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1. Introduction

This my final project paper for the class 18.S996: Algorithmic Aspects of Machine Learn-
ing, taught in Fall 2013 by Prof. Ankur Moitra. In this note, I will explain the spectral
method for partitioning a graph as used in the following two papers:

[1] N. Alon, M. Krivelevich, and B. Sudakov, Finding a large hidden clique in a random
graph.

[4] F. McSherry, Spectral partitioning of random graphs.

In [1], the problem is to recover a planted clique of size c
√
n in a random graph G(n, 1/2).

That is, we first generate a random graph G(n, 1/2), and then randomly put in a clique of
size c

√
n, and the algorithmic goal is to recover this clique.

In [4], variations and extensions of this planted clique problem are considered, including
planted bisection and k-coloring. In each case, the graph is generated by first partitioning
the vertices into parts of prescribed size (the algorithm doesn’t know which vertices belong
to which partition) and then edges are places between parts and within parts using certain
prescribed probabilities. The goal is to recover the original partition given the resulting
random graph. In [4], McSherry considers probabilities that depend on n, the size of graph,
whereas in [1], only the constant 1/2 probability is considered.

These problems are all variations of classical NP-hard optimization problems which are
even hard to approximate. However, the planted versions turn out to be more amenable,
at least in certain parameter regimes. Note that our goal is to recover the planted ob-
ject/partition, and not necessarily to solve the optimization problem (e.g., finding the largest
clique), although these two goals can coincide (as they do in the case of planted clique, since
the largest clique in G(n, 1/2) has size (2 + o(1)) log2 n).

I will give only a very rough sketch of the proof ideas, without giving much details or
calculations.

2. Eigenvalues of a random graph

We first review some facts about eigenvalues of a random graph, which are due to Füredi
and Komlós [3].

Theorem 2.1. Let A be an n×n random symmetric matrix with bounded independent entries
(other than the constraint Aij = Aji). Suppose all the non-diagonal entries have mean zero
and variance σ2. Let λ1(A) ≥ · · · ≥ λn(A) be the eigenvalues of A. Then w.h.p. (i.e., with
probability tending to 1)

max
1≤i≤n

|λi(A)| = 2σ
√
n+O(n1/3 log n).
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We sketch the idea of the proof. Following the techniques in the proof of Wigner’s famous
semicircle law for the distribution of eigenvalues of a random matrix [5], we first compute
the moments of the spectrum of A:

n∑
i=1

λi(A)k = trAk

The quantity trAk is the sum of all weighted closed walks on n vertices with edge weights
given by A. We find that

E trAk = E
∑

i0,i1,...,ik∈[n]

Ai0i1Ai1i2 · · ·Aik−1ik . (1)

Since A has independent mean-zero nondiagonal entries, any term where some Aij (also
counting Aji) appears exactly once has zero expectation. One then enumerates over all
possible walks where every edge is traversed at least twice, and it turns out, when k is even,
the dominant contributions to (1) come from walks of length k on a tree where every edge is
traversed exactly twice. This corresponds to terms in the sum on the RHS of (1) where the
set {i0, i1, . . . , ik} has size exactly k/2+1. The contribution of these terms to the expectation
is exactly

1

(k/2) + 1

(
k

k/2

)
n(n− 1) · · ·

(
n− k

2

)
σk.

Here 1
(k/2)+1

(
k

k/2

)
is the (k/2)-th Catalan number, which counts (among many other things)

the number of possible tree walks up to isomorphism, and the factor n(n− 1) · · · (n− (k/2))
is the number of ways of assigning vertices of the graph to the vertices of the tree walk (i.e.,
injectively mapping [n] to {i0, i1, . . . , ik}), and last factor σk comes from EA2

ij = σ2 when
i 6= j.

It is then shown that the other terms contribute negligibly to (1), at least when k grows
not too quickly with n:

E trAk =

(
1 +O

(
k6

n

))
1

(k/2) + 1

(
k

k/2

)
n(n− 1) · · ·

(
n− k

2

)
σk, k even.

(One difference between the proof here and Wigner’s proof is that Wigner considers fixed
k and lets n → ∞, where as here we need to choose a k that grows with n.) To obtain a
concentration result, we use Markov’s inequality. Using an even integer k = O(n1/6) and
v = O(n1/3 log n) we get

P(max |λi(A)| > 2σ
√
n+ v) = P(max |λi(A)|k > (2σ

√
n+ v)k)

≤ (2σ
√
n+ v)−kEmax |λi(A)|k

≤ (2σ
√
n+ v)−kE trAk

≤ (2σ
√
n+ v)−kn(k/2)+12kσk

= n

(
1 +

v

2σ
√
n

)−k
≤ n exp

(
− kv

2σ
√
n

)
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So
max
1≤i≤n

|λi(A)| ≤ 2σ
√
n+O(n1/3 log n)

with probability at least 1 − n−10. One can also deduce a similar lower bound to max |λi|,
thereby yielding the theorem.

Using Theorem 2.1 we can deduce a bound on the second eigenvalue of a random graph.

Corollary 2.2. Let λ1 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix of the random
graph G(n, 1/2). Then w.h.p. we have

max
i≥2
|λi| ≤

√
n+O(n1/3 log n).

This Corollary follows from Theorem 2.1 as an immediate consequence of the following
lemma which allows us to zero-out the mean of the matrix entries.

Lemma 2.3. Let A be a real symmetric matrix, and B = A − tJ (where J is the matrix
with all 1’s and t ∈ R). Then λ2(A) ≤ λ1(B).

Proof. By the Courant-Fisher theorem

λ2(A) = min
v

max
〈x,v〉=0
‖x‖=1

xTAx ≤ max
〈x,1〉=0
‖x‖=1

xTAx = max
〈x,1〉=0
‖x‖=1

xT (B + tJ)x = max
〈x,1〉=0
‖x‖=1

xTBx ≤ λ1(B). �

3. Planted clique

Now we describe the Alon-Krivelevich-Sudakov [1] (abbreviated as AKS) algorithm for
finding a planted clique of size Ω(

√
n) in G(n, 1/2). We deal with the case when the planted

clique has size at least 10
√
n. This is the most interesting case and it uses spectral methods.

Once we know how to deal with planted cliques of size at least 10
√
n, we can bootstrap

to obtain an algorithm to find a planted clique of size c
√
n for any c > 0: one checks over

all subsets of vertices of size Oc(1) and then run the previous algorithm on their common
neighborhood. The point is that sampling the common neighborhood boosts the density of
the planted clique as a subset of the ambient graph.

Note that if the planted clique has size k = Ω(
√
n log n) then with high probability the k

vertices of the highest degree must necessarily be the clique. So this case is easy.
From now on assume that the planted clique has size k ≥ 10

√
n. The idea is look at the

top eigenvectors of the adjacency matrix of G. While the top eigenvector is very close to
the all 1’s vector (this is true for G(n, 1/2), and adding a clique won’t perturb it by much),
the second eigenvector encodes the planted clique. Indeed, the planted clique of size 10

√
n

causes the second eigenvalue to be much larger than all but the top eigenvalue, and the
clique roughly corresponds to the coordinates with large entries in the second eigenvector.

AKS algorithm for finding a planted clique
Input : Graph G generated from G(n, 1/2) with a randomly planted clique of size k ≥ 10

√
n.

1. Find the second eigenvector v2 of the adjacency matrix of G.
2. Let W be the vertices corresponding to k largest coordinates (in absolute value) in
v2. Let Q be the vertices in G that have at least 3k/4 neighbors in W .

Output : Q.

In order for this algorithm to work, we need to know that the eigenvalues of G are well
separated. It is proved that w.h.p. the eigenvalues of the adjacency matrix satisfy
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(1) λ1 ≥ (1/2 + o(1))n
(2) 4

√
n ≤ λ2 ≤ 6

√
n

(3) |λi| ≤ (1 + o(1))
√
n for all i ≥ 3.

For (i), we know by the operator norm interpretation that λ1 is at least the average degree.
For (iii), we use Corollary 2.2. Indeed, let G2 = G(k, 1/2) be the random graph on Q, the
vertices of the planted clique. Then G1 = G−G2 is distributed as a G(n, 1/2). Let u1 and
u2 be the principal eigenvectors of the adjacency matrices of G1 and G2 respectively. Then
Corollary 2.2 tells us that the operator norm of the adjacency matrix of G, when restricted
to the subspace orthogonal to both u1 and u2, is at most (1+o(1))(

√
n+
√
k) = (1+o(1))

√
n.

This proves (iii).
The proof of (ii) is a bit more involved and we just sketch the idea here. Essentially one

shows that the second eigenvector v2 of G is very close to the vector z2 whose coordinates are
n− k on the clique and k off the clique. From this one obtains that (λ2 − k/2)2 ≤ n/2. So
(ii) holds since k ≥ 10

√
n. Additionally, the observation that z2−v2 is small also shows that

the k largest coordinates in v2 correspond to the planted clique with only a small number of
mistakes, which are corrected in the last step of the algorithm by counting neighbors.

4. McSherry’s algorithm

McSherry [4] considers the following generalization of the planted clique problem.
Random graph model: partition the vertices into k classes. Let P be a k× k matrix with

entries Pij ∈ [0, 1]. Put in an edge between a vertex of class i and a vertex of class j with
probability Pij.

The input to the algorithm is the resulting random graph, and the goal is to recover the
original vertex partition.

Here are some special cases of McSherry’s results (we omit his more general result):

• In the planted multisection problem with k parts, where intra-part edges are included
with probability q and inter-part edges are included with probability p, with p < q,
the algorithm can recover the multisection if

q − p
q

> Ω

(
log n

qn

)
.

• In the planted k coloring problem, where the size of each color class is linear in n,
and intra-part edges are included with probability p, the algorithm can recover the
coloring if

p > Ω

(
log3 n

n

)
.

• In the planted clique problem where the clique has size s, and intra-part edges are
included with probability p, the algorithm can recover the clique if

1− p
p

> Ω

(
n

s2
+

log n

s

)
.

We refer to weighted graphs and symmetric matrices interchangeably. Following the no-
tation used in [4], we use G to denote the probability matrix for the random graph model,
i.e., the entries of G are the probabilities of generating an edge. The rank of G is at most k.

Let Ĝ be the random graph (i.e., {0, 1}-valued matrix) generated from this distribution.
Here is an informal description of the algorithm.
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McSherry’s spectral partitioning algorithm

Input : A graph Ĝ generated from the random graph model G.

1. Randomly divide the vertices into two parts. Let this division split the columns of

the matrix as Ĝ = [Â | B̂].

2. Let Ĥ = [PB̂(Â)|PÂ(B̂)], where PÂ is the projection onto the subspace1 spanned by

the most significant k eigenvectors of Â and similarly with PB̂. We write PB̂(Â) to

mean PB̂ acting column-by-column on Â.

3. Cluster the columns of Ĥ greedily based on the distance between the columns
(put two columns in the same block if their distance is at most some threshold τ).

Output : The partition of vertices generated in the last step of the algorithm.

We sketch an outline for the analysis of the algorithm. For each vertex u, let Au denote

the column of A corresponding to u, and similarly with Â. We want to show that

‖Au − PB̂Âu‖
is small. If u and v belong to the same part of the vertex partition, then Au = Av, and
furthermore, we assume in the model that if u and v belong to different parts, then Au and

Av are appropriately separated. If ‖Au− PB̂Âu‖ is always small, then the columns of Ĥ are
close to the columns of G and the clustering step works.

So it remains to show that ‖Au − PB̂Âu‖ is small. By the triangle inequality,

‖Au − PB̂Âu‖ ≤ ‖Au − PB̂Au‖+ ‖PB̂(Au − Âu)‖. (2)

Here is a useful lemma.

Lemma 4.1. For any matrix B̂ and rank k matrix B, one has

‖(PB̂ − I)B‖ ≤ 2‖B̂ −B‖.
Here ‖·‖ denotes the operator norm (equivalently the spectral norm) of a matrix.

Proof. Write

(PB̂ − I)B = (PB̂ − I)B̂ + (PB̂ − I)(B − B̂).

For the first term, as PB̂B̂ is the optimal rank k approximation of B̂, we have

‖(PB̂ − I)B̂‖ = min
rkM≤k

‖M − B̂‖ ≤ ‖B − B̂‖.

For the second term, since PB̂ is a projection, so is I − PB̂, so

‖(PB̂ − I)(B − B̂)‖ ≤ ‖B − B̂‖.
Combining the two inequality and we obtain the desired result. �

Furthermore, Theorem 2.1 essentially tells us that ‖B − B̂‖ should be small. It should

be at most O(σ
√
n). In fact, there is also a concentration result for ‖B − B̂‖ proved in [2]

using Talagrand concentration inequality.
To bound the first term on the RHS of (2), note that

Au − PB̂Au = (I − PB̂)BB+Au,

1McSherry calls this a spectral projection, and actually, he needs a variation that calls a combinatorial
projection. I present the spectral projection version here since it’s easier and conceptually simpler. McSherry
proves that the combinatorial projection works and he conjectures that the spectral projection also works.
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where A+ is the pseudoinverse. By Lemma 4.1 and the observation in the previous paragraph,
(I − PB̂)B is small. We can also bound ‖B+Au‖. It then follows that ‖Au − PB̂Au‖ must
be small.

For the second term on the RHS of (2), since we split up the columns in Step 1 in

the algorithm, Â and B̂ are sampled independently. We can then apply a concentration

inequality2 to bound the size of ‖PB̂(Au − Âu)‖.
It then follows that (2) is small, which validates McSherry’s algorithm.
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2When the probabilities are of constant order (i.e., not decreasing with n), one can use Azuma’s inequality

to bound ‖PB̂(Au − Âu)‖, as

‖PB̂(Au − Âu)‖2 =

k∑
j=1

〈(Au − Âu), qj〉2

where q1, . . . , qk are the first k left-singular vectors of Â. When the probabilities in the random graph model

decrease with n, McSherry conjectures that |PB̂(Au − Âu)| should still be small (at an order commensurate
with the probabilities), but he does not have a proof. Azuma’s concentration inequality doesn’t give good
enough bounds, so we want to apply a Chernoff bound instead. Chernoff bounds can only be applied to a
sum of independent summands, and this is why McSherry considers a variation of the spectral projection

algorithm, namely he gives a combinatorial projection algorithm that projects the columns of Ĝ to subspaces
spanned by characteristic vectors. He then uses Chernoff to bound the size of this combinatorial projection.
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