this implies that we have found a Type 2 Inequality that is violated. So using
Lemma 4 and the above argument, up to an O(log k) factor, the problem of finding
an (approximately) maximally violated Type 2 Inequality is equivalent to finding a

demand vector ~f that can be routed with congestion at most 1 in G, and maximizes
the minimum congestion needed to route this demand vector in G′. We define this
problem formally as the Max-Min Congestion Problem, and we give a polylog(k)
approximation algorithm for this problem:

Formally, given an undirected, capacitated graph G = (V,E), a subset K ⊂
V of size k, and an undirected, capacitated graph G′ = (K,E′) the goal of the

Max-Min Congestion Problem is to find a demand vector ~f (such that the demands
are supported in K) that can be routed with congestion 1 in G and maximizes the

minimum congestion needed to route ~f in G′. We given an O(log k) approximation
algorithm for this problem in §5.3, and use this approximation algorithm to construct
an O(log3.5 k)-quality cut-sparsifier in the next subsection.

18 A. Moitra

5.2. Constructing a Vertex Sparsifier. In this subsection, we give an approx-
imate separation oracle for the set of Type 2 Inequalities (based on the approximation
algorithm given in §5.3 for the Max-Min Congestion Problem). We use this approx-
imate separation oracle to construct an O(log3.5 k)-quality cut-sparsifier by running
the ellipsoid algorithm on a linear program on

(
k
2

)
variables.

Lemma 5.3. There is a polynomial time algorithm to find a Type 2 Inequality that
is within an O(log2 k) factor approximately the maximally violated Type 2 Inequality.

Proof. Let A be the maximally violated Type 2 Inequality. Let OPT = hK(A)
h′(A) .

Then using Lemma 5.2 there is a maximum concurrent flow demand vector ~d such
that ~d can be routed with congestion at most 1 in G and cannot be routed with
congestion < OPT in G′. So the solution to the Max-Min Congestion Problem is at
least OPT , which implies that using the approximation algorithm for the Max-Min
Congestion Problem given in §5.3 we will find a demand vector ~d which can be routed
in G with congestion at most 1 and cannot be routed in G′ with congestion < OPT

O(log k) .

Hence we can find a cut A ⊂ K for which

h′(A)

d(A)
<
O(log2 k)

OPT
and

hK(A)

d(A)
≥ 1

and this implies

hK(A)

h′(A)
>

OPT

O(log2 k)
.

Returning to the linear program for finding such a G′, we can use the ellipsoid
algorithm to find (in time polynomial in n and k) a point ~x ≥ 0 such that the graph
G′ defined by these edge weights satisfies:

hK(A)

g(k)
≤

∑
a,bs.t.a∈A,b/∈A

xa,b ≤ f(k)hK(A)

for g(k) = O(log2 k) and f(k) = log1.5 k.
Theorem 5.4. For any capacitated graph G = (V,E), for any set K ⊂ V of

|K| = k terminals, there is a polynomial (in n and k) time algorithm to construct an
O(log3.5 k)-quality cut-sparsifier.

Note that such a cut-sparsifier is not guaranteed to be realizable as a convex
combination of graphs generated by 0-extensions.

5.3. An Approximation Algorithm via Oblivious Routing. In this sub-
section, we give an approximation algorithm for the Max-Min Congestion Problem.

Theorem 5.5. There exists a polynomial time O(log k)-approximation algorithm
for the Max-Min Congestion Problem.

We first construct an O(log k)-competitive oblivious routing scheme f ′ for G′.
Such an oblivious routing scheme is guaranteed to exist, and can be found in polyno-
mial time using the results due to Räcke [36]. For each a, b ∈ K, f ′ specifies a unit flow
from a to b in G′ and we will let f ′a,b : E′ → R+ be the corresponding assignment of
flows to edges for this unit flow. Since f ′ is O(log k)-competitive, f ′ has the property

Vertex Sparsification 19

that for any demand vector ~d, the congestion that results from routing according to
f ′ is within an O(log k) factor of the optimal congestion for routing ~d in G′.

For any edge (u, v) ∈ E′, we consider the following linear program LP (u, v):

maxDu,v =
∑

a,b da,bf
′a,b(u,v)

c(u,v)

s.t. ∑
t∈U,t 6=a x

a,b(a, t) = da,b for all a, b∑
t∈U x

a,b(s, t) = 0 for all s ∈ U, s 6= a, b∑
a,b x

a,b(e) ≤ c(e) for all e ∈ E
xa,b(e) ≥ 0 for all e ∈ E

The interpretation of this linear program is that it finds a demand vector (da,b
for all a, b ∈ K) that can be routed as a multicommodity flow in G, which maximizes
the congestion of the oblivious routing scheme on the edge (u, v) ∈ E′ among all
such flows. We will solve the above linear program for all (a, b) ∈ E′ and output the

demand vector ~d that achieves the maximum Da,b over all (a, b) ∈ E′. Let

D = max
(a,b)∈E′

Da,b

Lemma 5.6. Let ~d be the output, then ~d can be routed with congestion at most 1
in G and cannot be routed with congestion < D

O(log k) in G′.

Proof. The linear program enforces that ~d can be routed in G with congestion at
most 1. Suppose ~d achieves value D on an edge (i, j) -i.e. (i, j) = arg max(a,b)Da,b

and ~d is the optimizing demand. Then ~d achieves congestion D on edge (i, j) when
routed according to the oblivious routing scheme. The oblivious routing guarantees
for G′ imply that no routing of ~d achieves congestion smaller than

D

O(log k)

Let OPT be the optimal value for the Max-Min Congestion Problem.
Lemma 5.7. There exists a feasible demand ~d which achieves Da,b ≥ OPT for

some (a, b) ∈ E′.
Proof. Let ~d′ be the demand that achieves the optimal value for the Max-Min

Congestion Problem. The oblivious routing scheme is a routing, and must then achieve
congestion at least OPT on some edge (a, b) ∈ E′ (not necessarily the same edge that

achieves congestion OPT in the optimal off-line routing scheme for ~d′ in G′).

Proof. This implies Theorem 5.5, and the vector ~d computed by solving a poly-
nomial (in k) number of linear programs will be an O(log k) approximation for the
Max-Min Congestion Problem.

6. Oblivious Reductions. Here we demonstrate two additional techniques for
how to apply our results. The pattern for applying cut-sparsifiers is always the same:
Construct a good-quality cut-sparsifier, and then run a pre-existing approximation
algorithm on the cut-sparsifer, and map the solution back to the original graph G.
If the optimization problem can be approximately written as depending only on the

20 A. Moitra

terminal cut function hK , then this technique can be used to reduce the question
of designing a polylog(k) approximation algorithm to the question of designing a
polylog(n) approximation algorithm. In fact, this general technique is oblivious to the
actual optimization problem that we want to solve, as long as it can be approximately
written as depending only on the terminal cut function. However, there is an art to
re-writing an optimization problem in a form that only depends on the terminal cut
function, and here we give two such approaches (in addition to the approach we gave
in §4 for re-writing multicommodity flow problems). The two approaches we give here
are useful for re-writing graph partitioning problems and graph layout problems. In
particular these techniques apply to any optimization problems that can be written
either as a cost-minimization problem over some feasible set of partitions, or to ay
cost-minimization problem over a laminar family of cuts, can be reduced to a uniform
case using cut-sparsifiers.

6.1. Applications to Partitioning Problems. Here we give some sample ap-
plications that demonstrate how to reduce graph-partitioning problems using cut-
sparsifiers to a uniform case. In particular, by approximately preserving the minimum
cut separating any subset of terminals A from the remaining terminals K−A we also
approximately preserve the cost of any partition A1, A2, ..Ar of K, not just for bi-
partitions. We use this observation to give an improved approximation (independent
of the size of the graph) for the Requirement Cut Problem.

Given an undirected, capacitated graph G = (V,E) and g groups of nodes
X1, ...Xg ⊂ V , each group Xi is assigned a requirement ri ∈ {0, ...|Xi|}. Then the
goal of the requirement cut problem is to find a minimum capacity set of edges whose
removal separates each group Xi into at least ri disconnected components.

[33] gives an O(log n log gR) approximation algorithm for this problem, where R
is the maximum requirement maxi ri. Then given an instance of the requirement cut
problem in which X1∪X2...∪Xg = K and |K| = k, we can use Theorem 5.4 to reduce
to a uniform case. Let OPT be the value of the optimal solution in G. We denote
the optimal solution in G′ as OPT ′.

Claim 5.

OPT ′ ≤ O(log3.5 k)OPT

Proof. Interpret the optimal solution to the requirement cut problem in G as a
partition P = {P1, P2, ...Pr} of K that satisfies the requirement cut - i.e. for all i, the
nodes in Xi are contained in at least ri elements of the partition P . Then

OPT ≥ 1

2

∑
i

hK(Pi)

and P = {P1, P2, ...Pr} is a valid partition for the requirement cut problem mapped
to G′ so

OPT ′ ≤
∑
i

h′(Pi) ≤ O(log3.5 k)
∑
i

hK(Pi)

Note that Steiner generalization of sparsest cut, min-bisection, ρ-separator, also
satisfy this type of reducibility property.

Vertex Sparsification 21

Theorem 6.1. There is a polynomial (in n and k) time O(log4.5 k log gR)-
approximation algorithm for the requirement cut problem.

Proof. Construct G′ as in Theorem 5.4 and we can run the approximation algo-
rithm due to [33] to find a set of edges of capacity at most C ≤ O(log k log gR)OPT ′

deleting which (in G′) results in a partition P ′ = {P ′1, P ′2, ...P ′q} that satisfies the
requirement cut. Then ∑

i

h′(P ′i) = 2C

For each i, define Fi as a set of edges in G that achieves hK(P ′i) and separates P ′i
and K − P ′i . Delete all edges in F = F1 ∪ F2... ∪ Fq, and this results (in G) in a sub-
partition P ′′ of P ′ that also satisfies the requirement cut and the capacity of these
edges is at most 2C.

An almost identical argument that uses the result due to [19] implies:
Corollary 6.2. There is a polynomial (in n and k) time O(log4.5 k)-approximation

algorithm for the l-multicut problem.
Note that here k is the number of demand pairs. Previous approximation algo-

rithms for these problems [33], [19] and later [36] all rely on a decomposition tree
for the graph G that approximates the cuts and such a decomposition tree cannot
approximate cuts better than the Ω(log n) lower bound for oblivious routing. But we
were able to use a black-box reduction to the uniform case to get an approximation
guarantee that is polylog(k).

6.2. Applications to Layout Problems. Here we demonstrate how an un-
crossing argument can be used to re-write graph layout problems as graph partitioning
problems. This observation allows us to re-write Steiner generalizations of Minimum
Cut Linear Arrangement and Minimum Linear Arrangement as graph partitioning
problems and in turn allows us to give approximation guarantees independent of the
size of the graph for these problems as well.

The Minimum Cut Linear Arrangement Problem is defined as: Given an undi-
rected, capacitated graph G = (V,E) we want to find an ordering of the vertices
v1, v2, ...vn which minimizes the value of

C = max
1≤i≤n

h({v1, v2, ...vi})

We can define a natural generalization of this problem in which we are given a
set K ⊂ V of size k, and we want to find an ordering of the nodes in K, u1, u2, ...uk
and a partition A1, A2, ...Ak of the remaining nodes V −K (and let Bi = Ai ∪ {ui})
which minimizes the value of

CK = max
1≤i≤k

h(∪1≤j≤iBi)

We refer to this problem as the Steiner Min-Cut Linear Arrangement Problem.
We can also give an identical generalization of Minimum Linear Arrangement to the
Steiner Minimum Linear Arrangement Problem.

Applying our generic reduction procedure to these problems will require a more
intricate uncrossing argument (that relies on the sub-modularity of the cut function)
to map a solution in G′ back to a solution in G. But the reduction procedure is quite

22 A. Moitra

robust, and will work in this setting too: Suppose that the optimal solution to the
Steiner Min-Cut Linear Arrangement Problem has value OPT . Again we construct
a graph G′ as in Theorem 5.4. Let OPT ′ be the value of an optimal solution to the
min-cut linear arrangement problem on G′.

Claim 6.

OPT ′ ≤ O(log3.5 k)OPT

Proof. Suppose that the optimal solution to the Steiner Min-Cut Linear Arrange-
ment Problem in G has an ordering u1, u2, ...uk of the nodes in K. Then consider this
ordering as a solution to the min-cut linear arrangement problem in G′.

Each set ∪1≤j≤iBi defines a cut inG that separates {u1, u2, ...ui} from {ui+1, ui+2, ...uk}.
So hK({u1, u2, ...ui}) ≤ h(∪1≤j≤iBi) and so h′({u1, u2, ...ui}) ≤ O(log3.5 k)h(∪1≤j≤iBi)
and this is true for all {u1, u2, ...ui}.

Because for all {u1, u2, ...ui}, h(∪1≤j≤iBi) ≤ OPT this implies that for all {u1, u2, ...ui}

h′({u1, u2, ...ui}) ≤ O(log3.5 k)OPT

OPT ′ ≤ max
1≤i≤k

h′({u1, u2, ...ui}) ≤ O(log3.5 k)OPT

Claim 7. Suppose we can find a min-cut linear arrangement of G′ of value C ′.
Then we can find a solution to the Steiner Min-Cut Linear Arrangement Problem in
G of value at most C ′.

Proof. The cut function h : 2V → R+ is a submodular function. So for all
S, T ⊂ V :

h(S) + h(T) ≥ h(S ∩ T) + h(S ∪ T)

So consider a solution to the min-cut linear arrangement problem in G′ of value
C ′. And suppose that the ordering for K is {u1, u2, ...uk}. For each i, find a set
Bi ⊂ V s.t. h(Bi) = hK({u1, u2, ...ui}).

Consider the sets B1 and B2. We can find sets B′1, B
′
2 such that B′1 ⊂ B′2 and

h(B1) = h(B′1), h(B2) = h(B′2) and B′1 ∩K = B1 ∩K, B′2 ∩K = B2 ∩K. This is true
via submodularity: Choose B′1 = B1 ∩B2 and B′2 = B1 ∪B2.

SoB′1∩K = (B1∩K)∩(B2∩K) = (B1∩K) and alsoB′2∩K = (B1∩K)∪(B2∩K) =
B2 ∩K because B1 ∩K ⊂ B2 ∩K.

Also

h(B1) + h(B2) ≥ h(B′1) + h(B′2)

via submodularity. However h(B1) is the minimal value of an edge cut separating
B1 ∩K from K − (B1 ∩K) and B′1 also separates B1 ∩K from K − (B1 ∩K), and a
similar statement holds for B′2. So the above inequality implies

h(B1) = h(B′1), h(B2) = h(B′2)

We can continue the above argument and get sets B′1, B
′
2, ...B

′
k such that

h(B′i) = hK({u1, u2, ...ui}) and B′1 ⊂ B′2... ⊂ B′k

Vertex Sparsification 23

Then we can choose A′i = (B′i −B′i−1) ∩ (V −K) as our partition of V −K (and let
Di = A′i ∪ {ui}) and then for any 1 ≤ i ≤ k:

h(∪1≤j≤iDj) = hK({u1, u2, ...ui}) ≤ h′({u1, u2, ...ui})

So

max
1≤i≤k

h(∪1≤j≤iDj) ≤ max
1≤i≤k

h′({u1, u2, ...ui}) ≤ C ′

Using approximation algorithms due to [29] for min-cut linear arrangement and
due to [10] for minimum linear arrangement, we get:

Theorem 6.3. There is a polynomial (in n and k) time O(log4 k log log k)-
approximation algorithm for the Steiner Minimum Linear Arrangement Problem, and
a polynomial time O(log5.5 k)-approximation algorithm for the Steiner Min-Cut Lin-
ear Arrangement Problem.

7. Discussion. We note that good quality cut-sparsifiers realized as a convex
combination of 0-extension graphs can also be viewed as an oblivious algorithm for
the 0-extension problem in which the semi-metric D is required to be `1. Here,
by an oblivious algorithm we mean that the algorithm is given knowledge of the
graph G = (V,E) and the set of terminals K, but not the semi-metric D on the
terminals. The algorithm must nevertheless choose a 0-extension without knowledge
of this cost function D. Then using the well-known result that any `1-metric can be
expressed as a non-negative combination of cut-metrics, any C-quality cut-sparsifier
that is realized as a convex combination of 0-extension graphs is also a C-competitive
oblivious algorithm for the 0-extension problem (in which D is required to be `1). The
results in [28] prove that there are vertex sparsifiers that approximately preserve the
congestion of all multicommodity flows, and again these vertex sparsifiers are realized
as a convex combination of 0-extension graphs. So one can view the results in [28] as
a refinement and extension of those presented here; in particular, the results in [28]
imply that there is an O(log k

log log k)-competitive oblivious algorithm for the 0-extension
problem with no restriction on the semi-metric D.

Viewing both the cut-sparsifiers considered here and the stronger flow-sparsifiers
considered in [28] as oblivious algorithms, one can think of vertex sparsification as an-
other instance in which an oblivious algorithm leads to a structural insight that yields
new approximation algorithms. A famous result in this category is due to Räcke [36],
who gives an oblivious algorithm for congestion minimization. The particular tree-
like structure of this oblivious algorithm yields a number of surprising consequences
in approximation algorithms. So, we can draw the conclusion that some oblivious
algorithms reveal structural insight into general graphs. In our case, this structural
insight is that good vertex sparsifiers exist. In the case of oblivious routing, this
structural insight is that one can exchange capacities and distances in probabilistic
mappings.

8. Open Questions. The main open question in this paper is:
Open Question 1. Are there Õ(

√
log k) quality cut-sparsifiers in general graphs?

Such a result would be implied by an improved rounding algorithm (for the linear
program given in [24] and [9]) for the 0-extension problem when the input semi-
metric is `1. A lower bound on the integrality gap better than Ω(

√
log k) would not

24 A. Moitra

immediately imply a negative result to the above question – because the best cut-
sparsifiers are not always realizable through contractions. In general, there can be a
super-constant gap [11]. Also, the lower bounds given in [28], [11] and [31] only apply
to the case in which a ”cut-sparsifier” contains only terminals - i.e. G′ = (K,E′). Of
course, almost all of the results presented in this paper remain intact even if a small
number (say, kO(1)) of non-terminal nodes are allowed. So another intriguing open
question is:

Open Question 2. Does allowing kO(1) additional non-terminal nodes in a
cut-sparsifier allow better approximation of the terminal cut function?

In fact, we know of no examples that require more than k additional non-terminal
nodes to get an exact approximation of the terminal cut function!

Acknowledgments. We would like to thank Tom Leighton, Harald Räcke and
Satish Rao for many helpful discussions.

REFERENCES

[1] M. Adler, N. Harvey, K. Jain, R. Kleinberg, and A. R. Lehman, ”On the capacity of information
networks,” Symposium on Discrete Algorithms, pp. 251–260, 2006.

[2] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor, “A general approach to online
network optimization problems,” ACM Transactions on Algorithms, pp. 640–660, 2006.

[3] R. Andersen and U. Feige. ”Interchanging distance and capacity in probabilistic mappings,”
Arxiv, 2009.

[4] S. Arora, J. Lee, and A. Naor, “Euclidean distortion and the sparsest cut,” Journal of the AMS,
pp. 1–21, 2008.

[5] S. Arora, S. Rao, and U. Vazirani. ”Expander flows, geometric embeddings and graph partition-
ing,”, Journal of the ACM, 2009.

[6] Y. Aumann and Y. Rabani, “An O(log k) approximate min-cut max-flow theorem and approxi-
mation algorithm,” SIAM Journal on Computing, vol. 27, pp. 291–301, 1998.

[7] Y. Azar, E. Cohen, A. Fiat, K. Haim, and H. Räcke, “Optimal oblivious routing in polynomial
time,” Symposium on Theory of Computing, pp. 383–388, 2003.

[8] Y. Bartal, ”Probabilistic approximation of metric spaces and its algorithmic applications,” Foun-
dations of Computer Science, pp. 184–193, 1996.

[9] G. Calinescu, H. Karloff, and Y. Rabani. Approximation algorithms for the 0-extension problem.
SIAM Journal on Computing, pp. 358–372, 2004.

[10] M. Charikar, M. Hajiaghayi, H. Karloff, and S. Rao, “`22 spreading metrics for vertex ordering
problems,” Algorithmica, pp. 577–604, 2010.

[11] M. Charikar, T. Leighton, S. Li, A. Moitra. Vertex sparsifiers and abstract rounding algorithms.
In Foundations of Computer Science, pp. 265–274, 2010.

[12] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-Cohen, and K. Talwar. Vertex
sparsifiers: new results from old techniques. In APPROX-RANDOM pp. 152-165, 2010.

[13] J. Fakcharoenphol, C. Harrelson, S. Rao, and K. Talwar, “An improved approximation algorithm
for the 0-extension problem,” Symposium on Discrete Algorithms, pp. 257–265, 2003.

[14] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. Journal of Computer and System Sciences, pp. 485–497, 2004.

[15] J. Fakcharoenphol and K. Talwar, ”An improved decomposition theorem for graphs excluding
a fixed minor,” RANDOM-APPROX, pp. 36–46, 2003.

[16] N. Garg and J. Könemann, ”Faster and simpler approximation algorithms for multicommodity
flow and other fractional packing problems,” SIAM Journal on Computing, pp. 680–652,
2007.

[17] N. Garg, V. Vazirani, and M. Yannakakis, “Approximate max-flow min-(multi)cut theorems
and their applications,” SIAM Journal on Computing, vol. 25, pp. 235–251, 1996.

[18] A. Gupta, V. Nagarajan, and R. Ravi, ”An improved approximation algorithm for requirement
cut,” Operations Research Letters, pp. 322–325, 2010.

[19] D. Golovin, V. Nagarajan, and M. Singh, “Approximating the k-multicut problem,” Symposium
on Discrete Algorithms, pp. 621–630, 2006.

[20] M. Grötschel, L. Lovász, and A. Schrijver, “Geometric algorithms and combinatorial optimiza-
tion,” Springer Verlag, 1993.

Vertex Sparsification 25

[21] C. Harrelson, K. Hildrum, and S. Rao, “A polynomial-time tree decomposition to minimize
congestion,” Symposium on Parallel Algorithms and Architectures, pp. 34–43, 2003.

[22] M. Jerrum and A. Sinclair, ”Approximating the permanent,” SIAM Journal on Computing, pp.
1149-1178, 1989.

[23] M. Jerrum, A. Sinclair, and E. Vigoda, ”A polynomial-time approximation algorithm for the
permenant of a matrix with non-negative entries,” Symposium on Theory of Computing, pp.
712–721, 2001.

[24] A. Karzanov, “Minimum 0-extensions of graph metrics,” European Journal of Combinatorics,
pp. 71–101, 1998.

[25] P. Klein, S. Plotkin, and S. Rao, “Excluded minors, network decomposition, and multicommod-
ity flow,” Symposium on Theory of Computing, pp. 682–690, 1993.

[26] P. Klein, S. Rao, A. Agrawal, and R. Ravi, ”An approximate max-flow min-cut relation for
multicommodity flow, with applications,” Combinatorica, pp. 187–202, 1995.

[27] L. C. Lau, “An approximate max-steiner-tree packing min-steiner-cut theorem,” Combinatorica,
pp. 71–90, 2007.

[28] T. Leighton and A. Moitra, ”Extensions and limits to vertex sparsification,” Symposium on
Theory of Computing, pp. 47–56, 2010.

[29] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms,” Journal of the ACM, pp. 787–832, 1999.

[30] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and some of its algorithmic
applications,” Combinatorica, vol. 15, pp. 215–245, 1995.

[31] K. Makarychev and Y. Makarychev. Metric extension operators, vertex sparsifiers and Lipschitz
extendability. In Foundations of Computer Science, pp. 255-264, 2010.

[32] A. Moitra, ”Approximation algorithms for multicommodity-type problems with guarantees in-
dependent of the graph size,” Foundations of Computer Science, pp. 3–12, 2009.

[33] V. Nagarajan and R. Ravi, “Approximation algorithms for requirement cut on graphs,”
RANDOM-APPROX, pp. 209–220, 2005.

[34] S. Plotkin and E. Tardos, ”Improved bounds on the max-flow min-cut ratio for multicommodity
flows,” Combinatorica, pp. 425–434, 1995.

[35] H. Räcke, “Minimizing congestion in general networks,” Foundations of Computer Science, pp.
43–52, 2003.

[36] H. Räcke, “Optimal hierarchical decompositions for congestion minimization in networks,” Sym-
posium on Theory of Computing, pp. 255–264, 2008.

[37] D. Randall, ”Mixing,” Foundations of Computer Science, pp. 4–15, 2003.
[38] D. Shmoys, Approximation algorithms for cut problems and their application to divide-and-

conquer In Approximation Algorithms for NP-hard Problems, PWS, 1997.
[39] L. Valiant and G. Brebner, ”Universal schemes for parallel communication,” Symposium on

Theory of Computing, pp. 263–277, 1981.

