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Here we introduce state evolution, a simple heuristic argument for the analysis of
approximate message passing (AMP) algorithms that has been shown to be asymp-
totically correct in many settings. The idea of state evolution was first introduced by
[DMM09] (in the setting of compressed sensing), based on ideas from [Bol12]; it was
later proved correct in various settings [BM11, JM13].

We will focus on the Rademacher-spiked Wigner model: we observe

Y =
λ

n
xx> +

1√
n
W

where x ∈ {±1}n is the true signal (drawn uniformly at random) and the n × n
noise matrix W is symmetric with the upper triangle drawn i.i.d. as N (0, 1). The
parameter λ ≥ 0 is the signal-to-noise ratio. The goal is to (approximately) recover
x (up to global sign flip). In this setting, the AMP algorithm and its analysis are due
to [DAM16].

The AMP algorithm for this problem takes the form

vt+1 = Y f(vt) + [Onsager]

where f(v) denotes entrywise application of the function f(v) = tanh(λv). (Here we
abuse notation and let f refer to both the scalar function and its entrywise application
to a vector.) The superscript t indexes timesteps of the algorithm (and is not to be
confused with an exponent). The Onsager term takes the form −〈f ′(vt)〉f(vt−1) where
〈u〉 denotes the average of the elements of the vector u. AMP (without the Onsager
term) can be thought of as a power method with soft projection at each step. One
way to derive the Onsager term is via belief propagation on graphical models.

The state evolution heuristic proceeds as follows. Postulate that at timestep t,
AMP’s iterate vt is distributed as

vt = µtx+ σtg where g ∼ N (0, I). (1)

This breaks down vt into a signal term (recall x is the true signal) and a noise term,
whose sizes are determined by parameters µt ∈ R and σt ∈ R≥0. The idea of state
evolution is to write down a recurrence for how the parameters µt and σt evolve from
one timestep to the next. In performing this calculation we will make two simplifying



assumptions that will be justified later: (1) we drop the Onsager term, and (2) we
assume the noise W is independent at each timestep (i.e. there is no correlation
between W and the noise g in the current iterate). Under these assumptions we have

vt+1 = Y f(vt) =
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n
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W

)
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which takes the form of (1) with a signal term and a noise term. We therefore have

µt+1 =
λ

n
〈x, f(vt)〉 =

λ

n
〈x, f(µtx+ σtg)〉

≈ λEX,G[Xf(µtX + σtG)] with scalars X ∼ Unif{±1}, G ∼ N (0, 1)

= λEG[f(µt + σtG)] since f(−v) = −f(v).

For the noise term, think of f(vt) as fixed and consider the randomness over W . Each
entry of the noise term 1√

n
Wf(vt) has mean zero and variance
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≈ λEX,G[f(µtX + σtG)2] with scalars X,G as above

= EG[f(µt + σtG)2] again by symmetry of f .

We now have “state evolution” equations for µt+1 and σt+1 in terms of µt and σt.
Since we could arbitrarily scale our iterates vt without adding or losing information,
we really only care about the parameter γ = (µ/σ)2. It is possible (see [DAM16]) to
reduce the state evolution recurrence to a single parameter:

γt+1 = λ2EG∼N (0,1) tanh(γt +
√
γtG) (2)

(where we have substituted the actual expression for f).
We can analyze AMP as follows. Choose a small positive initial value γ0 and

iterate (2) until we reach a fixed point γ∞. We then expect the output v∞ of AMP
to behave like

v∞ = µ∞x+ σ∞g (3)

where g ∼ N (0, I), µ∞ = γ∞/λ, and σ2
∞ = γ∞/λ

2. This has in fact been proven to
be correct in the limit n→∞ [BM11, JM13]. Namely, when we run AMP (with the
Onsager term and without fresh noise W at each timestep), the output behaves like
(3) in a particular formal sense. The Onsager term is specially designed to cancel out
the effects of using the same noise at each timestep.

State evolution reveals a phase transition at λ = 1: when λ ≤ 1 we have γ∞ = 0
(so AMP has zero correlation with the truth) and when λ > 1 we have γ∞ > 0 (so
AMP achieves nontrivial correlation with the truth). Furthermore, from (3) we can
deduce the value of any performance metric (e.g. mean squared error) at any signal-
to-noise ratio λ. It has in fact been shown (for Rademacher-spiked Wigner) that the
mean squared error achieved by AMP is information-theoretically optimal [DAM16].
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