
Vertex Sparsification and Universal Rounding Algorithms
by

Ankur Moitra

B.S., Cornell University (2007)
S.M., Massachusetts Institute of Technology (2009)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

c©Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2011

Certified by .
F. Thomson Leighton

Professor
Thesis Supervisor

Accepted by. .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Students

2

Vertex Sparsification and Universal Rounding Algorithms

by

Ankur Moitra

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract
Suppose we are given a gigantic communication network, but are only interested in a small
number of nodes (clients). There are many routing problems we could be asked to solve
for our clients. Is there a much smaller network - that we could write down on a sheet of
paper and put in our pocket - that approximately preserves all the relevant communication
properties of the original network? As we will demonstrate, the answer to this question is
YES, and we call this smaller network a vertex sparsifier.

In fact, if we are asked to solve a sequence of optimization problems characterized
by cuts or flows, we can compute a good vertex sparsifier ONCE and discard the original
network. We can run our algorithms (or approximation algorithms) on the vertex sparsifier
as a proxy - and still recover approximately optimal solutions in the original network. This
novel pattern saves both space (because the network we store is much smaller) and time
(because our algorithms run on a much smaller graph).

Additionally, we apply these ideas to obtain a master theorem for graph partitioning
problems - as long as the integrality gap of a standard linear programming relaxation is
bounded on trees, then the integrality gap is at most a logarithmic factor larger for general
networks. This result implies optimal bounds for many well studied graph partitioning
problems as a special case, and even yields optimal bounds for more challenging problems
that had not been studied before. Morally, these results are all based on the idea that even
though the structure of optimal solutions can be quite complicated, these solution values
can be approximated by crude (even linear) functions.

Thesis Supervisor: F. Thomson Leighton
Title: Professor

3

4

Acknowledgments

I think a doctoral thesis is more a reflection of your personality, your tastes and your pas-

sions than of what you know. In writing this thesis, I’ve come to realize just how much

I owe to the strong influences in my life. Both of my parents are computer scientists, but

have never pushed computer science on me and have encouraged me in every endeavor.

When I eventually settled on computer science, I realized that the reason computer science

classes resonated with me is because the ideas and perspectives had been instilled in me

through every dinner conversation and every discussion. I owe my parents a tremendous

amount for fostering creativity in me, and teaching me to ask the right questions. And if

anything, this thesis is about asking just one good question.

I would like to thank my doctoral advisor, Tom Leighton. Tom amazes me on a number

of levels and I could not have asked for a better role model, teacher and friend. He has this

remarkable way about him. I think it is impossible to be in the same room with Tom and not

be in a great mood. Every problem seems solvable, and every idea is easy to communicate.

He has always had this unwavering faith in me (well-founded or not), and my best interests

have always been his primary concern.

Also I’m grateful to Madhu Sudan and Piotr Indyk for reading my thesis and serving on

my committee. Madhu especially has been a great friend to me during my time in graduate

school. I remember, during the first conference I attended no one made time to talk to me

except Madhu. I can’t imagine anyone else at a conference wearing his name tag and yet

managing to be so humble and welcoming. I would also like to thank my undergraduate

advisor, Eva Tardos, for introducing me to theoretical computer science and for her constant

encouragement, advice and candor.

Thank you to all my friends during graduate school - especially Craig Bonnoit, Matt

Edwards, Emilio Nanni, Matt Johnston, Mike Petr, Jelani Nelson, Krzysztof Onak, Deb-

malya Panigrahi, Arnab Bhattacharyya, Nikhil Srivastava, Moritz Hardt, Shaddin Dughmi,

Greg Valiant, Rotem Oshman, Adam Kalai and Yael Kalai. Your friendship has meant a

lot to me and has made MIT (and MSR) a fantastic experience. Thank you also to my

Cornell friends who made my undergraduate years some of the best of my life. Thank you

5

especially to Diana Ding (obviously), Yi Xu, Jeremy Miller, Rahul Malik, Dan Lee, Rob

Zimmerman, Liwei Chen, Kevin Moore, Joseph Andrews, Dave Levine and Ian Murray.

Most importantly, I’d like to thank my girlfriend and soulmate, Diana Ding. Everyone

I’ve met seems to find me tough to read; but you understand me instantly, like my thoughts

are written on my forehead. In trying times, you help me remember who I am and quite

often you know what I want even before I do. Your love and support made this thesis

possible. And I’d also like to thank your parents for raising such a caring, self-less and

thoughtful daughter. I dedicate my thesis to you, Diana.

This thesis has been supported by a generous Fannie and John Hertz Foundation Fel-

lowship, and an Akamai Presidential Fellowship. I benefitted greatly from being a part of

the Hertz community, and having the freedom to pursue my passions.

6

Contents

1 Introduction 11

1.1 Our Results. 13

1.2 Applications to Routing. 15

1.3 Applications to Graph Partitioning. 17

1.4 Outline . 19

2 Main Results, Formally 21

2.1 Cut Sparsifiers . 21

2.2 Comparison . 23

2.3 Flow Sparsifiers . 24

2.4 Universal Rounding Algorithms . 26

2.5 Lower Bounds and Separations . 29

3 Vertex Sparsifiers 33

3.1 Cut Sparsifiers . 34

3.1.1 0-Extensions . 34

3.1.2 Intuition . 36

3.1.3 A Zero-Sum Game . 39

3.1.4 Quality-Revealing Linear Program 44

3.2 Flow Sparsifiers . 46

3.2.1 A Hardest Flow . 47

3.2.2 Relations to Cut Sparsifiers . 48

3.2.3 A Larger Zero-Sum Game . 50

7

3.2.4 Multiplicative Weights . 55

3.2.5 Network Coding . 59

4 Algorithms 63

4.1 Computing a Vertex Sparsifier . 63

4.1.1 A Geometric Interpretation . 64

4.1.2 Lifting (via an Earth-Mover Relaxation) 68

4.1.3 The Max-Min Congestion Problem 71

4.2 Universal Rounding Algorithms . 74

4.2.1 0-Decompositions . 75

4.2.2 Applications . 80

5 Lower Bounds and Separations 85

5.1 The Best Cut Sparsifier Doesn’t Always Come from Contractions 86

5.1.1 Lower Bounds . 86

5.1.2 A Candidate Cut-Sparsifier . 93

5.1.3 Harmonic Analysis . 95

5.1.4 Characterizing Cuts via Noise-Sensitivity 97

5.1.5 Beating the Contraction Bound . 100

5.2 Separation Between Flow and Cut Sparsification 104

5.2.1 The Graph G . 104

5.2.2 Capacity Surgery . 108

5.2.3 Matchings . 110

5.2.4 Cut-Width . 112

5.3 Counter-Example to Directed Flow-Sparsification 115

6 Additional Applications 117

6.1 Oblivious Routing . 117

6.2 Layout Problems . 120

7 Open Questions 123

8

List of Figures

1-1 Vertex sparsification, applied to the internet backbone. 16

3-1 A single 0-extension f produces a cut-sparsifier, but not necessarily a good

quality cut-sparsifier. 37

3-2 Constructing a good quality cut-sparsifier via a distribution on 0-extensions. 38

3-3 The distribution on 0-extensions that we choose depends crucially on the

minimum-cut structure in G. 39

3-4 a. Communication problem on a directed graph b. Multicommodity solu-

tion c. Network coding solution . 59

5-1 Constructing the graph G = (V,E) from an x-regular, high-girth expander

G′ = (K,E ′) . 105

5-2 Constructing the partition {C ′i} of terminals at distance at most D 113

5-3 A counter-example to flow-sparsification in directed graphs. 115

9

10

Chapter 1

Introduction

The only certainties in life are death, taxes and that communication networks grow and

become increasingly complex over time. This natural law gives us, as computer scientists,

a mandate. We should develop methods to store these networks, and develop algorithms

(for various optimization problems we may want to solve) that still run in some reasonable

amount of time on a massive network. There is another possibility. Maybe these networks

are not actually all that large.

As a motivating example, suppose we are a content provider, say Akamai, and we

have a small number of data centers distributed throughout some gigantic communication

network. These data centers store large files, and we may periodically want to transfer

some of these files between different data centers. This is a communication problem - our

goal is to find some routing scheme in the original network, that achieves large throughput

and transfers the contents of these files as quickly as possible. Over time, we may be asked

to solve a number of communication problems of this type.

Question 1. Is there a much smaller communication network that approximates all the

relevant communication properties of the original network?

Can we reduce the number of edges in the communication network? The celebrated

results of Benczur and Karger give a positive answer [15]. In general, we can reduce the

number of edges so that the total number of edges is nearly-linear in the total number of

nodes in the communication network. However, most communication networks are already

11

sparse in this sense. A typical node in the internet backbone connects to only a constant

number of neighbors. See Figure 1.2.

We could ask a more bold question: Can we reduce the number of nodes? In our

example, we are only interested in transferring files between different data centers. The

structure of the original network is only relevant to us in so far as it impacts how we can

communicate between data centers. Is there a high-throughput set of paths to transfer the

contents of a file from data center A to data center B? Can we simultaneously send a large

file from data center A to data center B and from data center C to data center D?

We will ask for something even stronger. Our goal will be to find a communication net-

work on just the data centers that approximates all the relevant communication properties

of the original network. We will call this graph a vertex sparsifier. For any communica-

tion problem we could ever be asked to solve, we want this vertex sparsifier to be a good

approximation to the original network. In our example, this vertex sparsifier would be a

graph on just four nodes. Consequently, we could write this network down on a sheet of

paper, and put it in our pocket.

Throughout this paper, we will use G to refer to the original network and H to refer

to the corresponding vertex sparsifier. Additionally, we will refer to the data centers as

terminals, and we will denote this set as K. For now, we will not address the question of

whether a good vertex sparsifier should exist. As it turns out, these graphs do exist. In fact,

we do not need to make any assumptions at all about the structure of the original network,

and for more realistic models of networks, we obtain even stronger results.

What if good vertex sparsifiers do exist? What if there is indeed some much smaller

network that captures all the relevant communication properties of a massive communica-

tion network? We could hope that knowing a good vertex sparsifier would save us space

- because we would only need to store a much smaller network. We could also hope to

save time - because we could run our algorithms on a much smaller network as a proxy for

running directly on the original network.

Let us formalize the types of routing problems that we will consider, so that we can

state our results more precisely. We will be interested in are minimum congestion routing

problems. In general, we will represent a routing problem as a vector ~r of numbers - one

12

number for each pair of terminals. We will call ~r a demand vector. Let a and b be terminals.

The number ~ra,b corresponding to the pair (a, b) represents the rate at which we would like

to transfer information from terminal a to terminal b. A valid routing solution is a choice

of flows - one for each pair of terminals - so that for each pair of terminals (a, b) the flow

value from a to b is equal to the target rate ~ra,b.

Of course, there are many ways to map rates to flows in a communication network.

Our goal will be to find a mapping that does not overload the bandwidth of any link by

too much. To this end, we can define a notion of the congestion on a link as the total

flow traversing the link, divided by the intrinsic bandwidth of the link. Our goal in the

minimum congestion routing problem is to find a a valid routing solution that minimizes

the worst case congestion on any link. We can intuitively think of the most congested link

in a network as being the ”bottleneck”. So if we are interested in sending large amounts

of data, the minimum congestion routing solution will achieve the largest throughput (in

steady state).

We ask: Is there a graphH on just the set of terminals, so that (simultaneously) for every

demand vector ~r, the minimum congestion of routing ~r in G is approximately the same as

the minimum congestion of routing ~r in H? We will refer to the multiplicative factor by

which H approximates G as the ”quality” of H as a vertex sparsifier. See Chapter 2 for

formal definitions.

1.1 Our Results.

We can now state our main results:

Good quality vertex sparsifiers exist! In fact, for any capacitated graph G = (V,E)

on n nodes, and for any set of k terminals K ⊂ V , there is always a (capacitated) vertex

sparsifier on just the set of terminals H = (K,EH) that has quality O(log k/ log log k).

Surprisingly, this factor is independent of the size of the original network. No matter how

massive the original network is, in our example, we can always find a graph on just four

nodes that captures all relevant communication properties of the original network within a

small constant factor. Moreover, this factor depends sub-logarithmically on the number of

13

terminals (or data centers, in our example).

To phrase our results another way: we can imagine that the original communication

network will grow over time. Yet there is always some small, faithful representation of

the relevant communication properties. This representation will also change over time, but

does not grow. In our example, this representation is always a network on just four nodes!

For realistic models of networks, our results are even stronger. For ”simple” graphs

there is always a constant quality vertex sparsifier. Hence, the factor by which our vertex

sparsifier approximates the original network is actually independent of the number of nodes

in the network, and is even independent of the number of terminals. We will give the

technical definition of ”simple” later, but we note that many common types of networks

meet this condition. Planar networks (which can arise in some road networks), graphs that

exclude a fixed minor (the internet graph is well-known to exclude a small, fixed minor)

and even graphs that have small separators at every scale (as is typical in social networks)

all fit this technical condition and hence have a constant quality vertex sparsifier.

Additionally, we can compute a good quality vertex sparsifier quickly - in time quadratic

in the size of the original network. This is interesting because the running time of com-

puting a good quality vertex sparsifier matches the running time of solving just a single

minimum congestion routing problem. Yet a good vertex sparsifier will help us solve not

just one but actually a sequence of routing problems quickly. We can compute a good ver-

tex sparsifier just once and for any routing problem we are asked to solve, we can compute

a near-optimal solution by running a minimum congestion routing algorithm on our vertex

sparsifier, as opposed to running directly on the original network. Hence, the amortized

time to compute a good routing solution is actually independent of the size of the original

network, and depends polynomially on the number of terminals.

Finally, approximation really is necessary. Vertex sparsification is an example of a

ubiquitous theme in combinatorial optimization, where the goal is to preserve some com-

binatorial family of parameters on a smaller graph. Vertex sparsification departs from this

agenda by asking to preserve a family of parameters that captures computationally hard pa-

rameters too. A good vertex sparsifier will approximately preserve the value of the sparsest

cut and the values of a whole laundry list of other NP -hard graph partitioning problems.

14

Indeed, Makarychev and Makarychev [48] prove (unconditionally) that we cannot in gen-

eral hope for a vertex sparsifier with quality better than Ω̃(
√

log k). This lower bound is

polynomially related to the upper bound, and is based on exciting connections to functional

analysis.

1.2 Applications to Routing.

Given these results, let us return to minimum congestion routing. How does a good vertex

sparsifier help us solve a sequence of routing problems quickly? We have only required

a good vertex sparsifier to preserve values. But what does approximately knowing the

minimum congestion we can achieve really tell us about finding a good routing?

In fact, there is a canonical way to map good routing schemes inH back to good routing

schemes in G. Hence, knowing a good vertex sparsifier not only helps us (approximately)

determine the value of a minimum congestion routing in G (without looking at G), we can

also determine an approximately optimal routing (again, without looking at G). To explain

this principle, let us assume that a good vertex sparsifier is always a better communication

network than the original network. Formally, we want H to be such that for any demand

vector ~r, the minimum congestion of routing ~r in H is always at most the minimum con-

gestion of routing ~r in G. This condition is easy to satisfy – we could just as well set each

capacity in H to be infinite. The challenge is in ensuring that H is a faithful representation

of the communication properties of G. In fact, the condition that H now be a good vertex

sparsifier means that for any demand vector ~r, the minimum congestion of routing ~r in H

is smaller but must never be too much smaller than the minimum congestion of routing ~r

in G.

We can choose H itself as a demand vector - i.e. for each pair of terminals (a, b), we

can set the target rate ~ra,b equal to the bandwidth of the link from a to b in H . The resulting

demand vector ~r has a good routing solution in H: for each pair of terminals, we can

send a flow of value ~ra,b directly on the link (a, b) in H . This explicit routing scheme is

a low-congestion routing of ~r in H and since H is a good quality vertex sparsifier, ~r must

also have a low-congestion routing in G. We can interpret a low-congestion routing of ~r

15

my vertex sparsifier

K = {a,b,c,d}

1

11

2

4
d

a

b

c

d
a

b

c

Figure 1-1: Vertex sparsification, applied to the internet backbone.

in G as a method to simulate H in G without too much slow-down (after all, H is a better

communication network but not too much better). See Figure 1.2.

For each pair of terminals (a, b), this simulation is literally a flow of value cH(a, b) from

a to b in G (where cH(a, b) is the bandwidth of the link (a, b) in H). We can regard these

flow paths from a to b as the image of the link (a, b) that is present in H . Then we can

correspondingly map any path in H to a concatenation of these images in G, and this gives

us a fixed method to map a good routing solution in H to a pretty-good routing solution in

G. The multiplicative factor by which the congestion increases, when mapping a routing

solution back to G, is equal to the quality of H as a vertex sparsifier.

It is not surprising that this is a routing strategy: we can always fix paths between

each pair of terminals, and restrict our routing schemes to using only these paths. What is

surprising is that there is a method to fix these paths in advance (just by computing a good

simulation of H in G) so that whatever routing problem we are asked to solve, restricting

ourselves to using these paths is still a near-optimal routing strategy.

Once we have computed a good quality vertex sparsifier H , the incremental running

16

time to compute a (near-optimal) routing of ~r in G is just the time to run a minimum

congestion routing algorithm on H . In our example, the amortized running time needed to

compute a good routing scheme in the original network can actually be done in constant

time and is independent of the size of the original network!

1.3 Applications to Graph Partitioning.

Additionally, we apply the ideas of vertex sparsification to obtain a master theorem for

graph partitioning problems - as long as there is a good approximation algorithm when the

input network is a tree, there is a good approximation algorithm whose approximation ratio

is at most a logarithmic (in |K|) factor larger for general networks. Often, it is much easier

to design an approximation algorithm for a graph partitioning problem that works well on

trees than it is to design one for general networks.

Moreover, the actual design of these approximation algorithms (for the general case) is

often sensitive to seemingly minor details in the definition of the optimization problem. For

example, the goal in generalized sparsest cut is to cut few edges, and disconnect many pairs

of demands. Yet the goal in the multi-cut problem is to cut few edges, and disconnect all

pairs. In the case of sparsest cut, the optimal rounding algorithm for rounding the standard

linear programming relaxation is based on low distortion embeddings into `1. Yet the

optimal rounding algorithm for multi-cut is based on the purely combinatorial technique

of region growing. Curiously, the answer to how good the natural linear programming

relaxation is, is the same in both of these cases. The integrality gap is logarithmic in the

number of terminals.

Question 2. Why does a slight variation on the constraints of a graph partitioning problem

lead to completely different rounding algorithms (for the standard linear programming

relaxation), but ultimately the same approximation factor?

Here we are able to give a universal rounding algorithm for graph partitioning problems.

Given any rounding algorithm (for the standard linear programming relaxation) when the

input network is a tree as a black-box, we can apply the ideas of vertex sparsification to

17

obtain a rounding algorithm that works well for general networks. Hence we obtain a

robust answer to the above question – these problems all have the same integrality gap,

precisely because the integrality gap is constant on trees. We can use this paradigm to

give optimal rounding algorithms for many well-studied graph partitioning problems (such

as generalized sparsest cut and mult-cut) as a special case and we can even give optimal

results for more challenging problems that had not been previously studied.

The central idea behind this result is that minimum congestion routing is mathemati-

cally expressive. We will call the set of demand vectors ~r that can be routed in G with

congestion at most one the unit congestion polytope. Then minimum congestion routing is

expressive in the sense that the unit congestion polytope exactly determines the values of a

number of combinatorial parameters of G. For example, does G have a sparse cut? Does

G have a small multi-cut? The values of each of these optimization problems (and many

more) can be determined by the values of optimizing (exponentially many) linear functions

over the unit congestion polytope. Hence, a good vertex sparsifier H not only approxi-

mately preserves the unit congestion polytope but also the values of these combinatorial

parameters.

So we can compute a good vertex sparsifier as pre-processing step before running an

approximation algorithm for these various problems. In fact, we can take this idea further

and ask not only for H to be small (i.e. a graph on just the set of terminals) but also sim-

ple in the sense that H can be realized as a convex combination of ”contraction-based”

trees. This result will allow us to algorithmically reduce a graph partitioning problem to

a tree on just the set of terminals. In doing-so, we pay a multiplicative factor in the ap-

proximation guarantee which is logarithmic in the number of terminals (which corresponds

to the quality of the best vertex sparsifier that can be achieved as a convex combination

of ”contraction-based” trees). Hence, we obtain our master theorem – and an explanation

for why O(log |K|) always seems to be the right answer for how well a standard linear

programming relaxation approximates a myriad of different NP-hard graph partitioning

problems.

Next, we give an outline of the organization of this thesis.

18

1.4 Outline

In Chapter 2 we will state the main definitions and results in this thesis formally. In Chap-

ter 3 we prove that good vertex sparsifiers exist, and we give a fast algorithm for computing

good vertex sparsifiers based on multiplicative weights. In Chapter 4 we give an algorithm

with improved guarantees, and also we give a universal rounding algorithm for graph par-

titioning problems. In Chapter 5 we give lower bounds on the quality of a vertex sparsifier,

and we give a number of separation results that show that certain restrictions of vertex

sparsifiers can be have asymptotically worse quality than others. We also demonstrate that

directed vertex sparsification is impossible. In Chapter 6 we give additional applications

of vertex sparsification. Specifically, we give optimal results for a certain oblivious routing

problem, and we also demonstrate how graph layout problems can also be solved using our

framework. In Chapter 7 we highlight open questions.

The results in this thesis appear in [49], [44], and [20]. We note that the results of [48]

and [25], which are also on the topic of vertex sparsification, are not included in this thesis,

but see the results of Makarychev and Makarychev [48] for the best known lower bound of

Ω̃(
√

log k) for vertex sparsification.

19

20

Chapter 2

Main Results, Formally

Here we state the main results and introduce notation that will be used throughout this

thesis.

2.1 Cut Sparsifiers

We begin by asking for a weaker condition to be met: namely, we want a graph on just the

set of terminals that approximately preserves the value of minimum cuts separating subsets

of terminals.

Suppose we are given an undirected, capacitated graph G = (V,E) and a set K ⊂ V

of terminals of size k. Let c : E → R+ be the capacity function of this graph. Let

h : 2V → R+ denote the cut function of G:

h(U) =
∑
e∈δ(U)

c(e)

where δ(U) denotes the set of edges crossing the cut (U, V − U). We define the function

hK : 2K → R+ which we refer to as the terminal cut function on K:

hK(A) = min
U⊂V s.t. U∩K=A

h(U)

We will also use δK(A) to denote the set of pairs (a, b) ∈ K which cross the partition

21

(A,K − A). The combinatorial interpretation of the terminal cut function is that hK(A)

is just the minimum edge cut separating A from K − A in G. Note that A is required to

be a subset of K and that we can compute the value and cut achieving hK(A) using any

max-flow algorithm.

Definition 1. H is a cut-sparsifier for the graph G = (V,E) and the terminal set K if H is

a graph on just the terminal setK (i.e. H = (K,EH)) and if the cut function h′ : 2K → R+

of H satisfies (for all A ⊂ K)

hK(A) ≤ h′(A).

The goal of a cut-sparsifier is to everywhere approximate the terminal cut function. So

then we can define a notion of quality for any particular cut-sparsifier, which captures how

faithfully the cut function of H everywhere approximates the terminal cut function:

Definition 2. The quality of a cut-sparsifier H is defined as

maxA⊂K
h′(A)

hK(A)
.

We will abuse notation and define 0
0

= 1 so that when A is disconnected from K−A in

G or if A = ∅ or A = K, the ratio of the two cut functions is 1 and we ignore these cases

when computing the worst-case ratio and consequently the quality of a cut-sparsifier.

Theorem 1. For any capacitated graph G = (V,E), for any set K ⊂ V of |K| = k ter-

minals, there is an O(log k/ log log k)-quality cut-sparsifier H = (K,EH). If G excludes

Kr,r as a minor, then there is an O(r2)-quality cut-sparsifier.

This result appears in Section 3.1.

Many naturally occurring networks do in fact exclude a small, fixed minor: road net-

works are often (close to) planar, the internet graph is well-known to have small treewidth,

and even social networks have the so-called padded decomposition property which is also

enough to guarantee that constant quality cut-sparsifiers exist.

22

2.2 Comparison

There are many results in combinatorial optimization that demonstrate that certain graph

connectivity properties can be approximated on a smaller graph. For example, if we define

the local connectivity of two terminals a, b ∈ K as the minimum cut in G separating a and

b, then Mader’s Theorem (see [43]) implies that there is a graph H = (K,EH) so that for

all pairs of terminals a, b ∈ K, H exactly preserves the local connectivity.

Yet results of this form only guarantee that H preserves minimum cuts separating sub-

sets of terminals for small subsets of terminals. Here, preserving the local connectivity

only requires preserving the minimum cuts separating single pairs of terminals from each

other. Consider, for example, the graph G which is the complete bipartite graph with the

k terminals on one side and 2 nodes on the other. The local connectivity between any pair

of terminals is 2, and applying the splitting-off operation in Mader’s Theorem iteratively

results in the graph H = (K,EH) which is a cycle. This preserves the local connectivity

exactly, and yet if we bisect the cycle we get an edge cut of size 2 in H that cuts the graph

into two Ω(k)-sized sets of terminals A and K − A. But the capacity of the minimum cut

separating A fromK−A inG is Ω(k). So the cut function ofH does not well approximate

the terminal cut function everywhere. And in general, results in combinatorial optimiza-

tion about preserving minimum cuts separating small subsets of terminals will be useless

for our purposes.

We also note that many graph partitioning problems (for example generalized sparsest

cut, or generalized bisection type problems) depend on minimum cuts separating A and

K−A for large sized sets A. So if we are given a graph H which approximately preserves

just the small terminal cuts, we cannot guarantee that mapping, say, a generalized sparsest

cut problem to H approximately preserves the value of the optimum. So if we want to

perform reductions that are oblivious to the particular optimization problem, we really do

need to preserve all minimum cuts separating every subset of terminals, and the above

question really is the right question in this context.

There is also an extensive line of work on edge sparsification - where the goal is to find

a (capacitated) graph G′ = (V,E ′) so that for any cut in G, the corresponding cut in G′ has

23

value within an 1 ± ε factor. Benczur and Karger give a fast, random sampling approach

which achieves |E ′| = O(|V | log |V |) [15]. Generalizing these results, Spielman and Teng

construct a nearly-linear sized graph G′ that preserves the spectrum of the Laplacian [58].

Batson, Spielman and Srivastava recently proved that in fact, onlyO(|V |) edges are needed

to preserve the spectrum of the Laplacian [13]. However, we underscore that these results

do not reduce the number of nodes in a graph.

Additionally, Räcke proves that a capacitated graph can be replaced by a distribution on

”decomposition trees” that approximately preserves the value of the minimum congestion

routing for each demand vector ~r within an O(log |V |) factor [53], [54]. This decompo-

sition has been useful in designing approximation algorithms for a wide range of graph

partitioning problems. The results of Räcke can also be used to obtain a reasonable quality

cut (or flow) sparsifier, but unlike the results in this thesis the approximation guarantee will

depend (logarithmically) on the size of the original graph. Moreover, the results in [54]

do not improve in the case of graphs that exclude a small, fixed minor. By comparison,

in this case we are able to compute a cut (or flow) sparsifier whose quality is a constant

independent of the size of the original graph, and independent of the number of terminals.

We are also able to get stronger guarantees for other problems from our results. For exam-

ple, in Section 6.1 we are able to obtain an oblivious routing scheme (for demand vectors

restricted to a setK ⊂ V of clients) whose competitive ratio isO(log |K|) while the results

in [54] only yield an O(log |V |) competitive ratio.

2.3 Flow Sparsifiers

Next, we ask for a stronger condition to be met: we want a graph on just the set of terminals

that approximately preserves minimum congestion routing. Let us first define the maximum

concurrent flow problem:

An instance of the maximum concurrent flow problem consists of an undirected graph

G = (V,E), a capacity function c : E → R+ that assigns a non-negative capacity to

each edge, and a set of demands {(si, ti, fi)} where si, ti ∈ V and fi is a non-negative

demand. We denote K = ∪i{si, ti}. The maximum concurrent flow question asks, given

24

such an instance, what is the largest fraction of the demand that can be simultaneously

satisfied? This problem can be formulated as a polynomial-sized linear program, and hence

can be solved in polynomial time. However, a more natural formulation of the maximum

concurrent flow problem can be written using an exponential number of variables.

For any a, b ∈ V let Pa,b be the set of all (simple) paths from a to b in G. Then the

maximum concurrent flow problem and the corresponding dual can be written as :

max λ min
∑

e d(e)c(e)

s.t. s.t.∑
P∈Psi,ti

x(P) ≥ λfi ∀P∈Psi,ti
∑

e∈P d(e) ≥ D(si, ti)∑
P3e x(P) ≤ c(e)

∑
iD(si, ti)fi ≥ 1

x(P) ≥ 0 d(e) ≥ 0, D(si, ti) ≥ 0

For a maximum concurrent flow problem, let λ∗ denote the optimum.

Let |K| = k. Then for a given set of demands {si, ti, fi}, we associate a vector ~f ∈

R(k2) in which each coordinate corresponds to a pair (x, y) ∈
(
K
2

)
and the value ~fx,y is

defined as the demand fi for the terminal pair si = x, ti = y.

Definition 3. We denote congG(~f) = 1
λ∗

Or equivalently congG(~f) is the minimum C s.t. ~f can be routed in G and the total flow

on any edge is at most C times the capacity of the edge.

Definition 4. H = (K,EH) is a flow-sparsifier if for all ~f ∈ R(k2), congH(~f) ≤ congG(~f)

So a flow-sparisifer is a ”better” flow network than the original graph, in the sense that

all demands (with endpoints supported in K) that are routable in G (with congestion at

most 1) can also be routed in H .

Definition 5. The quality of a flow-sparsifier H is max
~f∈R(k2)

congG(~f)

congH(~f)

Theorem 2. For any capacitated graph G = (V,E), for any set K ⊂ V of |K| =

k terminals, there is an O(log k/ log log k)-quality flow-sparsifier H = (K,EH). If G

excludes Kr,r as a minor, then there is an O(r2)-quality flow-sparsifier.

25

This result appears in Section 3.2. See also Section 3.2.2 for a comparison between cut

and flow-sparsification. In particular, flow-sparsification is no easier than cut-sparsification

and conversely flow-sparsifiers can be obtained from cut-sparsifiers, with some degradation

in quality corresponding to how well multicommodity flows are approximated by sparsest

cuts.

We also give a fast algorithm for computing a good flow-sparsifier (and hence the graph

that this algorithm returns is also a good cut-sparsifier):

Theorem 3. There is an algorithm that for any capacitated graph G = (V,E), for any

set K ⊂ V of |K| = k terminals, computes an O(log k/ log log k)-quality flow-sparsifier

H = (K,EH) in time Õ(km2) where m = |E|.

Theorem 4. There is an algorithm that for any capacitated graph G = (V,E) that ex-

cludes Kr,r as a minor and for any set K ⊂ V of |K| = k terminals, computes an O(r2)-

quality flow-sparsifier H = (K,EH) in time Õ(km2) where m = |E|.

Here, the hidden constant depends polynomially on r. These results appear in Sec-

tion 3.2.4, and in Section 4.1.2 we give another algorithm for computing a good quality

flow-sparsifier, and this algorithm has the additional benefit that the output is guaranteed to

have quality that is at least as good as the best quality that can be achieved through ”con-

tractions”. Hence, if the integrality gap for the semi-metric relaxation for the 0-extension

problem (see Section 3.1.1) is O(
√

log k), this algorithm already computes an O(
√

log k)-

quality flow-sparsifier.

2.4 Universal Rounding Algorithms

An important application of vertex sparsification is that given a good quality vertex spar-

sifier H , an approximation algorithm can be run on H as a proxy for running directly on

G. Because the size (number of nodes) of H is |K|, any approximation algorithm that

achieves a poly(log |V |)-approximation guarantee in general will achieve a poly(log |K|)

approximation guarantee when run onH (provided that the quality α is also poly(log |K|)).

Feasible solutions in H can also be mapped back to feasible solutions in G for many of

26

these problems, so polynomial time constructions for good cut-sparsifiers yield black box

techniques for designing approximation algorithms with guarantees poly(log |K|) (and in-

dependent of the size of the graph).

Hence, we pay an additional price in the approximation guarantee that corresponds to

how well H approximates G. We can ask:

Question 3. Do we really need to pay a price (in the approximation guarantee) when

applying vertex sparsification to an optimization problem?

In many cases, we can combine the steps of computing a good quality vertex sparsifier,

and computing a near-optimal solution to an optimization problem (on the vertex sparsi-

fier). We can simultaneously ask for a vertex sparsifier that has good quality and also on

which our optimization problem is easy.

In particular, we observe that we can compute O(log k)-quality flow-sparsifiers (and

hence have a slightly worse quality factor) but which can be realized as a convex combina-

tion of (in a technical sense) contraction-based trees. A similar idea appears in [25].

Definition 6. We call an optimization problem D a fractional graph partitioning problem

if it can be written as (for some monotone increasing function f):

min
∑

(u,v)∈E c(u, v)d(u, v)

s.t.

d : V × V → <+ is a semi-metric

f(d
∣∣∣
K

) ≥ 1

We refer to this as a graph partitioning problem because the goal is to separate pairs of

terminals, without stretching too many high capacity edges. We will call the dual problem

P a fractional packing problem. To make this definition seem more natural, we demonstrate

that a number of well-studied problems fit into this framework for an appropriate choice of

the monotone increasing function f .

Let ID1 denote the integral dual graph partitioning problem. We will refer to the relax-

ation in Definition 6 D for ID as the semi-metric relaxation.

Example 1. [45], [46], [8] P: maximum concurrent flow; ID: generalized sparsest cut

27

Here we are given some demand vector ~r ∈ R(K2), and the goal is to maximize the value

C such that C~r is feasible in G. Then the dual to this problem corresponds to minimizing

the total distance × capacity units, subject to the constraint that
∑

(a,b) ~ra,bd(a, b) ≥ 1,

where d is the induced semi-metric on K. This function is clearly a monotone increasing

function of the distances between pairs of terminals, and hence is an example of what we

call a graph packing problem.

Example 2. [31] P: maximum multiflow; ID: multicut

Here we are given some pairs of terminals T ⊂
(
K
2

)
, and the goal is to find a demand

vector ~r that can be routed in G that maximizes
∑

(a,b)∈T ~ra,b. The dual to this problem

corresponds to minimizing the total distance × capacity units, subject to the constraint that

min(a,b)∈T{d(a, b)} ≥ 1, and this again is a monotone increasing function of the distances

between pairs of terminals, and hence is also an example of what we call a graph packing

problem.

Example 3. ID: Steiner multi-cut

Example 4. ID: Steiner minimum-bisection

Example 5. [51] P: multicast routing; ID: requirement cut

This is another partitioning problem, and the input is again a set of subsets {Ri}i. Each

subset Ri is also given at requirement ri, and the goal is to minimize the total capacity

removed from G, in order to ensure that each subset Ri is contained in at least ri different

components. Similarly to the Steiner multi-cut problem, the standard relaxation for this

problem is to minimize the total amount of distance × capacity units allocated in G, s.t.

for each i the minimum spanning tree Ti (on the induced metric on K) on every subset Ri

has total distance at least ri. This again can be cast into the above framework, by writing

this constraint as mini{
minT∈Πi

∑
(a,b)∈T d(a,b)

ri
} ≥ 1 (where Πi denotes the set of trees on Ri).

The dual problem P is often solved in order to find good multicast routing schemes.

Hence the notion of a fractional graph partitioning problem is quite general, and cap-

tures many interesting, well-studied optimization problems as a special case. This defini-

tion even captures much more expressive and challenging optimization problems that had

28

not been studied before. Yet there is still enough structure to this definition to define a

universal rounding algorithm, that simultaneously works well for this entire class of opti-

mization problems. No matter what we choose for the monotone increasing function f , the

value of the semi-metric relaxation on depends on the set of demand vectors that can be

routed in G with congestion at most one. So we can use the ideas of vertex sparsification

to algorithmically reduce the input graph to a tree, while still approximately preserving the

integrality gap of the semi-metric relaxation:

Theorem 5. For any fractional graph partitioning problem D, the maximum integrality

gap of the semi-metric relaxation is at most O(log k) times the maximum integrality gap

restricted to trees.

We can make this algorithmic:

Theorem 6. Given a polynomial time rounding algorithm for the semi-metric relaxation

on trees that achieves an approximation ratio of C, there is a polynomial time rounding

algorithm for the semi-metric relaxation on general graphs that achieves an approximation

ratio of O(C log k).

Hence, designing a rounding algorithm that works for general graphs is no harder than

designing one that works on trees. These results appear in Section 4.2.

2.5 Lower Bounds and Separations

In many interesting cases, constant quality cut-sparsifiers exist. Yet in general, approx-

imation is necessary and there are families of graphs that have no constant quality cut-

sparsifiers. This implies that there are no constant quality flow-sparsifiers for these fami-

lies either. The best lower bound is due to Makarychev and Makarychev [48]) who give a

family of graphs for which no cut-sparsifier has quality better than Ω̃(
√

log k). This result

1The notion of what constitutes an integral solution depends on the problem. In some cases, it translates
to the requirement that all distances be 0 or 1, and in other cases it can mean something else. The important
point is that the notion of integral just defines a class of admissible metric, as opposed to arbitrary metrics
which can arise in the packing problem.

29

is based on exciting connections to the Lipschitz extendability problem which has been

studied in functional analysis since the 1950s.

Here, we give an elementary Ω(log1/4 k) lower bound that relies only on duality and

estimates for binomial coefficients.

Theorem 7. There is an infinite family of graphs for which no cut-sparsifier of quality

better than Ω(log1/4 k).

This result appears in Section 5.1.1.

We can show that for this particular family of graphs, no contraction based cut-sparsifier

can have quality better than Ω(
√

log k). Yet for this family of graphs, we demonstrate a

family of cut-sparsifiers based on random walks that achieve quality o(
√

log k). Interest-

ingly, the upper bounds that we present (and in fact, all known upper bounds for general

graphs) produce vertex sparsifiers through contractions. Yet, this result allows us to demon-

strate that the best quality cut-sparsifiers do not always result from contractions:

Theorem 8. There is an infinite family of graphs so that the ratio of the best quality cut-

sparsifier to the best quality cut-sparsifier that can be achieved through a distribution on

contractions is o(1) = O(log log log log k
log2 log log k

)

This result appears in Section 5.1.

Yet another wrinkle to this result is that flow-sparsifiers that are based on contractions

actually preserve more than just the congestion of multicommodity flows. In fact, con-

traction based flow-sparsifiers of quality α also preserve network coding rates within the

same α factor as well. In contract, a flow-sparsifier that is not contraction based that has

quality α is not known to also preserve network coding rates within this factor - in part be-

cause the relationship between network coding rate and multicommodity flow rate is poorly

understood and in fact has implications for circuit lower bounds.

So requiring a flow-sparsifier to be generated from a convex combination of contrac-

tions actually requires it to do more than just approximately preserve the congestion of

every multicommodity flow problem. And this problem is asymptotically harder, in some

cases, than the problem of just preserving multicommodity flow rates. See Section 3.2.5.

30

We also give another separation, which demonstrates that flow-sparsification can be

asymptotically harder than cut-sparsification:

Theorem 9. There is an infinite family of graphs so that the best quality flow-sparsifier

has quality Ω(log log k) and yet the best quality cut-sparsifier has quality O(1).

The quality of the best flow-sparsifier and the quality of the best cut-sparsifier are al-

ways related within a poly-logarithmic (in k) factor. These results appear in Section 5.2.

Finally, we prove that flow-sparsification is impossible in directed graphs.

Theorem 10. There is an infinite family of directed graphs so that the quality of the best

flow-sparsifier is Ω(k)

This result appears in Section 5.3. Hence, the results that we obtain in this thesis cannot

be generalized to directed graphs.

31

32

Chapter 3

Vertex Sparsifiers

Here we prove that there are O(log k
log log k

)-quality vertex sparsifiers (both for approximat-

ing cuts and multicommodity flows). This is a global structural result, but we prove this by

introducing a zero-sum game between an extension player and a quality player. The exten-

sion player constructs a graph H that is a vertex sparsifier, and the quality player checks

the quality of this graph. We define this game in such a way that bounding the game value

of this game that good quality vertex sparsifiers exist.

We can then bound the game value of this game by proving that there is a good response

for the extension player for every distribution on checks that the quality player makes. We

use a rounding procedure due to Fakcharoenphol, Harrelson, Rao and Talwar [26] for the

0-extension problem to produce such a good response.

Thus, the intuition for why good quality vertex sparsifiers should exist does not come

from looking at a graph G, and a set K ⊂ V of terminals, and determining that there is

some way to approximately preserve all these exponentially many minimum cuts (or, for

that matter all the exponentially many multicommodity flows) on a smaller graph. Rather,

the intuition comes from imagining an adversary trying to disprove the statement that G

has a good quality vertex sparsifier, and showing that this adversary in fact cannot disprove

this statement. The beauty of the Min-Max Theorem is that this is enough to imply that

good quality vertex sparsifiers exist.

33

3.1 Cut Sparsifiers

The results in this section are based on [49].

3.1.1 0-Extensions

We begin by examining the operation of contracting edges in G. We observe that con-

tracting an edge (whose endpoints are not both terminals) cannot decrease the value of the

minimum cut separating A from K −A for A ⊂ K. This is because if we contract an edge

e = (u, v) in G to obtain a graph G/e, the minimum cut in G/e separating A from K − A

is just the minimum cut in G separating A from K − A that also contains u and v on the

same side of the cut.

Hence, if we contract edges in G until the only remaining nodes are the set of terminals

K, the resulting graph H will in fact be a cut-sparsifier. Obtaining a cut-sparsifier is easy –

after all, we could just choose a complete weighted graph H whose edges all have infinite

weight, but this would be a terrible quality cut-sparsifier. Similarly any graph H on just

the set of terminals, obtained through contractions will not necessarily be a good quality

cut-sparsifier either.

Nevertheless contractions and distributions on contractions will be our method of pro-

ducing not just cut-sparsifiers, but good cut-sparsifiers. Actually, we will use a slightly

more general type of operation which is still guaranteed to make the values of minimum

cuts (separating subsets of terminals) only increase. This operation is referred to as a 0-

extension and was originally formulated in [39] by Karzanov who used this operation to

define a type of graph partitioning problem that generalizes minimum multiway cut prob-

lem.

Suppose we are given a semi-metricD on the terminals (in addition to a weighted graph

G and K ⊂ V). Then the goal of the 0-extension problem is to assign each node in V to

a terminal in K (and each terminal t ∈ K must be assigned to itself) such that the sum

over all edges (u, v) of c(u, v) times the distance between u and v under the metric D is

minimized.

Definition 7. We will call a function f : V → K such that f(t) = t for all t ∈ K a

34

0-extension function

So the goal of the 0-extension problem is to minimize

∑
(u,v)∈E

c(u, v)D(f(u), f(v))

over all 0-extension functions f . When D is just the uniform metric on the terminals K,

this exactly the minimum multiway cut problem. Karzanov gave a (semi)metric relaxation

of the 0-extension problem [39]:

min
∑

(u,v)∈E c(u, v)β(u, v)

s.t.

β is a semi-metric on V

∀t,t′∈Kβ(t, t′) = D(t, t′).

Note that the semi-metric β is defined on V while D is defined only on K. Let OPT ∗

denote the value of an optimal solution to the above linear programming relaxation of

the 0-extension problem. Clearly OPT ∗ ≤ OPT . Calinescu, Karloff and Rabani [18]

gave a randomized rounding procedure to round any feasible solution β of value C to a 0-

extension that has expected value at most O(log k)C. Fakcharoenphol, Harrelson, Rao and

Talwar [26] gave an improved randomized rounding procedure that achieves an O(log k
log log k

)

approximation ratio:

Theorem 11. [26]

OPT ∗ ≤ OPT ≤ O

(
log k

log log k

)
OPT ∗

If G excludes Kr,r as a minor, then Calinescu, Karloff and Rabani [18] gave an im-

proved rounding algorithm that achieves an O(r2) approximation ratio. The bound of

O(r3) is implicit in [18], and can be immediately improved to O(r2) using the results

of [28] (which provide improved bounds for padded decompositions for graphs excluding

Kr,r over those in [42]). Then this immediately implies as a corollary:

Theorem 12. [18]

OPT ∗ ≤ OPT ≤ O(r2)OPT ∗

35

This relaxation, and these rounding algorithms for the (semi)metric relaxation will be a

key ingredient in our proof that good quality vertex sparsifiers exist.

As promised, we can use 0-extension functions to generate a graph on just the terminals

that is a cut-sparsifier: Given a 0-extension function f , we can define the capacitated graph

Gf on K that results from the function f as:

cf (a, b) =
∑

u,v|f(u)=a,f(v)=b

c(u, v)

We will abuse notation and refer to the graph Gf generated by f as a 0-extension of the

graph G. We will use hf to denote the cut function of the resulting graph Gf . Then in fact,

for any 0-extension f , the graph Gf is a cut-sparsifier:

Claim 1. For any subset of terminals U ⊂ K,

hK(U) ≤ hf (U).

Proof: For any u ∈ K, let f−1(u) = {a | f(a) = u}. Let A = ∪u∈Uf−1(u). By definition,

hf (U) = h(A) and because A ∩K = U this implies that h(A) ≥ hK(U), because the cut

A, V −A is a cut separating U from K − U so it is at least the minimum cut-separating U

from K − U .

As we will see later,Gf is also necessarily a flow-sparsifier – as the 0-extension function

not only makes the values of minimum cuts separating subsets of terminals increase, but

also makes the congestion of multicommodity flows with demands in K decrease.

3.1.2 Intuition

We now have a method to generate a cut-sparsifier - for any 0-extension f , Gf = (K,Ef)

is a cut-sparsifier. Of course, it is easy to construct a cut-sparsifier. We could just as well

set all capacities in H = (K,EH) to be infinite, and certainly the value of any cut in H will

be at least as large as the value of the corresponding minimum cut in G. However, we are

interested in finding a good quality cut-sparsifier.

36

h ({a}) = 1
K

h ({a}) = k−1
f

G = (K, E)
f f

a a

G = (V, E)

Figure 3-1: A single 0-extension f produces a cut-sparsifier, but not necessarily a good
quality cut-sparsifier.

We could hope that a single, appropriately chosen 0-extension f will result in not just

a cut-sparsifier but actually a good quality cut-sparsifier. Unfortunately this is not the

case. Consider the example in Figure 3-1. All graphs Gf generated by a 0-extension f

are isomorphic - the only choice we can make in choosing f is where to map the single

non-terminal node, and all choices are the same up to a permutation of the labels of the

terminals. Yet Gf has terrible quality. Let u (the single non-terminal) be assigned to ter-

minal a. Then the value of the minimum cut separating {a} from K − {a} in G is one,

and yet the value of the corresponding cut in Gf is k − 1. Hence Gf has quality k − 1

as a cut-sparsifier, and out goal is to give an O(log k
log log k

)-quality cut-sparsifier. Here we are

losing a union bound over each terminal!

We will need to use a distribution on 0-extensions. In this example, we can choose

each of the k 0-extensions f with equal probably (i.e. with probability 1
k
). Let γ be the

resulting distribution on 0-extensions. Consider the graph H =
∑

f γ(f)Gf and let h′

be the corresponding cut function. See Figure 3-2. This graph is a cut-sparsifier, and has

quality at most 2 because for any cut (A,K − A) the value of the minimum cut in G is

min(|A|, |K − A|) and the value of the cut in H is 2
k
|A||K − A| ≤ 2 min(|A|, |K − A|).

In general, the distribution γ on 0-extensions that we choose must depend heavily on

which minimum cuts in G are large and which are small, and how these cuts overlap.

37

h’({a}) =

k
1__

k
__2

K
h (A) = min(|A|, |K−A|) k

__2

a

G = (V, E)

c =

H = (K, E)
K

|A||K−A|

p =

Figure 3-2: Constructing a good quality cut-sparsifier via a distribution on 0-extensions.

Consider the example in Figure 3-3. Here there are two non-terminals. If we choose a

0-extension f that sends both of these non-terminals to the same terminal with probability
1
k
, then we obtain the same graph H as in Figure 3-2. This graph is a cut-sparsifier for the

graph G in Figure 3-3, however it is not a good quality cut-sparsifier. The graph G has a

sparse cut that bisects the set of terminals while cutting only a single edge. Yet any cut that

bisects the set of terminals has value at least Ω(k) in the graph H in Figure 3-2.

Hence, we need to choose some distribution on 0-extensions that preserves this sparse

cut. Suppose we map the non-terminal on the left to a randomly chosen terminal on the

left, and we map the non-terminal on the right to a randomly chosen terminal on the right.

Any graph Gf that we obtain in this way does indeed preserve this sparse cut that bisects

the set of terminals. If we then average over all such choices of f , we obtain a cut-sparsifier

that has good quality.

Hence, in order to prove that a good quality cut-sparsifier exists (that can be realized

as a distribution on 0-extensions), the distribution γ that we choose must depend on the

minimum cut-structure of G. Every time we choose some 0-extension f to have positive

support in γ, there are some minimum cuts in G that are preserved after contraction and

some that are not. How can we find a good distribution γ without explicitly remembering

how well we are currently approximating each one of the exponentially many minimum

cuts that we are interested in? We will instead use a zero-sum game to prove that good

38

f

2
k

p =

__2
k

p =

a

b

a

b

b

a

G =(K, E)G= (V, E) f

__

Figure 3-3: The distribution on 0-extensions that we choose depends crucially on the
minimum-cut structure in G.

cut-sparsifiers exist. Hence, playing against an adversary reveals to us the right distribution

γ that approximately preserves all exponentially many minimum cuts in G.

3.1.3 A Zero-Sum Game

Here we introduce and analyze an appropriately chosen zero-sum game, so that a bound on

the game value of this game will imply the desired structural graph theory result.

Given an undirected, capacitated graph G = (V,E) and a set K ⊂ V of terminals, an

extension player (P1) and a quality player (P2) play the following zero-sum game that we

will refer to as the extension-quality game:

The extension player (P1) chooses a 0-extension f

The quality player (P2) chooses a cut from 2K

Given a strategy f for P1 and a strategy A for P2, P2 wins 1
hK(A)

units for each unit of

capacity crossing the cut (A,K −A) in P1’s 0-extension. Also, we restrict P2 to play only

strategies A for which hK(A) 6= 0. So if P1 plays a strategy f and P2 plays a strategy A

then P2 wins:

N(f, A) =
∑

(u,v)∈E

1(f(u),f(v))∈δK(A)c(u, v)

hK(A)

39

This completely specifies the game. Both players have exponential-sized strategy spaces

in this game. The extension player can choose any one of the exponentially many 0-

extension functions, and there are kn−k such functions. The quality player can choose

any one of the exponentially many cuts from 2K .

Despite being asymptotically large, this game is still finite for any fixed G and K.

Hence the celebrated minmax theorem of von Neumann implies that this game has a game

value – which roughly means that two different mechanisms to play this game are equiva-

lent:

We could either force P1 to play first and choose a randomized strategy, which in this

case is a distribution on 0-extension functions, and then allow P2 to choose any strategy

knowing full-well what randomized strategy P1 has chosen. We could instead force P2 to

play first and choose a randomized strategy, which would be a distribution on cuts to check,

and then allow P1 to choose any strategy knowing what randomized strategy P2 chose.

Von Neumann’s minmax theorem states that the best (expected) value that P1 can

achieve in both these scenarios is equivalent, and this quantity is called the game value.

The intuition for why the game value should be useful for our purposes is that a bound on

the game value implies that there is some randomized strategy that P1 can choose, so that

P2 cannot do well (can do at most as well as the game value) even knowing P1’s random-

ized strategy. Hence there is some distribution on 0-extension functions which, no matter

what cut P2 chooses, P2 cannot find a cut to check that in expectation is multiplicatively

too much larger than the value of the corresponding minimum cut in G.

Definition 8. Let ν denote the game value of the extension-quality game.

We can bound the game value by bounding the cost of P1’s best response to any fixed,

randomized strategy for P2. So consider any randomized strategy µ for P2. µ is just a

probability distribution on 2K . We can define an `1 metric on K:

Dµ(t, t′) =
∑
A⊂K

µ(A)
1(t,t′)∈δK(A)

hK(A)

Dµ is a weighted sum of cut-metrics on K. Given Dµ we can define a semi-metric β

that is roughly consistent with Dµ. This semi-metric will serve as a feasible solution to the

40

linear programming relaxation for the 0-extension problem. A bound on the cost of this

feasible solution and the rounding algorithm due to [26] will together imply that there is a

0-extension that has not too much cost, and this will imply that the extension player has a

good response to the strategy µ. We define β as:

Initially set all edge distances d(u, v) to zero. Then for each A ⊂ K, if there is no

unique minimum cut separating A and K − A, choose one such minimum cut arbitrarily.

For this minimum cut, for each edge (u, v) crossing the cut, increment the distance d(u, v)

by µ(A)
hK(A)

.

Then let β be the semi-metric defined as the shortest path metric on G when distances

are d(u, v).

Claim 2. β(t, t′) ≥ Dµ(t, t′) for all terminals t, t′.

Proof: Consider any particular pair of terminals t, t′. Consider the contribution of any

particular A ⊂ K to the semi-metric Dµ. A only contributes if t and t′ are separated

with respect to A - i.e. if exactly one of {t, t′} is in A. We will show that any set A that

contributes to Dµ, has at least as large a contribution to β. So consider a set A that contains

t but not t′. Then any path in G from t to t′ must cross the cut in G that actually achieves

the minimum hK(A). But when considering the set A, we increased the distance on all

edges crossing this cut by µ(A)
hK(A)

, so the contribution to β(t, t′) of the set A is at least as

large as the contribution of A to Dµ(t, t′) and this implies the claim.

Claim 3. β is an `1 semi-metric

Proof: Using the description of β, one can easily write this semi-metric as a linear combi-

nation of cut-metrics on the set V , and this implies the claim.

Claim 4.
∑

(u,v)∈E β(u, v)c(u, v) = 1

Proof: Again, for each set A ⊂ K consider the total distances × capacity units that are

allocated when we increase the distances of all edges crossing the cut that achieves hK(A)

by µ(A)
hK(A)

. We know that the total capacity crossing this cut is hK(A) and for each such edge,

the distance on that edge (according to β) is incremented by µ(A)
hK(A)

. So this implies that the

41

total contribution of the set A ⊂ K to the total distance × capacity units is µ(A) and if we

sum over all A we get the desired claim, because µ is a probability distribution.

Theorem 13.

ν ≤ O

(
log k

log log k

)
Proof: Using Theorem 11, there exists a 0-extension f : V → K (such that f(t) = t for

all terminals t) and such that

∑
(u,v)∈E

c(u, v)β(f(u), f(v)) ≤ O

(
log k

log log k

)
Then suppose P1 plays such a strategy f :

EA←µ[N(f, A)]

=
∑

(u,v)∈E

∑
A

1(f(u),f(v))∈δK(A)c(u, v)µ(A)

hK(A)

=
∑

(u,v)∈E

c(u, v)Dµ(f(u), f(v))

≤
∑

(u,v)∈E

c(u, v)β(f(u), f(v)) ≤ O

(
log k

log log k

)

We can improve this result by noticing that the semi-metric Dµ corresponding to the

cost function associated with the randomized strategy µ for P2 and the feasible solution β

that we produced are both `1. In particular, let G = (V,E) be an undirected, capacitated

graph and let K ⊂ V be a subset of terminals. Let η denote a bound on the maximum

integrality gap of the semi-metric relaxation when the semi-metric D is `1 and the feasible

solution to the linear program β is also `1.

Corollary 1. ν ≤ η

We can instead use Theorem 12 in the case in which G excludes Kr,r as a minor, and

this immediately implies:

42

Corollary 2. For any capacitated graph G = (V,E) that excludes Kr,r as a minor,

ν ≤ O(r2).

We can immediately use any bound on the game value to demonstrate that good quality

cut-sparsifiers exist:

Theorem 14. For any capacitated graph G = (V,E), for any set K ⊂ V of |K| = k

terminals, there is an ν-quality cut-sparsifier H = (K,EH) and in fact such a graph can

be realized as a convex combination of graphs Gf generated by 0-extensions f .

Proof: We can again apply von Neumann’s minmax theorem, and get that there exists a

distribution γ on 0-extensions (f : V → K s.t. f(t) = t for all t ∈ K) such that for all

A ⊂ K: Ef←γ[N(f, A)] ≤ ν.

For any 0-extension f , let Gf be the corresponding 0-extension of G generated by

f , and let hf : 2K → R+ be the cut function defined on this graph. Further, let H =∑
f∈supp(γ) γ(f)Gf . Then for any A ⊂ K:

hK(A) ≤ hf (A) and hK(A) ≤ h′(A) =
∑

f∈supp(γ)

γ(f)hf (A)

Also because Ef←γ[N(f, A)] ≤ ν:

∑
(u,v)∈E

∑
f∈supp(γ)

γ(f)
1(f(u),f(v))∈δK(A)c(u, v)

hK(A)
=

1

hK(A)

∑
f∈supp(γ)

γ(f)hf (A) =
h′(A)

hK(A)

and so for any A ⊂ K: h′(A) ≤ νhK(A).

In particular, in general there are O(log k
log log k

)-quality cut-sparsifiers. If G excludes Kr,r

as a minor, then there is an O(r2)-quality cut-sparsifier. And if η is an upper bound on

the maximum integrality gap of the 0-extension LP when both the semi-metric D and the

feasible solution β are required to be `1, then there is an η-quality cut-sparsifier.

43

3.1.4 Quality-Revealing Linear Program

Here we give a linear program whose integrality gap is exactly the quality of the best

cut-sparsifier that can be achieved through 0-extension functions. This result appears in

[20].

Definition 9. Let αc0(G,K) be the infimum quality of any cut-sparsifier H =
∑

f γ(f)Gf

and γ is a distribution over 0-extension functions.

We will call αc0(G,K) the contraction quality of G,K.

Definition 10. Let ∆U denote the cut-metric in which ∆U(u, v) = 1|U∩{u,v}|=1.

Suppose we are given a semi-metric D as an input to a 0-extension problem that is also

`1. Then we can write a stronger (exponentially-sized) linear program whose integrality gap

is no worse than the semi-metric relaxation. The advantage is that for this linear program,

the maximum integrality gap over any `1 semi-metric D will be exactly the contraction

quality (of G,K).

min
∑

U δ(U)h(U)

s.t.

∀t,t′∈K
∑

U δ(U)∆U(t, t′) = D(t, t′).

We will call this the cut-cut relaxation.

Definition 11. Let η(G,K) be the maximum integrality gap of the cut-cut relaxation over

all `1 semi-metrics (for a fixed G,K).

We note that in Corollary 16 we were able to demonstrate that η(G,K) is an upper

bounds for the game value of the extension-cut game, and hence an η(G,K)-quality cut-

sparsifier H =
∑

f γ(f)Gf exists (which can be written as a convex combination of 0-

extension graphs Gf).

Theorem 15. αc0(G,K) = η(G,K)

44

Proof: Suppose γ is a distribution on 0-extensions such that H =
∑

f γ(f)Gf is a α-

quality cut sparsifier. Given any `1 semi-metricD onK, we can solve the cut-cut relaxation

given above. Let R be the optimal value on D. Notice that cut (U, V − U) that is assigned

positive weight in an optimal solution must be the minimum cut separating U ∩ K = A

from K − A = (V − U) ∩K in G. If not, we could replace this cut (U, V − U) with the

minimum cut separatingA fromK−Awithout affecting the feasibility and simultaneously

reducing the cost of the solution. So for all U for which δ(U) > 0, h(U) = hK(U ∩K).

Consider then the cost of the semi-metric D against the cut-sparsifier H which is de-

fined to be
∑

(a,b) cH(a, b)D(a, b) =
∑

f γ(f)
∑

(a,b) cf (a, b)D(a, b) which is just the av-

erage cost of D against Gf where f is sampled from the distribution γ. The cut-cut re-

laxation gives a decomposition of D into a weighted sum of cut-metrics - i.e. D(a, b) =∑
U δ(U)∆U(a, b). Also, the cost of D against H is linear in D so this implies that

∑
(a,b)

cH(a, b)D(a, b) =
∑
(a,b)

∑
U

cH(a, b)δ(U)∆U(a, b) =
∑
(a,b)

cH(a, b)δ(U)h′(U ∩K)

In the last line, we use
∑

(a,b) cH(a, b)∆U(a, b) = h′(U ∩K). Then

∑
(a,b)

cH(a, b)D(a, b) ≤
∑
U

δ(U)αhK(U ∩K) = αR

In the inequality, we have used the fact that H is an α-quality cut-sparsifier, and in the last

line we have used that δ(U) > 0 implies that h(U) = hK(U ∩K). So the average cost ofD

against Gf where f is sampled from γ is at most α times R, so there must be some f such

that the cost against D is at most α times R. Hence α is an upper bound on the integrality

gap of the cut-cut relaxation for any D that is `1.

We will use this result in Section 5.1.1 to establish a (tight) lower bound on the qual-

ity of the best cut-sparsifier that can be achieved through contractions for a particular

example. We will then give a cut-sparsifier (not based on contractions) that has asymp-

totically between quality - thus demonstrating an asymptotic separation (for a particular

family of graphs) between the quality of the best cut-sparsifier and the quality of the best

cut-sparsifier that can be achieved through a distribution on contractions.

45

3.2 Flow Sparsifiers

In Section 3.1, we proved that O(log k
log log k

)-quality cut-sparsifiers exist. Using the celebrated

approximate min-cut max-flow theorem for multicommodity flows due to Linial, London

and Rabinovich [46], we observe that scaling up the weights in such in a good cut-sparsifier

by an appropriate factor yields a good flow-sparsifier. In fact, an O(log k
log log k

)-quality cut-

sparsifier can be easily scaled up to obtain a poly-logarithmic (in k) quality flow-sparsifier.

However, we can do better. We prove that O(log k
log log k

)-quality flow-sparsifiers exist and

furthermore, if G excludes Kr,r as a minor, then O(r2)-quality flow-sparsifiers exist. We

also prove that flow-sparsfication is no easier than cut-sparsification and in fact any α-

quality flow-sparsifier is also an α-quality cut-sparsifier. Hence the results in this section,

while technically more involved, subsume those in Section 3.1.

The additional benefit of working with flow-sparsifiers as opposed to cut-sparsifiers is

that if we are given a graph H = (K,EH) which is guaranteed to be a flow-sparsifier

(for example, this graph may be given to us as a distribution on 0-extension graphs), the

problem of computing the quality of H is easy. The problem of determining the quality

of H can be formulated as a single minimum congestion routing problem. However, if

we are given a graph H = (K,EH) and promised that this graph is a cut-sparsifier (or

even a flow-sparsifier), determining the quality of H as a cut-sparsifier is an instance of the

generalized sparsest cut problem. Our algorithms for efficiently constructing good quality

flow-sparsifiers (and cut-sparsifiers, for that matter) will be based on this property.

Additionally, this property allows us to (in an amortized sense) compute approximate

minimum congestion routings for a sequence of demand vectors ~f in G in time polynomial

in the number of terminals, and independent of the size of the original graph. The approx-

imation factor will be exactly the quality of a good flow-sparsifier and the preprocessing

time will be just the time to compute a good flow-sparsifier, and the time to compute a

single minimum congestion routing in G.

The results in this section are based on [44].

46

3.2.1 A Hardest Flow

Suppose we are given a graph H = (K,EH) that is a flow-sparsifier. The quality of H as a

flow-sparsifier is the worst case ratio over all demand vectors ~f with endpoints in K of the

congestion of the minimum congestion routing in G and H respectively. We can clearly

restrict attention to only demand vectors ~f that are routable with congestion at most one in

H - we will call such a demand vector ”routable” in H . Given that H is a flow-sparsifier,

there is a natural notion of a ”hardest” flow (routable in H) to route in G. Hence we can

express the quality of H as a minimum congestion routing problem.

Definition 12. Let H = (K,EH) be a capacitated graph. Then let ~H ∈ R(k2) be the

demand vector in which each coordinate (which corresponds to a pair a, b ∈ K) is set to

cH(a, b) - i.e. the capacity of the edge (a, b) ∈ EH (if it exists, and is zero if not).

Lemma 1. If H = (K,EH) is a flow-sparsifier for G and K, then the quality of H as a

flow-sparsifier is congG(~H).

Proof: congG(~H) is clearly a lower bound for the quality ofH as a flow-sparsifier, because

the flow ~H is feasible in H by saturating all edges. To prove the reverse inequality, given

any flow ~f routed in H , we can compose this routing of ~f with the embedding of H into

G. If the routing of ~f has congestion at most 1 in H , then composing the routing with the

embedding of H into G will result in congestion at most congG(~H) in G:

In particular, consider the flow ~f in H , and consider the path decomposition of this

flow. If ~f assigns δ units of flow to a path Pa,b in H , then construct a set of paths in G

that in total carry δ units of flow as follows: Let Pa,b = (a, p1), (p1, p2), ...(pl, b). Let

p0 = a and pl+1 = b. Then consider an edge (pi, pi+1) contained in this path and suppose

that cH(pi, pi+1) is α in H . Then for each flow path P connecting pi to pi+1 in the low-

congestion routing of H in G, add the same path and multiply the weight by δ
α

. The

union of these flow paths sends δ units of flow from a to b in G. If we consider any edge

in H , every flow path in ~f that traverses this edge uses exactly the paths in G to which

(a, b) is mapped in the embedding of H into G. The total flow through any edge (a, b)

in H is at most cH(a, b) because ~f is feasible in H , and so we have not scaled up the

amount of flow transported on each path in an optimal routing the (demand) graph H into

47

G at all. Consequently the congestion of this (sub-optimal) routing of ~f in G is at most

congG(~H).

In fact, this proof reveals an important property of a good quality flow-sparsifier: Given

a good quality flow-sparsifier H , we can compute an embedding of H into G of congestion

α once, as a preprocessing step. We can use this routing so that given any subsequent

demand vector ~f , we can compute a near optimal routing of ~f in G without using any

additional information about G except knowledge of H and the low-congestion routing of

H in G.

Corollary 3. LetH be a flow-sparsifier of quality α. We can compute an optimal routing of

~H in G as a preprocessing step. For each demand vector ~f , we can then compute a routing

of ~f inG that has congestion at most αcongG(~f) by running a minimum congestion routing

algorithm on H .

The running time of the best known (1 + ε)-approximate minimum congestion routing

runs in time Õ(rmn) where m = |E| and n = |V | and r is the number of demand pairs.

Hence, if we run a minimum congestion routing algorithm onH , the algorithm runs in time

polynomial in the number of terminals and has no dependence on the size of the original

graph G. So given a sequence of routing problems that we are asked to solve in G (all of

which have endpoints only in the set K), we an compute a near-optimal routing for each

problem in time polynomial in |K| and independent of the size of G!

3.2.2 Relations to Cut Sparsifiers

Next, we prove that flow-sparsification is no-easier than cut-sparsification:

Lemma 2. If H = (K,EH) is an α-quality flow-sparsifier for G and K, then H is also an

α-quality cut-sparsifier (for G and K).

Proof: Let H = (K,EH) be an α-quality flow-sparsifier, and let h′ be the cut function of

H . The proof of this lemma will be composed of two claims. The first establishes that H

is a cut-sparsifier, and the second establishes that the quality of H as a cut-sparsifier is at

most α:

48

Claim 5. For all A ⊂ K: hK(A) ≤ h′(A)

Proof: Suppose for some A ⊂ K: hK(A) > h′(A). Then the min-cut max-flow theorem

implies that there is a flow ~r feasible in G such that the total demand crossing the (demand)

cut (A,K − A) is exactly hK(A). But this flow ~r cannot be feasible in H because the cut

(A,K −A) has capacity h′(A) in H which is strictly smaller than the demand crossing the

cut. So this implies congG(~r) ≤ 1 < congH(~r) which is a contradiction.

Claim 6. For all A ⊂ K: h′(A) ≤ αhK(A)

Proof: Consider the flow ~H . This flow is feasible inG′ - i.e. congH(~H) = 1. Now suppose

that there is a cut A ⊂ K such that h′(A) > αhK(A). Choose the set U ⊂ V , U ∩K = A

such that h(U) = hK(A). The capacity crossing the cut (U, V − U) is hK(A) but the total

demand crossing the cut is h′(A) so

congG(~H) ≥ h′(A)

hK(A)
> α

and congG(~H) > αcongH(~H) which is a contradiction.

We also note that not only is a graph Gf obtained from a 0-extension function a cut-

sparsifier, but it is also a flow-sparsifier as well.

Claim 7. For any 0-extension f , and for any demand vector ~r ∈ R(k2), congGf (~r) ≤

congG(~r)

Proof: We can equivalently think of a contraction operation as setting the capacity of an

edge to be infinite. Then a comparison argument implies the claim: Suppose we set the

capacity of an edge e = (u, v) to be infinite in the graph G to obtain a graph G′. Then any

demand vector ~r that can be routed with congestion at most C in G can also be routed with

congestion at most C in G′ - the same routing for ~r that is used in G has congestion at most

C in G′ as well.

49

3.2.3 A Larger Zero-Sum Game

To prove the existence of good flow-sparsifiers, we again use an exponentially-sized

zero-sum game. However, here we will need to add another layer of indirection based on

duality in order to prove this result.

We first associate a convex subset of R(k2) with G,K which characterizes the value of

the minimum congestion routing of any demand vector ~f in G.

Definition 13.

PG = {~f ∈ R(k2)|congG(~f) ≤ 1}

We will call PG the unit congestion polytope ofG. Note that congG(~f) can be computed

as the minimum α so that α~f is contained in PG. Similarly, we will define SG to be the

boundary of PG:

Definition 14.

SG = {~f ∈ R(k2)|congG(~f) = 1}

The zero-sum game that we introduce here, to prove the existence of (better) flow-

sparsifiers will actually be based on the dual the the maximum concurrent flow problem.

Hence, another interesting convex set is the polar dual to PG, which we will refer to as DG.

Definition 15. We will call a metric space d on K realizable in G if there is some extension

of d to V so that
∑

(u,v)∈E c(u, v)d(u, v) ≤ 1.

The set DG of realizable metric spaces is clearly convex. We will encounter a minor

technicality, that if we were to define a zero-sum game using DG as the strategy space

for one of the players, then DG is uncountably infinite (but still compact). To avoid this

technical annoyance, we can simply choose the set of vertices of DG to be a strategy space

and this set will then be finite. Not only is DG convex, but we can explicitly write it as

the projection of a higher dimensional polytope, and hence DG is also a polytope and has

a finite (albeit exponentially many) number of vertices.

Claim 8. The number of vertices in DG is finite.

50

Proof: To prove this claim, consider the polytope PG. This polytope can be realized as

the projection of a higher dimensional polytope (that actually finds the realization of each

multicommodity flow, and uses flow-conservation constraints as opposed to an explicit

decomposition into flow paths). This higher dimensional polytope has a (polynomial in

n, k) number of constraints, and hence a finite number of vertices and this implies that

the projected polytope PG also has a finite number of vertices. Each distinct facet of PG

contains a distinct subset of the vertices of PG, and hence the number of facets of PG is also

finite. The facets of PG are exactly the polar duals to the vertices of DG, and this implies

the claim.

Given an undirected, capacitated graph G = (V,E) and a set K ⊂ V of terminals, a

(metric) extension player (P1) and a quality player (P2) play the following zero-sum game

that we will refer to as the extension-quality game. We will add an additional generalization

that will prove useful later:

Definition 16. LetH be the set of flow-sparsifiers for G and K - i.e.

H = {H|H is a flow-sparsifier for G,K}

Let H′ ⊂ H be an arbitrary, finite subset. For example, we can consider H′ = {Gf}f .

In this case,H′ is the set of all 0-extensions.

Suppose that we want to impose additional structure on a flow-sparsifier. For example,

in Section 4.2 we will want a flow-sparsifier that not only has good quality but also can be

realized as a convex combination of ”contraction-based” trees. In fact, we can re-use the

much of the machinery in this section for a different choice of H′ and prove that good (re-

stricted) flow-sparsifiers exist provided H′ meets a technical condition. On a first reading,

the reader is advised to think ofH′ as the set of all 0-extensions.

The extension player (P1) chooses a H ∈ H′

The quality player (P2) chooses a vertex d~r of DG

We write d~r for a vertex of DG because we will use ~r to denote a vertex of PG that the

half-space perpendicular to d~r contains. Note that this is well-defined because DG is the

51

polar dual to PG and hence if d~r ∈ DG is not perpendicular to some vertex of PG, then

d~r is not a vertex in DG. Equivalently, ~r is a demand vector that is feasible in G and for

which
∑

(a,b) ~ra,bd~r(a, b) = 1 and if there is no such tight demand vector, we could increase

coordinates in d~r and still obtain a vector that using strong duality must be contained in

DG.

Given a strategy H for P1 (and suppose that the capacity function of this graph is cH)

and a strategy d~r for P2, P2 wins

M(H, d~r) =
∑
a,b∈K

d~r(a, b)cH(a, b)

The advantage of restricting the congestion player’s strategies to be vertices of DG is

that the joint strategy space of the game is finite, so we can apply the standard minmax

theorem for finite strategy space games, rather than more general minmax theorems for

arbitrary convex spaces that are not necessarily characterized as the convex hull of a finite

number of points.

Definition 17. Let ν denote the game value of the extension-quality game

Given a metric space d (which we can assume after scaling is in realizable), consider the

optimization problem of finding a graph H ∈ H′ that minimizes
∑

a,b∈K d(a, b)cH(a, b).

We will call this theH′-extension problem. If we consider the semi-metric relaxation given

for the 0-extension problem, this is also a relaxation for the H′-problem. Hence, the semi-

metric relaxation has a natural notion of an integrality gap with respect to the setH′.

Definition 18. We will call the following quantity the integrality gap ofH′ (on G and K):

sup
d∈DG

inf
H∈H′

∑
a,b∈K

d(a, b)cH(a, b)

Note that the integrality gap ofH′ is defined relative to G and K.

Claim 9. The integrality gap ofH′ = {Gf}f is at most O(log k
log log k

)

Proof: If d ∈ DG, the theorem due to Fakcharoenphol, Harrelson, Rao and Talwar [26]

52

implies that there is a 0-extension f such that

∑
(u,v)∈E

c(u, v)d(f(u), f(v)) ≤ O(
log k

log log k
)

Then consider the graph Gf and let cf be the corresponding capacity function.

∑
a,b∈K

d(a, b)cf (a, b) =
∑
a,b∈K

∑
u,v∈E

d(f(u), f(v))c(u, v) ≤ O(
log k

log log k
)

We can instead use Theorem 12 in the case in which G excludes Kr,r as a minor, and

this immediately implies:

Corollary 4. If G = (V,E) excludes Kr,r as a minor, the integrality gap ofH′ = {H|H =∑
f γ(f)Gf} is at most O(r2)

Lemma 3. ν is at most the integrality gap ofH′

Proof: Using von Neumann’s minmax theorem, we can bound the game value by bounding

the cost of P1’s best response to any fixed, randomized strategy for P2. So consider any

randomized strategy µ for P2. µ is just a probability distribution on vertices of DG. We can

define a semi-metric on V : δ(a, b) =
∑

d~r
µ(d~r)d~r(a, b). Note that

∑
(a,b)∈E

δ(a, b)c(a, b) =
∑

(a,b)∈E

∑
d~r

µ(d~r)d~r(a, b)c(a, b)

=
∑
d~r

µ(d~r)
∑

(a,b)∈E

d~r(a, b)c(a, b)

=
∑
d~r

µ(d~r) = 1

Suppose the integrality gap ofH′ is at most C. Then there exists an H ∈ H′ such that

∑
a,b∈K

δ(a, b)cH(a, b) ≤ C

53

Suppose that P1 plays such a strategy f :

Ed~r←µ[M(H, d~r)] =
∑
d~r

µ(d~r)
∑
a,b∈K

d~r(a, b)cH(a, b)

=
∑
a,b∈K

δ(a, b)cH(a, b) ≤ C

We can immediately use any bound on the game value to demonstrate that better quality

flow-sparsifiers exist:

Theorem 16. For any capacitated graph G = (V,E), for any set K ⊂ V of |K| = k

terminals, there is an ν-quality flow-sparsifier H = (K,EH) and in fact such a graph can

be realized as a convex combination of graphs Gf generated by 0-extensions f .

Proof: We can again apply von Neumann’s minmax theorem, and get that there exists a

distribution γ on 0-extensions such that Ef←γ[M(f, d~r)] = ν for all d~r ∈ DG. Then let

H =
∑

f∈supp(γ)

γ(f)Gf

Let d~r ∈ DG be arbitrary. Then

Ef←γ[M(f, d~r)] =
∑
f

γ(f)
∑

(a,b)∈E

d~r(f(a), f(b))c(a, b)

=
∑
f

γ(f)
∑
u,v∈K

d~r(u, v)cf (a, b)

=
∑
u,v∈K

d~r(u, v)
∑
f

γ(f)cf (a, b)

=
∑
u,v∈K

d~r(u, v)c′(u, v)

So for all d~r ∈ DG, we have that
∑

u,v∈K d~r(u, v)c′(u, v) ≤ ν And using strong duality

54

(and the dual for maximum concurrent flow given in Section 2):

congG(~H) = sup
d~r∈DG

∑
u,v∈K

d~r(u, v)c′(u, v) ≤ ν

As we will see, flow-sparsifiers that arise as a convex combination of 0-extension graphs

preserve more than just multicommodity flow rates. Roughly, any type of ”rate” that both

can only increase when increasing the capacity of an edge, and is closed under composition

with flow-like re-routings will also be preserved. An important type of rate that falls into

this category, but is still poorly understood is the network coding rate.

3.2.4 Multiplicative Weights

Here we apply the results in [54] to give an efficient construction for a good quality flow-

sparsifier. See also [4] for a more general exposition of the results in [54]. The highlight

of this approach is that any efficient rounding algorithm for the semi-metric relaxation that

achieves an approximation ratio of C (relative to the value of the relaxation) will immedi-

ately give rise to an efficient construction for a 2C-quality flow-sparsifier. This approach

has the benefit that the running time of a rounding algorithm is typically linear in the size

of G (and has a polynomial dependence on the number of terminals), and we will be able

to give fast algorithms for computing a good quality flow-sparsifier that run in roughly

quadratic (in |E|) time.

This is interesting because the running time of computing a good quality flow-sparsifier

matches (within logarithmic factors) the running time of solving just a single minimum

congestion routing problem. Yet a good flow-sparsifier will help us solve a sequence of

routing problems quickly. We can compute a good flow-sparsifier just once and for any

routing problem we are asked to solve, we can compute a near-optimal solution by running

a minimum congestion routing algorithm on our flow-sparsifier, as opposed to running

directly on the original network.

In Section 4.1.2 we present another algorithm for computing a good quality flow-

55

sparsifier. The algorithm presented in this section is faster. However, the algorithm pre-

sented in Section 4.1.2 will be able to achieve a stronger quality guarantee. Here, all we

are able to construct is a flow-sparsifier whose quality matches the worst-case guarantee of

an efficient rounding algorithm. The algorithm in Section 4.1.2 will be able to construct

a flow-sparsifier whose quality is at least as good as the quality of the best flow-sparsifier

that can be achieved through contractions. Conceivably, this could be much stronger. For

example, the maximum integrality gap of the semi-metric relaxation is only known to be

bounded between O(log k
log log k

) and Ω(
√

log k) and if this latter bound is correct, then the

algorithm in Section 4.1.2 already constructs an O(
√

log k)-quality flow-sparsifier.

The zero-sum game given in Section 3.2.3 used to prove the existence of a good quality

flow-sparsifier can be immediately used, in conjunction with the proof in [54] to give a fast

algorithm for computing a good quality flow-sparsifier. We will not repeat the proof here,

but rather we will just note the notational differences and state the result in the context of

vertex sparsification.

Räcke considers the problem of finding a good hierarchical decomposition for a graph.

To this end, for each ”decomposition tree” Ti he defines a notion of the load loadTi(e) and

relative load rloadTi(e) =
loadTi (e)

c(e)
on each edge. His goal is to find a packing that does not

have too large a relative load on any edge:

max
∑

i λi

s.t.

∀e ∈ E
∑

i λirloadTi(e) ≤ β.

The goal in [54] is to find a choice of ~λ so that
∑

i λi = 1 and yet β = O(log n).

He then uses such a distribution ~λ to construct an O(log n)-competitive oblivious routing

scheme. To prove this result, Räcke considers a smooth potential function. Let lmax(~x) =

ln
(∑

e e
xe
)
≥ maxe xe. Räcke considers the stronger goal of finding a ~λ such that

lmax(M~λ) ≤ β where M is the constraint matrix - namely the value

(M~λ)e =
∑
i

λirloadTi(e)

56

is the relative load on edge e.

Here, instead, our goal is to construct a good quality flow-sparsifier. We replace the

notion of a ”decomposition tree” with a choice of a flow sparsifier H ∈ H′ (as in the game

in Section 3.2.3) and a set of paths in G - one connecting each pair of terminals (a, b). Let

R denote the possible choices for these paths - i.e. R denotes the set of all sets of
(
k
2

)
simple paths in G so that each path connects a distinct pair of terminals. Let R ∈ R be a

particular choice for these
(
k
2

)
paths. We can consider routing H as a flow in G, using the

paths in R. Let Ra,b be the path in R connecting a and b in G. For each edge (a, b) in H (of

capacity cH(a, b)) we can send cH(a, b) units of flow along the corresponding path Ra,b. If

we do this for all pairs of terminals, we have a routing of ~H in G. Moreover, we can define

the load of H ×R on an edge e as the total amount of flow traversing the edge e:

loadH×R(e) =
∑
a,b∈K

cH(a, b)1e∈Ra,b

and similarly the relative load rloadH×R(e) = loadH×R(e)

c(e)
. Then the goal of constructing

a β-quality flow-sparsifier is equivalent to finding a distribution ~λ so that for all e ∈ E,∑
H×R λH×RrloadH×R(e) ≤ β. As in [54], we can consider a smooth potential function

and ask for a ~λ that satisfies a stronger guarantee:

lmax(M~λ) ≤ β∑
H×R λH×R ≥ 1

λH×R ≥ 0 for all H,R

Räcke reduces the problem of finding a solution to this convex program to the problem

of always being able to find an index H × R so that the partial of lmax(M~λ) with respect

to λH×R is at most β/2. The intuition here is that if we can always find such an index,

throughout the course of the algorithm we will be able to maintain the invariant that the

potential function lmax(M~λ) is at most, say, a β-factor larger than the `1-norm of ~λ.

For any H ×R, the partial derivative of lmax(M~λ) with respect to λH×R is

∂lmax(M~λ)

∂λH×R
=
∑
e

loadH×R(e)
e(M~λ)e

c(e)e(M~λ)e

57

Set d(e) = e(M
~λ)e

c(e)e(M~λ)e
and let D be the resulting shortest path metric on G. Then we have

that
∑

u,v c(u, v)D(u, v) ≤ 1.

Suppose we are given access to a rounding algorithm that always returns an element

H ∈ H′ whose cost is at most a C factor larger than the cost of the semi-metric relaxation.

Hence, given the semi-metric D the algorithm returns an H for which

∑
a,b∈K

cH(a, b)D(a, b) ≤ C

For each pair of terminals a, b ∈ K, let Ra,b be the shortest path according to the metric D

between a and b in G (and break ties arbitrarily). Let R be the set of these shortest paths,

one for each pair of terminals. Then

∑
e

loadH×R(e)
e(M~λ)e

c(e)e(M~λ)e
=
∑
a,b∈K

cH(a, b)
∑
e∈Ra,b

D(e) =
∑
a,b∈K

cH(a, b)D(a, b) ≤ C

Räcke also proves that the number of iterations (of repeatedly finding some H × R

for which the partial is small, and increasing the corresponding index in ~λ) is at most

O(|E| log n) where |V | = n. Hence we obtain:

Theorem 17. Let H′ ⊂ H be any finite set of flow-sparsifiers (for G and K), and sup-

pose that we are given a rounding algorithm ALG that achieves an approximation ratio

C relative to the semi-metric relaxation. Let T be the running time of this algorithm.

Then there is an algorithm to construct a 2C-quality flow-sparsifier that can be realized

as a convex combination of flow-sparsifiers in H′. The running time of this algorithm is

O(k|E|2 log n+ |E|T log n).

Hence, given a fast rounding algorithm for the semi-metric relaxation, we can quickly

compute a good quality flow-sparsifier. The rounding algorithm due to Fakcharoenphol,

Harrelson, Rao and Talwar [26] (Theorem 11) runs in time O(k|E|) and hence:

Corollary 5. There is an algorithm to compute an O(log k
log log k

)-quality flow-sparsifier that

runs in time O(k|E|2 log n).

Also, the rounding algorithm due to Calinescu, Karloff and Rabani [18] (using an im-

58

c)

t

s s

t

1 2

12 t

s s

t

1 2

12
t

s s

t

1 2

12

1__
2

1__
2

a b a b

a b

a

a b

b

a) b)

Figure 3-4: a. Communication problem on a directed graph b. Multicommodity solution c.
Network coding solution

proved padded decomposition procedure due to Fakcharoenphol and Talwar [28]) runs in

time O(r2|E|+ k|E|) (assuming G excludes Kr,r as a minor). Hence

Corollary 6. Suppose G excludes Kr,r as a minor. Then there is an algorithm to compute

an O(r2)-quality flow-sparsifier that runs in time O(k|E|2 log n+ r2|E|2 log n).

3.2.5 Network Coding

Here we demonstrate that an α-quality flow-sparsifier that is generated through a distribu-

tion on contractions also preserves network coding rates within an α-factor as well.

Suppose we are given the communication problem in Figure 3-4a - s1 wants to send a

message to t1 and s2 wants to send a message to t2. We can phrase this communication

problem as a multicommodity problem - i.e as a maximum concurrent flow problem, in

which case the optimal rate is 1
2

as in Figure 3-4b. However, if we allow messages to be

XORed, then the optimal rate can be made to be 1 as in Figure 3-4c. This later solution to

the communication problem is a network coding solution. This example is due to Ahlswede

et al [3].

We do not define the precise notion of a network coding problem or solution here be-

cause we will not use these definitions apart from noticing that a flow-sparsifier that is

generated as a convex combination of 0-extension graphs preserves network coding rates

(within the same factor) in addition to multicommodity flow rates. See [36] for a precise

59

definition of network coding rate.

Definition 19. Given a demand vector ~r ∈ R(k2), suppose that R is the network coding rate

for the network coding problem. We will call congnG(~r) = 1
R

the network congestion.

We observe that congnG(~r) ≤ congG(~r) because from any maximum concurrent flow

solution we can construct a network coding solution that is at least as good. Also, from

the above example we can have a strict inequality in the case of a directed graph - i.e. the

network coding solution performs strictly better. However, it is conjectured [1], [36] that

the network coding rate is always equal to the maximum concurrent flow rate for undirected

graphs. Despite much work on this problem, researchers have only been able to improve

upon the sparsest cut upper bound for the network coding rate in specific cases [1], [36],

[37].

This conjecture has far-reaching implications. The results of Ahlswede et al [1] imply

that even proving an o(log k) bound - i.e. congG(~r) ≤ o(log k)congnG(~r) for all undirected

graphs would imply the first super-linear lower bound for oblivious matrix transposition in

the bit-probe model, and this would be the first super-linear lower bound in this powerful

model for any problem.

In fact, any flow-sparsifier generated from a convex combination of 0-extensions will

necessarily approximately preserve many types of ”congestion” functions, which we for-

malize below as proper congestion functions.

Definition 20. We will call a congestion function cong∗G : R(k2) → R+ a proper congestion

function if for all demand vectors ~r

• increasing the capacity of an edge in G can only decrease cong∗G(~r)

• cong∗G(~r) ≤ congG(~H)cong∗H(~r)

Note that the second point requires that the congestion function be ”compose-able”

with minimum congestion routings. For example, in the case of network codes, if there is

a good network coding solution in H and H can embed well into G as a flow, then there is

a good network coding solution in G as well.

60

Claim 10. Network congestion is a proper congestion function.

This follows immediately from the precise definition of network coding - again see [36]

for a precise definition. Given any (proper) congestion function cong∗G, we can define the

notion of an α-quality vertex sparsifier as a graph H = (K,EH) for which for all ~r ∈ R(k2):

cong∗H(~r) ≤ cong∗G(~r) ≤ αcong∗H(~r)

Lemma 4. Let H =
∑

f γ(f)Gf be a flow-sparsifier of quality α that is generated from a

convex combination of 0-extension functions. Then H is also an α-quality vertex sparsifier

with respect to any proper congestion function.

Proof: Using the first property of a proper congestion function, cong∗H(~r) ≤ cong∗G(~r).

Similarly, using the second property of a proper congestion function we have that for all

demand vectors ~r,

cong∗G(~r) ≤ congG(~H)cong∗H(~r)

and using Lemma 1 this implies the result.

Later, we will demonstrate a separation - that requiring a vertex sparsifier to be gener-

ated as a convex combination of 0-extensions can make the problem asymptotically harder.

61

62

Chapter 4

Algorithms

4.1 Computing a Vertex Sparsifier

Here we give efficient algorithms for constructing flow-sparsifiers (and hence also cut-

sparsifiers) that achieve the existential bounds given in Chapter 3. We give an algorithm

that runs in time polynomial in n and k that can construct a flow-sparsifier whose quality

matches the quality of the best flow-sparsifier that can be achieved through 0-extension

functions for the given G and K. Thus this algorithm always constructs a flow-sparsifier of

quality at mostO(log k
log log k

). And ifG excludesKr,r as a minor then this algorithm constructs

a flow-sparsifier of quality at most O(r2). If there happens to be an even better quality

flow-sparsifier (that can still be achieved through 0-extensions), the algorithm can always

find a flow-sparsifier whose quality is at least as good– although the flow-sparsifier that

is constructed is not necessarily realizable as a convex combination of 0-extensions. Our

algorithm makes novel use of Earth-mover constraints. Note that in Section 3.2.4, we gave

a faster algorithm that achieves the same worst-case guarantees, but does not necessarily

find an even better flow-sparsifier if one happens to exist for the particular G and K.

63

4.1.1 A Geometric Interpretation

We can naturally represent any (candidate) vertex sparsifier using a polynomial number

of variables. Any (candidate) graph H = (K,EH) is defined by
(
k
2

)
non-negative variables

~X = {xa,b}a,b∈K

which each are assigned a value equal to the capacity of the corresponding edge in H (here

we think of H as being a complete, capacitated graph - where edge weights can be zero).

Consider the predicates:

• H is a cut-sparsifier

• H is a flow-sparsifier

• H has quality at most α as a cut-sparsifier

• H has quality at most α as a flow-sparsifier

Each of these predicates can be written as a set of linear inequalities on the variables

X . Consider the first and third predicate, which will be easier to write as a set of linear

inequalities as these constraints only pertain to cuts. Consider the polytope:

Type 1.c: hK(A) ≤
∑

(a,b)∈δK(A) xa,b for all A ⊂ K

Type 2.c:
∑

(a,b)∈δK(A) xa,b ≤ αhK(A) for all A ⊂ K

0 ≤ xa,b for all a, b ∈ K

Claim 11. H is a cut-sparsifier if and only if all Type 1.c inequalities are satisfied. Also H

has quality at most α as a cut-sparsifier if and only if all Type 2.c inequalities are satisfied.

Hence, the above polytope represents the set of all α-quality cut-sparsifiers for G,K.

Apriori we do not know if this polytope is non-empty, but the results in Chapter 3 imply

that this polytope is non-empty for α = O(log k
log log k

). If G excludes Kr,r as a minor, then this

polytope is non-empty for α = O(r2).

64

Notice that if we are content with an algorithm that runs in time polynomial in n but

exponential in k, we can afford to explicitly write down each of Type 1.c and Type 2.c

inequalities. Then we can run any polynomial time algorithm for solving a linear program

to obtain not just a good quality cut-sparsifier, but also the best quality cut sparsifier for the

given G and K.

However, an algorithm that runs in time exponential in k is insufficient for many appli-

cations - for many NP-hard graph partitioning problems, we can compute a good quality

cut-sparsifier as a preprocessing step. We can run an off-the-shelf approximation algorithm

directly onH as a proxy for running onG in order to save both in both time and the approx-

imation guarantee (by replacing a dependence on the size of G with a slightly worse factor

that only depends on the size of H). Yet if we require time exponential in k to compute a

good quality cut-sparsifier, we can solve a graph partitioning problem involving the termi-

nals directly by brute force in G simply by enumerating the minimum cut in G separating

A from K − A for all A ⊂ K.

Our goal will be to give an algorithm for computing a good quality vertex sparsifier that

runs in time polynomial in both n and k. Our constructive results will be predicated on the

existential result – once we are guaranteed that the polytope is non-empty, we can design

a separation oracle for this polytope and use the Ellipsoid algorithm to find a point inside

this polytope in polynomial time – even though there are exponentially many constraints.

Already, we see that if we were to run the Ellipsoid algorithm (assuming a polyno-

mial time separation oracle for the Type 1.c and Type 2.c inequalities, we would obtain

a cut-sparsifier of good quality but this cut-sparsifier would not necessarily be realizable

as a convex combination of 0-extensions, even though we know that good cut-sparsifiers

realizable through 0-extensions exist.

Using this observation, there is in fact an even tighter polytope contained inside the

above polytope, which the existential results in Chapter 3 also imply is non-empty.

Definition 21. Z = { ~H ∈ R(k2)| ~H =
∑

f γ(f)~Gf}γ

Consider the polytope:

65

Type Z: ~X ∈ Z

Type 2.c:
∑

(a,b)∈δK(A) xa,b ≤ αhK(A) for all A ⊂ K

0 ≤ xa,b for all a, b ∈ K

This polytope is contained inside the polytope formed using Type 1.c and Type 2.c

inequalities because any graph representable as a convex combination of 0-extensions is

necessarily a cut-sparsifier too. However, even this tighter polytope is non-empty for α =

O(log k
log log k

) because the existential results in Chapter 3 not only state that O(log k
log log k

)-quality

cut-sparsifiers exist, but that furthermore these cut-sparsifiers are realizable as a convex

combination of 0-extensions.

We note that the 0-extension problem [39] is NP-hard, and hence we cannot hope to

optimize a linear function over the polytope Z in polynomial time assuming P 6= NP :

we could encode an arbitrary metric D on K into a linear function so that the minimum

value of this linear function on the domain Z is precisely the value of the minimum cost

0-extension for the 0-extension problem defined by G, K and D.

Next, we give equivalent sets of linear inequalities for each of the remaining predicates

(the second and fourth predicate above). Recall that in Section 3.2.3, we defined the set PG

as the set of all demand vectors routable in G with congestion at most one. Let V (PG) be

the vertices of this polytope, which using Claim 8 is finite.

Definition 22. ΠG = ∪~r∈V (PG){all semi-metrics d s.t.
∑

a,b∈K ~ra,bd(a, b) = 1}

Recall that in Section 3.2.3, we also defined DG as the set of semi-metrics that are real-

izable in G using total distance × capacity units at most one. Then consider the polytope:

Type 1.f:
∑

a,b∈K xa,bd(a, b) ≥ 1 for all d ∈ ΠG

Type 2.f:
∑

a,b∈K xa,bd(a, b) ≤ α for all ~d ∈ DG

0 ≤ xa,b for all a, b ∈ K

Lemma 5. H is a flow-sparsifier if and only if all Type 1.f inequalities are satisfied.

Proof: Suppose there is some d ∈ ΠG for which
∑

a,b∈K xa,bd(a, b) < 1. Hence there is

some ~r ∈ V (PG) for which
∑

a,b∈K ~ra,bd(a, b) = 1, and so using weak duality the demand

66

vector ~r is not routable with congestion one inH . However ~r is in PG and hence is routable

with congestion one in G, and so H is not a flow-sparsifier.

To prove the reverse direction, suppose that H is not a flow-sparsifier. Then there is

some ~r ∈ PG that is not routable with congestion one in H . If ~r is not on the boundary of

PG, we can scale up ~r so that it is - i.e. ~r ∈ SG, and this maintains the invariant that ~r is not

routable in H with congestion one. We can apply strong duality, and there must be some

semi-metric d such that the ratio ∑
a,b∈K ~ra,bd(a, b)∑
a,b∈K xa,bd(a, b)

> 1

Since ~r ∈ SG, we can write ~r as a convex combination of points in V (PG). This implies

that there is some ~s ∈ V (PG) for which the ratio is also strictly larger than one:∑
a,b∈K ~sa,bd(a, b)∑
a,b∈K xa,bd(a, b)

> 1

So we can scale the semi-metric d to find a violated Type 1.f inequality.

Claim 12. H has quality at most α as a flow-sparsifier if and only if all Type 2.f inequalities

are satisfied.

Proof: This follows immediately using strong duality and Lemma 1.

We will at times mix and match these various families of inequalities to create different

polytopes – while all these polytopes that we create will be non-empty using the existential

results on vertex sparsifiers, some of these families of inequalities will be easier to enforce

than others. We have already seen hints of this - the set Z is NP-hard to optimize over,

and actually it is even NP-hard to implement a separation oracle for the set of Type 2.c

inequalities as these inequalities are equivalent to the generalized sparsest cut problem

(where ~X are interpreted as demands to be routed in G).

67

4.1.2 Lifting (via an Earth-Mover Relaxation)

Here we give an algorithm that runs in time polynomial in n and k that returns a flow-

sparsifier whose quality is at least as good as the quality of the best flow-sparsifier that can

be achieved through a distribution on 0-extensions. The results in this section appear in

[20].

Our algorithm makes novel use of Earth-mover constraints. Consider the polytope Z

defined in Definition 21. Optimizing an arbitrary linear function over this polytope is NP-

hard. Given this observation, it is doubtful that we can efficiently implement a separation

oracle for the polytope:

Type Z: ~X ∈ Z

Type 2.f:
∑

a,b∈K xa,bd(a, b) ≤ α for all ~d ∈ DG

0 ≤ xa,b for all a, b ∈ K

Similarly, consider the polytope:

Type 1.f:
∑

a,b∈K xa,bd(a, b) ≥ 1 for all d ∈ ΠG

Type 2.f:
∑

a,b∈K xa,bd(a, b) ≤ α for all ~d ∈ DG

0 ≤ xa,b for all a, b ∈ K

While we can implement a separation oracle for the Type 2.f inequalities using min-

imum congestion routing, we do not know of an efficient separation oracle for the Type

1.f inequalities. We will return to the question of designing an efficient separation oracle

for the Type 1.f inequalities in Section 4.1.3 where we will give an efficient approximate

separation oracle based on oblivious routing.

Our approach is to define a set Z ′ ⊃ Z for which we can give an efficient separation

oracle. Furthermore, any point in Z ′ will satisfy the Type 1.f inequalities. This set Z ′ is

based on the Earth-mover relaxation for the 0-extension problem – see [21] and [5].

Definition 23. Let Z ′ = { ~H| for all a, b ∈ K, cH(a, b) =
∑

u,v∈V c(u, v)pu,va,b} where p is

68

required to satisfy the conditions:

pu,va,b = pv,ua,b for all u, v ∈ V, u 6= v, and a, b ∈ K∑
b∈K

pu,va,b = P u
a for all u, v ∈ V, u 6= v, and a, b ∈ K∑

a∈K

P u
a = 1 for all u ∈ V

P a
a = 1 for all a ∈ K

pu,va,b ≥ 0 for all u, v ∈ V, u 6= v, and a, b ∈ K

We first note that Z ′ is a relaxation for Z:

Claim 13. Z ′ ⊃ Z

Proof: The vertices of Z are {~Gf}f where f ranges over all 0-extensions. Consider an ar-

bitrary vertex ~Gf . We can set P u
a = 1f(u)=a and similarly we can set pu,va,b = 1f(u)=a1f(v)=b.

These values satisfy the conditions in Definition 23. We can check that the equality cf (a, b) =∑
u,v∈V c(u, v)pu,va,b holds, where cf is the capacity function of Gf . Hence ~Gf ∈ Z ′ and

since this is true for each vertex of Z, we conclude that Z ′ ⊃ Z.

The more surprising property of Z ′ that our algorithm will use is that the constraints of

Z ′ enforce the Type 1.f inequalities.

Lemma 6. Let ~X ∈ Z ′. Then ~X satisfies the Type 1.f inequalities.

Proof: Consider an arbitrary demand vector ~r that can be routed with congestion at most

one in G - i.e. ~r ∈ PG. Let δ′ be any semi-metric on K. Then

∑
a,b∈K

δ′(a, b)cH(a, b) =
∑
a,b∈K

δ′(a, b)
∑
u,v∈V

c(u, v)pu,va,b =
∑
u,v∈V

c(u, v)
∑

a,b∈K,a6=b

pu,va,b δ
′(a, b)

≥
∑
u,v∈V

c(u, v)EMDδ′(p
u, pv)

where EMDδ′(p
u, pv) is the Earth-mover distance between the distributions pu and pv

under the semi-metric δ′ - i.e. the minimum cost under δ′ to move the distribution pu to pv.

69

Let δ(u, v) = EMDδ′(p
u, pv). Clearly δ is a semi-metric on V . Since ~r is routable in

G with congestion at most one, using weak duality we obtain that

∑
u,v∈V

c(u, v)δ(u, v) ≥
∑
a,b∈K

~ra,bδ(a, b)

which is in fact true (for any flow ~r ∈ PG) for any semi-metric δ on V . We observe that

δ(a, b) = δ′(a, b) for all a, b ∈ K and combining these equations we obtain that

∑
a,b∈K

δ′(a, b)cH(a, b) ≥
∑
a,b∈K

~ra,bδ
′(a, b)

and this is true for any semi-metric δ′ on K.

Hence, by strong duality, ~r must also be routable in G with congestion at most one.

Recall Definition 9 in which we defined the contraction quality αc0(G,K) of G,K –

which is the quality of the best cut-sparsifier that can be achieved through a convex combi-

nation of 0-extensions. We can analogously define the quantity αf0(G,K) as the quality of

the best flow-sparsifier that can be achieved through a convex combination of 0-extensions.

Theorem 18. There is an algorithm that runs in time polynomial in n and k that returns

a flow-sparsifier whose quality is at most αf0(G,K), however this flow-sparsifier is not

necessarily realizable as a convex combination of 0-extensions.

Proof: Consider the polytope

Type Z’: ~X ∈ Z ′

Type 2.f:
∑

a,b∈K xa,bd(a, b) ≤ α for all ~d ∈ DG

0 ≤ xa,b for all a, b ∈ K

We can implement an efficient separation algorithm for the Type Z’ inequalities using

linear programming (and because the number of Earth-mover constraints in the definition

of the set Z ′ is polynomial in n and k). We can also implement an efficient separation

algorithm for the Type 2.f inequalities using minimum congestion routing. Hence we can

run the Ellipsoid algorithm and find a point ~X in this polytope, if one exists. Let α∗ be

70

the minimum α for which the above polytope is non-empty – using binary search, we can

determine this value.

Using Claim 13, the polytope

Type Z’: ~X ∈ Z ′

Type 2.f:
∑

a,b∈K xa,bd(a, b) ≤ αf0(G,K) for all ~d ∈ DG

0 ≤ xa,b for all a, b ∈ K

is non-empty. Hence α∗ ≤ αf0(G,K). Let ~H be the point in R(k2) found for the value

α = α∗. Using Lemma 6, ~H is a flow-sparsifier and because ~H satisfies the Type 2.f

inequalities, ~H has quality at most α∗ ≤ αf0(G,K).

4.1.3 The Max-Min Congestion Problem

Here we give an efficient O(log k)-approximate separation oracle for the Type 1.f in-

equalities. The results in this section appear in [49]. If we could efficiently implement an

exact separation oracle for these inequalities, we could efficiently compute a flow-sparsifier

whose quality matches the quality of the best flow-sparsifier for the givenG andK. In com-

parison, the algorithm in Section 4.1.2 computes a flow-sparsifier whose quality is at least

as good as the quality of the best flow-sparsifier that can be achieved through 0-extensions.

Let us introduce the max-min congestion problem, which is the natural optimization

problem associated with finding a violated Type 1.f if such an inequality exists.

Definition 24. The input to the max-min congestion problem is a capacitated graph G =

(V,E), a set of terminals K ⊂ V and a capacitated graph on just the terminals H =

(K,EH). The goal is to compute a non-negative vector (i.e. a demand vector) ~r ∈ R(k2)

that maximizes the ratio
congH(~r)

congG(~r)

Notice that the problem of determining if H is a flow-sparsifier (i.e. if H satisfies all

Type 1.f inequalities) is equivalent to the problem of whether or not the optimal value to

the max-min congestion problem is at most one. We also observe that if K = V , then

71

this optimization problem is easy because ~G will be the demand vector that maximizes

the above ratio – in much the same manner that there is a single demand vector ~H whose

congestion we need to compute to determine the quality of H as a flow-sparsifier (see

Lemma 1). The challenging aspect of this optimization problem is that if K 6= V , there is

no longer a notion of a ”hardest” flow routable in G (with congestion at most one) to route

in H .

We will give anO(log k)-approximation algorithm for the max-min congestion problem

based on a novel use of oblivious routing. Roughly, the strategy is to compute a good

oblivious routing scheme in H and then to compute a demand vector ~r that is routable

in G (with congestion at most one) that maximizes the congestion of our fixed oblivious

routing scheme in G. We can accomplish this goal by writing a separate linear program for

each edge (a, b) in H and attempting to find an ~r that is routable in G that maximizes the

congestion of the oblivious routing scheme on e. We can always find an oblivious routing

scheme in H that is O(log k)-competitive (since H has only k nodes). Hence if we find a

vector ~r that is routable in G but which results in congestion C when using the oblivious

routing scheme for H , this vector ~r must also have congH(~r) at least C
O(log k)

in H .

As outlined above, our first step is to compute an O(log k)-competitive oblivious rout-

ing scheme f for H . Such an oblivious routing scheme is guaranteed to exist, and can

be found in polynomial time using the results due to Räcke [54] because the graph H has

only k nodes. For each a, b ∈ K, f specifies a unit flow from a to b in G′ and we will

let fa,b : EH → R+ be the corresponding assignment of flows to edges for this unit flow.

Since f is O(log k)-competitive, f has the property that for any demand vector ~r, the con-

gestion that results from routing according to f is within an O(log k) factor of the optimal

congestion for routing ~r in H .

For any edge (a, b) ∈ EH , we consider the following linear program LP (a, b):

maxCa,b =
∑
s,t ~rs,tf

s,t(a,b)

cH(a,b)

s.t.

~r ∈ PG

Note the set PG is a polytope, and the condition ~r ∈ PG just enforces that the demand

72

vector ~r is routable in G withe congestion at most one. In fact, we could write out the

condition ~r ∈ PG explicitly using a polynomial sized set of constraints that enforce that ~r

is realizable by a flow (that satisfies the standard conservation constraints) and for which the

total flow on any edge inG does not exceed the capacity of this edge. Regardless, the linear

program above can be solved efficiently (because the terms f s,t(a, b) are not variables, but

are specified by a fixed, competitive oblivious routing scheme in H).

The interpretation of this linear program is that it finds a demand vector that can be

routed with congestion at most one in G, and among all such flows maximizes the con-

gestion of the oblivious routing scheme on the edge (a, b) ∈ EH . We will solve the above

linear program for all edges in H and output the demand vector ~r∗ that achieves the max-

imum value Ca,b. Let (a, b) be the edge in H for which we obtain the maximum value to

the above linear program.

Lemma 7. congH(~r∗) ≥ Ca,b
O(log k)

Proof: The congestion of the oblivious routing scheme for the demand vector ~r∗ is at least

Ca,b, since the oblivious routing scheme sends a total flow of Ca,bcH(a, b) on the edge

(a, b) in H when routing the demand vector ~r∗. Since the oblivious routing scheme f is

O(log k)-competitive, congH(~r∗) ≥ Ca,b
O(log k)

.

Let OPT be the optimal value of the max-min congestion problem.

Lemma 8. Ca,b ≥ OPT

Proof: Let ~d be the optimal demand vector, for the max-min congestion problem. We can

assume ~d ∈ PG by scaling this vector, and then congH(~r) = OPT . Consider the point ~d

which is feasible in each linear program (one for each edge in H) above. The oblivious

routing scheme specifies a routing of ~d in H . So there must be some edge (a′, b′) in H for

which the total flow (that results from routing ~d according to the oblivious routing scheme

f) is at least congH(~d)cH(a′, b′) = OPTcH(a′, b′). Hence the optimal value Ca′,b′ for the

linear program LP (a′, b′) is at least OPT .

These lemmas immediately imply

73

Theorem 19. There is an O(log k)-approximation algorithm for the max-min congestion

problem that runs in time polynomial in n and k.

An interesting open question is whether the max-min congestion problem is even hard:

Open Question 1. Is there an efficient algorithm for the max-min congestion problem?

As we observed earlier, a positive answer to this question would immediately yield an

efficient algorithm for computing the best quality flow-sparsifier for any given G and K.

4.2 Universal Rounding Algorithms

A good flow-sparsifier approximately preserves the congestion of every demand vector.

Using the definition of the unit congestion polytope (see Definition 13), we can interpret

an α-quality flow-sparsifier as a graph H = (K,EH) for which

PG ⊂ PH ⊂ αPG

Here we observe that many linear programming relaxations are based on multicommod-

ity flows in the sense that the value of a relaxation (for, say, a graph partitioning problem) is

only a function of the polytope PG. Hence, a good flow-sparsifier approximately preserves

the value of these many types of linear programming relaxations. For example, the linear

programming relaxations for generalized sparsest cut, multi-cut and even the requirement

cut problem each depend only on properties of PG. In fact, in a technical sense, a good

flow-sparsifier also approximately preserves the integrality gap of any linear programming

relaxation that only depends upon PG.

Here we impose additional structure on a good vertex sparsifier – we require a flow-

sparsifier to not only have good quality, but also be decomposable into a convex combina-

tion of ”contraction-based” trees. We give an algorithm for computing an O(log k)-quality

flow-sparsifier that is explicitly represented as a convex combination of ”contraction-based”

trees. This allows us to algorithmically reduce the input graph to a tree, while still approx-

imately preserving the integrality gap of any relaxation (that depends only on PG) within

74

an O(log k) factor. Hence we can use any rounding algorithm for the relaxation on trees to

get a rounding algorithm for general graphs.

This immediately implies a master theorem for graph partitioning problems - as long as

the integrality gap of linear programming relaxation (that depends only on PG) is bounded

on trees, then the integrality gap is at most an O(log k) factor larger for general graphs.

Additionally, if there is an efficient rounding algorithm for the relaxation when restricted to

trees, then there is also an efficient rounding algorithm for general graphs whose approxi-

mation ratio that is at most anO(log k) factor larger. This result implies optimal bounds for

many well studied graph partitioning problems (such as generalized sparsest cut, multi-cut

and the requirement cut problem) as a special case, and even yields optimal bounds for

more exotic problems that had not been studied before.

The results in this section appear in [20] and a similar approach is given in [25].

4.2.1 0-Decompositions

The notion of a 0-extension was introduced by Karzanov [39], and we made extensive use

of this concept in Section 3. Here we introduce a related concept, that of a 0-decomposition.

In a technical sense, the aim of this definition is to combine the useful properties of a 0-

extension function and a decomposition tree [54].

Recall that given a 0-extension f , we can define a graph Gf on just the terminal set K

that results from collapsing all node mapped to the same terminal. Again, recall that we let

cf denote the capacity function of this resulting graph.

Definition 25. Given a tree T onK, and a 0-extension f , we can generate a 0-decomposition

Gf,T = (K,Ef,T) as follows:

1. The only edges present in Gf,T will be those in T , and for any edge (a, b) ∈ E(T),

let Ta, Tb be the subtrees containing a, b respectively that result from deleting (a, b)

from T .

75

2. cf,T (a, b) (i.e. the capacity assigned to (a, b) in Gf,T is defined as:

cf,T (a, b) =
∑

u,v∈K and u∈Ta,v∈Tb

cf (u, v)

Hence a 0-decomposition is specified by a 0-extension f and a tree T on K. We first

prove that any 0-decomposition is a flow-sparsifier. The proof of this claim is a generaliza-

tion of the one given in Claim 7.

Claim 14. Gf,T is a flow-sparsifier

Proof: We can think of forming a 0-decomposition through a series of operations that either

contract an edge or re-route an edge (a, b) by deleting the capacity c(a, b) associated with

the edge, and choosing a path p = a, p1, p2, ...ps, b and incrementing the capacity of each

edge in the path by c(a, b). Call this latter operation a re-routing. The proof in Claim 7

demonstrates that a contraction operation cannot make the congestion of a demand vector

~r increase. A re-routing operation also cannot make the congestion of ~r increase: consider

demand vector ~r. We can assume, after scaling, that ~r has congG(~r) = 1. Consider the

graph G′ that results from re-routing the edge (a, b) along the path p = a, p1, p2, ...ps, b.

Given the minimum congestion routing of ~r in G, we can divert all flow through (a, b)

to the path p and the resulting routing will still be a routing of ~r (in G′) and will have

congestion at most one. Hence congG′(~r) ≤ congG(~r) and we can apply contraction and

re-routing operations inductively to prove that Gf,T is a flow-sparsifier.

Next we prove the main result in this section: we give an algorithm that can construct

an O(log k)-quality flow-sparsifier and a representation of this flow-sparsifier as a convex

combination of 0-decompositions. This result is a generalization of the celebrated result of

Räcke [54] in the sense that not only is the graph that we compute a convex combination of

trees, but this graph also contains no non-terminals (and achieves an approximation ratio

that is independent of the size of the original graph G).

Theorem 20. There is an algorithm to construct a distribution γ on 0-decompositions such

that H =
∑

f,T γ(f, T)Gf,T is an O(log k)-quality flow-sparsifier, and this algorithm runs

in time polynomial in n and k.

76

To prove this theorem, we can immediately use the machinery in Section 3.2.3, setting

H′ = {Gf,T}f,T . All that remains is to bound the integrality gap of H′. Roughly, we need

to show that for any metric d ∈ DG - i.e. is realizable in G with total capacity × distance

units at most one - that there is a f, T such that
∑

a,b∈K d(a, b)cf,T (a, b) ≤ O(log k) where

cf,T is the capacity function of Gf,T .

We can prove this by a randomized rounding procedure that is almost the same as the

rounding procedure in [27]: We can scale up the distances in d to obtain a metric ∆ in

which the distances are all at least one and we assume 2δ is an upper bound on the diameter

of the metric space. Then we need to first choose a 0-extension f for which the cost against

∆ is O(log k) times the cost of realizing ∆ in G. We do this as follows:

Choose a random permutation π(1), π(2), ..., π(k) of K

Choose β uniformly at random from [1, 2]

Dδ ← {V }, i← δ − 1

while Di+1 has a cluster which contains more than one terminal do

βi ← 2i−1β

for ` = 1 to k do

for every cluster S in Di+1 do

Create a new cluster of all unassigned vertices in S closer than βi to π(`)

end for

end for

i← i− 1

end while

Then, exactly as in [27], we can construct a decomposition tree from the rounding

procedure. The root node is V corresponding to the partition Dδ, and the children of this

node are all sets in the partition Dδ−1. Each successive Di is a refinement of Di+1, so

each set of Di is made to be a child of the corresponding set in Di+1 that contains it. At

each level i of this tree, the distance to the layer above is 2i, and one can verify that this

tree-metric associated with the decomposition tree dominates the original metric space ∆

restricted to the set K. Note that the tree metric does not dominate ∆ on V , because there

77

are some nodes which are mapped to the same leaf node in this tree, and correspondingly

have distance 0.

If we consider any edge (u, v), we can bound the expected distance in this tree metric

from the leaf node containing u to the leaf-node containing v. In fact, this expected distance

is only a function of the metric space ∆ restricted toK∪{u, v}. Accordingly, for any (u, v),

we can regard the metric space that generates the tree-metric as a metric space on just k+2

points.

Formally, the rounding procedure in [27] is:

Choose a random permutation π(1), π(2), ..., π(n) of V

Choose β uniformly at random from [1, 2]

Dδ ← {V }, i← δ − 1

while Di+1 has a cluster that is not a singleton do

βi ← 2i−1β

for ` = 1 to n do

for every cluster S in Di+1 do

Create a new cluster of all unassigned vertices in S closer than βi to π(`)

end for

end for

i← i− 1

end while

Formally, [27] proves a stronger statement than just that the expected distance (accord-

ing to the tree-metric generated from the above rounding procedure) is O(log n) times the

original distance. We will say that u, v are split at level i if these two nodes are contained

in different sets of Di. Let Xi be the indicator variable for this event.

Then the distance in the tree-metric ∆T generated from the above rounding procedure

is ∆T (u, v) =
∑

i 2
i+1Xi. In fact, [27] proves the stronger statement that this is true even if

u, v are not in the metric space (i.e. u, v /∈ V) but are always grouped in the cluster which

they would be if they were in fact in the set V (provided of course that they can be grouped

in such a cluster). More formally, we set V ′ = V ∪ {u, v} and if the step ”Create a new

78

cluster of all unassigned vertices in S closer than βi to π(`)” is replaced with ”Create a

new cluster of all unassigned vertices in V’ in S closer than βi to π(`)”, then [27] actually

proves in this more general context that

∑
i

2i+1Xi ≤ O(log n)∆(u, v)

If we input the metric space ∆ restricted to K into the above rounding procedure (but

at each clustering stage we consider all of V) we get exactly our rounding procedure. So

the main theorem in [27] (or rather our restatement of it) is

(If ∆T is the tree-metric generated from the above rounding procedure)

Theorem 21. [27] For all u, v, E[∆T (u, v)] ≤ O(log k)∆(u, v).

At the end of the rounding procedure, we have a tree in which each leaf corresponds

to a subset of V that contains at most 1 terminal. We are given a tree-metric ∆T on

V associated with the output of the algorithm, and this tree-metric has the property that∑
(u,v)∈E c(u, v)∆T (u, v) ≤ O(log k).

We would like to construct a tree T ′ from T which has only leafs which contain exactly

one terminal. We first state a simple claim that will be instructive in order to do this:

Claim 15. Given a tree metric ∆T on a tree T on K,
∑

a,b∈K ∆T (a, b)cf,T (a, b) =∑
a,b∈K ∆T (a, b)cf (a, b).

Proof: The graph Gf,T can be obtained from Gf by iteratively re-routing some edge

(a, b) ∈ Ef along the path connecting a and b in T and adding cf (a, b) capacity to each

edge on this path, and finally deleting the edge (a, b). The original cost of this edge is

c(a, b)∆T (a, b), and if a = p1, p2, ..., pr = b is the path connecting a and b in T , the cost

after performing this operation is c(a, b)
∑r−1

i=1 ∆T (pi, pi+1) = c(a, b)∆T (a, b) because ∆T

is a tree-metric.

We can think of each edge (u, v) as being routed between the deepest nodes in the tree

that contain u and v respectively, and the edge pays c(u, v) times the distance according to

the tree-metric on this path. Then we can perform the following procedure: each time we

79

find a node in the tree which has only leaf nodes as children and none of these leaf nodes

contains a terminal, we can delete these leaf nodes. This cannot increase the cost of the

edges against the tree-metric because every edge (which we regard as routed in the tree)

is routed on the same, or a shorter path. After this procedure is done, every leaf node that

doesn’t contain a terminal contains a parent p that has a terminal node a. Suppose that the

deepest node in the tree that contains a is c We can take this leaf node, and delete it, and

place all nodes in the tree-node c. This procedure only affects the cost of edges with one

endpoint in the leaf node that we deleted, and at most doubles the cost paid by the edge

because distances in the tree are geometrically decreasing. So if we iteratively perform the

above steps, the total cost after performing these operations is at most 4 times the original

cost.

And it is easy to see that this results in a natural 0-extension in which each node u is

mapped to the terminal corresponding to the deepest node that u is contained in.

Each edge pays a cost proportional to a tree-metric distance between the endpoints

of the edge. So we know that
∑

a,b∈K ∆T (a, b)cf,T (a, b) = O(log k) because this cost

increased by at most a factor of 4 from iteratively performing the above steps. Yet using

the Claim 15, we get a 0-extension f and a tree T such that
∑

a,b∈K ∆T (a, b)cf,T (a, b) =

O(log k) and because ∆T dominates ∆ when restricted to K, this implies that

∑
a,b∈K

∆(a, b)cf,T (a, b) ≤
∑
a,b∈K

∆T (a, b)cf,T (a, b) = O(log k)

and this implies an O(log k) bound on the integrality gap ofH′ = {Gf,T}f,T .

We can immediately apply the results in Section 3.2.4 and this implies the main theorem

(stated above) in this section - that there is an efficient algorithm for computing anO(log k)-

quality flow-sparsifier that can be realized as a convex combination of contraction-based

trees.

4.2.2 Applications

Recall the definition of a fractional graph partitioning problem that we gave in Section 2.4:

We call an optimization problem D a fractional graph partitioning problem if it can be

80

written as (for some monotone increasing function f):

min
∑

(u,v)∈E c(u, v)d(u, v)

s.t.

d : V × V → <+ is a semi-metric

f(d
∣∣∣
K

) ≥ 1

We also gave a number of examples of NP-hard graph partitioning problems for which

known linear programming relaxations fit into the above framework. Here we will demon-

strate a universal rounding algorithm (that succeeds for any fractional graph partitioning

problem) and reduces the input graph to a tree at the cost of an O(log k)-factor.

We will let D(G) denote the optimal value to the above linear program – note that this

quantity also depends on the choice of K and the function f . The notion of an ”integral”

solution corresponds to some restriction on the set of admissible metrics d. The above

linear program is a relaxation in that this restriction is removed. We let ID(G) denote the

optimal solution, when this restriction is enforced:

min
∑

(u,v)∈E c(u, v)d(u, v)

s.t.

d : V × V → <+ is a semi-metric

d is ”integral”

f(d
∣∣∣
K

) ≥ 1

Recall that an ”integral” solution will not necessarily coincide with the set of metric

spaces that have only integer distances, but could alternatively be some other condition

(as long as this condition is only a function of d restricted to K) – for example, the set of

”integral” solutions could be the set of all metrics that when restricted toK are cut-metrics.

Our first step is to prove that graph partitioning ”costs more” on a 0-decomposition

Gf,T than on the original graph G.

Lemma 9. For any 0-decomposition Gf,T , we have that D(G) ≤ D(Gf,T) and ID(G) ≤

ID(Gf,T).

81

Roughly, this lemma will follow because Gf,T is a flow-sparsifier and hence makes

routing problems easier and partitioning problems harder.

Proof: As in the proof of Claim 14, we can think of forming a 0-decomposition through

a series of operations that either contract an edge or re-route an edge (a, b) by deleting the

capacity c(a, b) associated with the edge, and choosing a path p = a, p1, p2, ...ps, b and

incrementing the capacity of each edge in the path by c(a, b).

Consider first the operation of contracting an edge e in G to form G′. We can alterna-

tively think of this operation as setting the capacity of e to be infinite. Then for any metric

d (integral or otherwise) for which f(d
∣∣∣
K

) ≥ 1 the quantity
∑

(u,v)∈E′ c
′(u, v)d(u, v) is at

least as large as
∑

(u,v)∈E c(u, v)d(u, v) where E ′ and c′ denote the edge set and capacity

function for the graph G′ respectively. Hence the contracting an edge cannot decrease the

value of the optimal solution to either the graph partitioning problem or the relaxation.

Similarly, the operation of re-routing an edge e along a path p does not change the set of

metrics d for which f(d
∣∣∣
K

) ≥ 1. And if c(e) is the capacity of edge e, the edge contributes

c(e)d(e) to
∑

(u,v)∈E c(u, v)d(u, v) before re-routing and contributes c(e)
∑

e′∈P d(e′) ≥

c(e)d(e) after re-routing (where the last inequality follows from the condition that d be a

metric).

Hence the lemma follows by inductively applying contraction and re-routing operations

to form the 0-decomposition Gf,T .

Lemma 10. Let H =
∑

f,T γ(f, T)Gf,T be an α-quality flow-sparsifier. Then D(Gf,T) ≤

αD(G).

Proof: Let d be a metric on V such that
∑

(u,v) c(u, v)d(u, v) = D(G) and f(d
∣∣∣
K

) ≥ 1.

Since H has quality α as a flow-sparsifier, there is a routing of H in G for which the

congestion on any edge is at most α. Since H =
∑

f,T γ(f, T)Gf,T we can regard this

routing of H in G as a simultaneous routing of each capacitated γ(f, T)Gf,T in G.

For each f, T in the support of γ, we will construct a semi-metric df,T that dominates

d on K and hence satisfies the condition f(df,T

∣∣∣
K

) ≥ 1, and yet if we sample a f, T pair

according to γ, the expected value of
∑

a,b∈K cf,T (a, b)df,T (a, b) will be at most αD(G).

82

So when constructing df,T , initialize all distances to zero. df,T will be a shortest path

metric onG restricted toK. Each edge (a, b) ∈ Ef,T is routed to some distribution on paths

connecting a and b in G. A total of γ(f, T)cf,T (a, b) flow is routed on some distribution

on paths, and consider a path p that carries C(p) total flow from a to b in the routing of

γ(f, T)Gf,T . If the total distance along this path is d(p), we increment the distance df,T on

the edge (a, b) in Gf,T by d(p)C(p)
γ(f,T)cf,T (a,b)

, and we do this for all such paths. We do this also

for each (a, b) in Gf,T .

The distance function df,T dominates d when both metrics are restricted to K, because

the distance that we allocate to the edge (a, b) in Gf,T is a convex combination of the

distances along paths connecting a and b in G, each of which is at least d(a, b). Hence

df,T satisfies the condition f(df,T

∣∣∣
K

) ≥ 1. We can also compute the expected value of∑
a,b∈K cf,T (a, b)df,T (a, b) when we sample a f, T pair according to γ:

∑
f,T

γ(f, T)
∑

(a,b)∈Ef,T

cf,T (a, b)df,T (a, b) ≤ α
∑

(a,b)∈E

c(a, b)d(a, b) = αD(G)

Hence there is some f, T for which

∑
(a,b)∈Ef,T

cf,T (a, b)df,T (a, b) ≤ αD(G)

and yet f(df,T

∣∣∣
K

) ≥ 1.

We can now prove our main theorem in this section:

Theorem 22. Given a polynomial time rounding algorithm for the semi-metric relaxation

on trees that achieves an approximation ratio of C, there is a polynomial time rounding

algorithm for the semi-metric relaxation on general graphs that achieves an approximation

ratio of O(C log k).

Proof: Given G and K, we can use Theorem 20 to construct an O(log k)-quality flow spar-

sifier H =
∑

f,T γ(f, T)Gf,T that can be realized as a convex combination of contraction-

based trees in time polynomial in n and k. We can compute the value of the semi-metric

83

relaxation for each f, T and select a pair f, T for which D(Gf,T) ≤ O(log k)D(G) – such

a pair is guaranteed to exist using Lemma 10.

Gf,t is a tree, and hence we can apply the given rounding algorithm and obtain an ”inte-

gral” solution d∗ for which
∑

(a,b)∈Ef,T cf,T (a, b)d∗(a, b) ≤ CO(log k)D(G) and f(d∗
∣∣∣
K

) ≥

1. Recall that the condition that d∗ be ”integral” is only a function of d∗ restricted to K. In

Gf,T each non-terminal u is mapped to a terminal f(u). We can extend d∗ to V such that

d(u, f(u)) = 0 and this extension is still ”integral”. Then

∑
u,v

c(u, v)d∗(u, v) =
∑
a,b∈K

cf (a, b)d
∗(a, b) ≤

∑
(a,b)∈Ef,T

cf,T (a, b)d∗(a, b)

where cf is the capacity function of the 0-extension Gf . Then the last inequality follows

because Gf,T can be obtained from Gf by re-routing edges, and each such operation can

only increase the total sum of distance × capacity units. Hence d∗ is an ”integral” solution

that satisfies
∑

u,v c(u, v)d∗(u, v) ≤ CO(log k)D(G) and f(d∗
∣∣∣
K

) ≥ 1.

This rounding algorithm simultaneously gives optimal rounding algorithms (based on

the standard linear programming relaxations) for both generalized sparsest cut and multicut.

The previous techniques for rounding a fractional solution to generalized sparsest cut [46],

[8] rely on metric embedding results, and the techniques for rounding fractional solutions

to multicut [31] rely on purely combinatorial, region-growing arguments. Yet our rounding

algorithm is based on producing both a combinatorially simple graph and a geometrically

simple class of metrics.

84

Chapter 5

Lower Bounds and Separations

Morally, the results in this thesis are centered around the idea that the structure of near-

optimal solutions is simple for routing and graph partitioning problems. We can find a

near-optimal routing for a demand vector knowing only a good flow-sparsifier H , and a

low-congestion embedding of H into the original graph G

Here we prove lower bounds for vertex sparsification. We can regard these results as

answering the question: What if we consider optimal solutions (or solutions that are within

a constant factor of optimal) – are the solutions still simple? The answer, in this case, is no

– optimal solutions (or solutions within a constant factor of optimal) cannot be represented

concisely on a vertex sparsifier. In some sense, this lower bound reinforces the efficacy

of the methods that we have presented: We are getting something new when considering

near-optimal solutions, because near-optimal solutions are simple in a way that optimal

solutions are not.

Specifically, we prove that in general we cannot hope for a cut-sparsifier whose quality

is better than Ω(log1/4 k). Makarychev and Makarychev concurrently gave a better lower

bound of Ω̃(
√

log k). As flow-sparsification is no easier than cut-sparsification, this imme-

diately implies that in general we cannot hope for a flow-sparsifier whose quality is better

than Ω̃(
√

log k) either.

We also prove a number of asymptotic separations - we give an example in which the

quality of the best cut-sparsifier is asymptotically better than the quality of the best cut-

sparsifier that can be achieved through contractions. To establish this result, we define a

85

cut-sparsifier based on random walks and we use tools from Harmonic analysis to analyze

the quality of this cut-sparsifier. We also give an example in which the quality of the best

flow-sparsifier is asymptotically worse than the quality of the best cut-sparsifier.

5.1 The Best Cut Sparsifier Doesn’t Always Come from

Contractions

Here we give an infinite family of graphs for which the quality of the best cut-sparsifier is

at least Ω(log1/4 k). Our proof is elementary, and is only based on duality and estimates

for binomial coefficients. Additionally, we use this example to demonstrate a separation -

that the best quality cut-sparsifiers do not always come through contractions. In fact, we

demonstrate that the the quality of the best cut-sparsifier is asymptotically better than the

quality of the best cut-sparsifier that can be achieved through 0-extensions. The results in

this section appear in [20].

Let us define the graph G that we will use to obtain these results: Let Y be the hy-

percube of size 2d for d = log k. To generate G from Y : for every node ys ∈ Y (i.e.

s ∈ {0, 1}d), we add a terminal zs and connect the zs to ys using an edge of capacity
√
d.

Additionally we set the capacity of each edge in the hypercube to one.

5.1.1 Lower Bounds

First, we give an Ω(
√
d) integrality gap for the semi-metric relaxation of the 0-extension

problem on this graph, even when the semi-metric (actually on all of V) is `1. Hence this

is a lower bound on the integrality gap of the cut-cut relaxation given in Section 3.1.4 and

immediately implies that any cut-sparsifier that can be realized as a convex combination of

0-extensions has quality at least Ω(
√
d) = Ω(

√
log k). Such a bound is actually implicit in

the work of [38] too.

Consider the distance assignment to the edges: Each edge connecting a terminal to a

node in the hypercube - i.e. an edge of the form (zs, ys) is assigned distance
√
d and every

other edge in the graph is assigned distance 1. Then let σ be the shortest path metric on V

86

given these edge distances.

Recall that given U ⊂ V , ∆U is the corresponding cut metric – see Definition 10.

Claim 16. σ is an `1 semi-metric on V , and in fact there is a weighted combination δ of

cuts such that σ(u, v) =
∑

U δ(U)∆U(u, v) and
∑

U δ(U)h(U) = O(kd)

Proof: We can take δ(U) = 1 for any cut (U, V − U) s.t. U = {zs ∪ ys|si = 1} - i.e. U

is the axis-cut corresponding to the ith bit. We also take δ(U) =
√
d for each U = {zs}.

This set of weights will achieve σ(u, v) =
∑

U δ(U)∆U(u, v), and also there are d axis

cuts each of which has capacity h(U) = k
2

and there are k singleton cuts of weight
√
d and

capacity
√
d so the total cost is O(kd).

Yet if we take D equal to the restriction of σ on K, then the optimal solution to the

0-extension problem defined by G, K and D is at least Ω(kd3/2):

Lemma 11. For any 0-extension f ,
∑

u,v∈V D(f(u), f(v))c(u, v) ≥ Ω(kd3/2)

Proof: Consider any 0-extension f . And we can define the weight of any terminal a as

wtf (a) = |f−1(a)| = |{v|f(v) = a}|. Then
∑

awtf (a) = n because each node in

V is assigned to some terminal. We can define a terminal as heavy with respect to f if

wtf (a) ≥
√
k and light otherwise. Obviously,

∑
awtf (a) =

∑
a s.t. a is lightwtf (a) +∑

a s.t. a is heavywtf (a) so the sum of the sizes of either all heavy terminals or of all light

terminals is at least n
2

= Ω(k).

Suppose that
∑

a s.t. a is lightwtf (a) = Ω(k). For any pair of terminals a, b, D(a, b) ≥
√
d. Also for any light terminal a, f−1(a) − {a} is a subset of the Hypercube of at most
√
k nodes, and the small-set expansion of the Hypercube implies that the number of edges

out of this set is at least Ω(wtf (a) log k) = Ω(wtf (a)d). Each such edge pays at least
√
d

cost, because D(a, b) ≥
√
d for all pairs of terminals. So this implies that the total cost of

the 0-extension f is at least
∑

a s.t. a is light Ω(wtf (a)d3/2).

Suppose that
∑

a s.t. a is heavywtf (a) = Ω(k). Consider any heavy terminal zt, and

consider any ys ∈ f−1(zt) and t 6= s. Then the edge (ys, zs) is capacity
√
d and pays a total

distance of D(zt, zs) ≥ σ(yt, ys). Consider any set U of
√
k nodes in the Hypercube. If we

attempt to pack these nodes so as to minimize
∑

ys∈U σ(ys, yt) for some fixed node yt, then

87

the packing that minimizes the quantity is an appropriately sized Hamming ball centered

at yt. In a Hamming ball centered at the node yt of at least
√
k total nodes, the average

distance from yt is Ω(log k) = Ω(d), and so this implies that
∑

ys∈f−1(zt)
D(zt, zs) ≥∑

ys∈f−1(zt)
D(yt, ys) ≥ Ω(wtf (zt)d). Each such edge has capacity

√
d so the total cost of

the 0-extension f is at least
∑

a s.t. a is heavy Ω(wtf (a)d3/2)

As noted, using the results in Section 3.1.4, this immediately implies that any cut-

sparsifier that can be realized as a convex combination of 0-extensions has quality at least

Ω(
√
d) = Ω(

√
log k).

Next we prove an un-restricted lower bound – that for any cut-sparsifier (even one that

is not necessarily a convex combination of 0-extensions) has quality at least Ω(d1/4) =

Ω(log1/4 k). Note that his lower bound is weaker than the lower bound for contraction-

based cut-sparsifiers, but as well will demonstrate, there is actually a cut-sparsifier that has

quality o(
√

log k). Hence we will prove a separation: cut-sparsification through contraction

can be asymptotically harder than unrestricted cut-sparsification.

The particular example G that we gave above has many symmetries, and we can use

these symmetries to justify considering only symmetric cut-sparsifiers. The fact that these

cut-sparsifiers can be assumed without loss of generality to have nice symmetry properties,

translates to that any such cut-sparsifier H is characterized by a much smaller set of vari-

ables rather than one variable for every pair of terminals. In fact, we will be able to reduce

the number of variables from
(
k
2

)
to log k. This in turn will allow us to consider a much

smaller family of cuts in G in order to derive that the system is infeasible. In fact, we will

only consider sub-cube cuts (cuts in which U = {zs ∪ ys|s = [0, 0, 0,0, ∗, ∗, ..., ∗]}) and

the Hamming ball U = {zs ∪ ys|d(ys, y0) ≤ d
2
}.

Definition 26. The operation Js for some s ∈ {0, 1}d which is defined as Js(yt) =

yt+s mod 2 and Js(zt) = zt+s mod 2. Also let Js(U) = ∪u∈UJs(u).

Definition 27. For any permutation π : [d] → [d], π(s) = [sπ(1), sπ(2), ...sπ(d)]. Then the

operation Jπ for any permutation π is defined at Jπ(yt) = yπ(t) and Tπ(zt) = zπ(t). Also

let Jπ(U) = ∪u∈UTπ(u).

Claim 17. For any subset U ⊂ V and any s ∈ {0, 1}d, h(U) = h(Js(U)).

88

Claim 18. For any subset U ⊂ V and any permutation π : [d]→ [d], h(U) = h(Jπ(U)).

Both of these operations are automorphisms of the capacitated graph G and also send

the set K to K.

Lemma 12. If there is a cut-sparsifier H for G which has quality α, then there is a cut-

sparsifier H ′ which has quality at most α and is invariant under the automorphisms of the

capacitated graph G that send K to K.

Proof: Given the cut-sparsifier H , we can apply an automorphism J to G, and because

h(U) = h(J(U)), this implies that hK(A) = minU s.t. U∩K=A h(J(U)). Also J(U ∩K) =

J(U) ∩ J(K) = J(U) ∩K so we can re-write this last line as

min
U s.t. U∩K=A

h(J(U)) = min
U ′ s.t. J(U ′)∩K=J(A)

h(J(U ′))

And if we set U ′ = J−1(U) then this last line becomes equivalent to

min
U ′ s.t. J(U ′)∩K=J(A)

h(J(U ′)) = min
U s.t. U∩K=J(A)

h(U) = hK(J(A))

So the result is that hK(A) = hK(J(A)) and this implies that if we do not re-label H

according to J , but we do re-label G, then for any subset A, we are checking whether the

minimum cut in G re-labeled according to J , that separates A from K − A is close to the

cut in H that separates A from K −A. The minimum cut in the re-labeled G that separates

A from K − A, is just the minimum cut in G that separates J−1(A) from K − J−1(A)

(because the set J−1(A) is the set that is mapped to A under J). So H is an α-quality

cut-sparsifier for the re-labeled G iff for all A:

hK(A) = hK(J−1(A)) ≤ h′(A) ≤ αhK(J−1(A)) = αhK(A)

which is of course true because H is an α-quality cut-sparsifier for G.

So alternatively, we could have applied the automorphism J−1 to H and not re-labeled

G, and this resulting graphHJ−1 would also be an α-quality cut-sparsifier forG. Also, since

the set of α-quality cut-sparsifiers is convex (as it is defined by a system of inequalities),

89

we can find a cut-sparsifier H ′ that has quality at most α and is a fixed point of the group

of automorphisms, and hence invariant under the automorphisms of G as desired.

Corollary 7. If α is the best quality cut-sparsifier for the above graph G, then there is an

α quality cut-sparsifier H in which the capacity between two terminals zs and zt is only

dependent on the Hamming distance Hamm(s, t).

Proof: Given any quadruple zs, zt and zs′ , zt′ s.t. Hamm(s, t) = Hamm(s′, t′), there is a

concatenation of operations from Js, Jπ that sends s to s′ and t to t′. This concatenation of

operations J is in the group of automorphisms that send K to K, and hence we can assume

that H is invariant under this operation which implies that cH(s, t) = cH(s′, t′).

One can regard any cut-sparsifier (not just ones that result from contractions) as a set

of
(
k
2

)
variables, one for the capacity of each edge in H . Then the constraints that H be

an α-quality cut-sparsifier are just a system of inequalities, one for each subset A ⊂ K

that enforces that the cut in H is at least as large as the minimum cut in G (i.e. h′(A) ≥

hK(A)) and one enforcing that the cut is not too large (i.e. h′(A) ≤ αhK(A)). See also

Section 4.1.1.

Then in general, one can derive lower bounds on the quality of cut-sparsifiers by show-

ing that if α is not large enough, then this system of inequalities is infeasible meaning that

there is not cut-sparsifier achieving quality α. Unlike the above argument, this form of a

lower bound is much stronger and does not assume anything about how the cut-sparsifier is

generated. In fact, this is a canonical approach to giving a lower bound. Applying Farka’s

Lemma: a good quality cut-sparsifier exists if and only if we cannot prove the correspond-

ing system of inequalities is infeasible by adding and subtracting constraints to obtain a

contradiction.

Theorem 23. For α = Ω(log1/4 k), there is no cut-sparsifier H for G which has quality at

most α.

Proof: Assume that there is a cut-sparsifier H ′ of quality at most α. Then using the

above corollary, there is a cut-sparsifier H of quality at most α in which the capacity

90

from a to b is only a function of Hamm(a, b). Then for each i ∈ [d], we can de-

fine a variable wi as the total capacity of edges incident to any terminal of length i. I.e.

wi =
∑

b s.t. Hamm(a,b)=i cH(a, b).

For simplicity, here we will assume that all cuts in the sparsifier H are at most the cost

of the corresponding minimum cut in G and at least 1
α

times the corresponding minimum

cut. This of course is an identical set of constraints that we get from dividing the standard

definition that we use in this paper for α-quality cut-sparsifiers by α.

We need to derive a contradiction from the system of inequalities that characterize the

set of α-quality cut sparsifiers for G. As we noted, we will consider only the sub-cube

cuts (cuts in which U = {zs ∪ ys|s = [0, 0, 0,0, ∗, ∗, ...∗]}) and the Hamming ball

U = {zs ∪ ys|d(ys, y0) ≤ d
2
}, which we refer to as the Majority Cut.

Consider the Majority Cut: There are Θ(k) terminals on each side of the cut, and most

terminals have Hamming weight close to d
2
. In fact, we can sort the terminals by Hamming

weight and each weight level around Hamming weight d
2

has roughly a Θ(1√
d
) fraction of

the terminals. Any terminal of Hamming weight d
2
−
√
i has roughly a constant fraction of

their total capacitywi crossing the cut inH , because choosing a random terminal Hamming

distance i from any such terminal corresponds to flipping i coordinates at random, and

throughout this process there are almost an equal number of 1s and 0s. Hence this process

is well-approximated by a random walk starting at
√
i on the integers, which equally likely

moves forwards and backwards at each step for i total steps, and asking the probability that

the walk ends at a negative integer.

In particular, for any terminal of Hamming weight d
2
− t, the fraction of the capacity

wi that crosses the Majority Cut is O(exp{− t2

i
}). So the total capacity of length i edges

(i.e. edges connecting two terminals at Hamming distance i) cut by the Majority Cut is

O(wi|{zs|Hamm(s, 0) ≥ d
2
−
√
i}|) = O(wi

√
i/d)k because each weight class close to

the boundary of the Majority cut contains roughly a Θ(1√
d
) fraction of the terminals. So

the total capacity of edges crossing the Majority Cut in H is O(k
∑d

i=1wi
√
i/d)

Let A = {zs|d(ys, y0) ≤ d
2
}. The total capacity crossing the minimum cut in G sep-

arating A from K − A is Θ(k
√
d). And because the cuts in H are at least 1

α
times the

corresponding minimum cut in G, this implies
∑d

i=1wi
√
i/d ≥ Ω(

√
d
α

)

91

Next, we consider the set of sub-cube cuts. For j ∈ [d], let Aj = {zs|s1 = 0, s2 =

0, ..sj = 0}. Then the minimum cut inG separatingAj fromK−Aj is Θ(|Aj|min(j,
√
d)),

because each node in the Hypercube which has the first j coordinates as zero has j edges

out of the sub-cube, and when j >
√
d, we would instead choose cutting each terminal

zs ∈ Aj from the graph directly by cutting the edge (ys, zs).

Also, for any terminal in Aj , the fraction of length i edges that cross the cut is approxi-

mately 1−(1− j
d
)i = Θ(min(ij

d
, 1)). So the constraints that each cut inH be at most the cor-

responding minimum cut in G give the inequalities
∑d

i=1 min(ij
d
, 1)wi ≤ O(min(j,

√
d))

We refer to the above constraint as Bj . Multiply each Bj constraint by 1
j3/2

and adding

up the constraints yields a linear combination of the variables wi on the left-hand side. The

coefficient of any wi is
d−1∑
j=1

min(ij
d
, 1)

j3/2
≥

d/i∑
j=1

ij
d

j3/2

And using the Integration Rule this is Ω(
√

i
d
).

This implies that the coefficients of the constraintB resulting from adding up 1
j3/2

times

each Bj for each wi are at least as a constant times the coefficient of wi in the Majority Cut

Inequality. So we get

d−1∑
j=1

1

j3/2
min(j,

√
d) ≥ Ω

(d−1∑
j=1

1

j3/2

d∑
i=1

min(
ij

d
, 1)wi

)
≥ Ω

(d∑
i=1

wi

√
i

d

)
≥ Ω

(√d
α

)

And we can evaluate the constant

d−1∑
j=1

j−3/2 min(j,
√
d) =

√
d∑

j=1

j−1/2 +
√
d

d−1∑
j=
√
d+1

j−3/2

Using the Integration Rule, this evaluates to O(d1/4). This implies O(d1/4) ≥
√
d
α

and in

particular this implies α ≥ Ω(d1/4). So the quality of the best cut-sparsifier forH is at least

Ω(log1/4 k).

92

5.1.2 A Candidate Cut-Sparsifier

Here we give a cut-sparsifier H which we can prove has quality o(
√

log k) for the graph

G, which is asymptotically better than the best cut-sparsifier that can be generated from

contractions.

As we noted, we can assume that the capacity assigned between a pair of terminals in

H , cH(a, b) is only a function of the Hamming distance from a to b. In G, the minimum cut

separating any singleton terminal {zs} from K − {zs} is just the cut that deletes the edge

(zs, ys). So the capacity of this cut is
√
d. We want a good cut-sparsifier to approximately

preserve this cut, so the total capacity incident to any terminal in H will also be
√
d - i.e.

c′({zs}) =
√
d.

We distribute this capacity among the other terminals as follows: We sample t ∼ρ s, and

allocate an infinitesimal fraction of the total weight
√
d to the edge (zs, zt). Equivalently,

the capacity of the edge connecting zs and zt is just Pru∼ρt[u = s]
√
d. We choose ρ =

1 − 1√
d
. This choice of ρ corresponds to flipping each bit in t with probability Θ(1√

d
)

when generating u from t. We prove that the graph H has cuts at most the corresponding

minimum-cut in G.

This cut-sparsifier H has cuts at most the corresponding minimum-cut in G. In fact, a

stronger statement is true: ~H can be routed as a flow in G with congestion O(1). Consider

the following explicit routing scheme for ~H: Route the
√
d total flow in ~H out of zs to the

node ys in G. Now we need to route these flows through the Hypercube in a way that does

not incur too much congestion on any edge. Our routing scheme for routing the edge from

zs to zt in ~H from ys to yt will be symmetric with respect to the edges in the Hypercube:

choose a random permutation of the bits π : [d] → [d], and given u ∼ρ t, fix each bit in

the order defined by π. So consider i1 = π(1). If ti1 6= ui1 , and the flow is currently at the

node x, then flip the ith1 bit of x, and continue for i2 = π(2), i3, ...id = π(d).

Each permutation π defines a routing scheme, and we can average over all permutations

π and this results in a routing scheme that routes ~H in G.

Claim 19. This routing scheme is symmetric with respect to the automorphisms Js and Jπ

of G defined above.

93

Corollary 8. The congestion on any edge in the Hypercube incurred by this routing scheme

is the same.

Lemma 13. The above routing scheme will achieve congestion at most O(1) for routing ~H

in G.

Proof: Since the congestion of any edge in the Hypercube under this routing scheme is the

same, we can calculate the worst case congestion on any edge by calculating the average

congestion. Using a symmetry argument, we can consider any fixed terminal zs and cal-

culate the expected increase in average congestion when sampling a random permutation

π : [d] → [d] and routing all the edges out of zs in H using π. This expected value will

be k times the average congestion, and hence the worst-case congestion of routing ~H in G

according to the above routing scheme.

As we noted above, we can define H equivalently as arising from the random process

of sampling u ∼ρ t, and routing an infinitesimal fraction of the
√
d total capacity out of

zt to zu, and repeating until all of the
√
d capacity is allocated. We can then calculate the

the expected increase in average congestion (under a random permutation π) caused by

routing the edges out of zs as the expected increase in average congestion divided by the

total fraction of the
√
d capacity allocated when we choose the target u from u ∼ρ t. In

particular, if we allocated a ∆ fraction of the
√
d capacity, the expected increase in total

congestion is just the total capacity that we route multiplied by the length of the path. Of

course, the length of this path is just the number of bits in which u and t differ, which in

expectation is Θ(
√
d) by our choice of ρ.

So in this procedure, we allocate ∆
√
d total capacity, and the expected increase in total

congestion is the total capacity routed ∆
√
d times the expected path length Θ(

√
d). We

repeat this procedure 1
∆

times, and so the expected increase in total congestion caused by

routing the edges out of zt in G is Θ(d). If we perform this procedure for each terminal,

the resulting total congestion is Θ(kd), and because there are kd
2

edges in the Hypercube,

the average congestion is Θ(1) which implies that the worst-case congestion on any edge

in the Hypercube is also O(1), as desired. Also, the congestion on any edge (zs, ys) is 1

because there is a total of
√
d capacity out of zs in H , and this is the only flow routed on

94

this edge, which has capacity
√
d in G by construction. So the worst-case congestion on

any edge in the above routing scheme is O(1).

Corollary 9. For any A ⊂ K, h′(A) ≤ O(1)hK(A).

Proof: Consider any setA ⊂ K. Let U be the minimum cut inG separatingA fromK−A.

Then the total flow routed fromA toK−A in ~H is just h′(A), and if this flow can be routed

in G with congestion O(1), this implies that the total capacity crossing the cut from U to

V − U is at least Ω(1)h′(A). And of course the total capacity crossing the cut from U to

V − U is just hK(A) by the definition of U , which implies the corollary.

So we know that the cuts in H are never too much larger than the corresponding min-

imum cut in G, and all that remains to show that the quality of H is o(
√

log k) is to show

that the cuts in H are never too small. We conjecture that the quality of H is actually

Θ(log1/4 k), and this seems natural since the quality of H just restricted to the Majority

Cut and the sub-cube cuts is actually Θ(log1/4 k), and often the Boolean functions corre-

sponding to these cuts serve as extremal examples in the harmonic analysis of Boolean

functions. In fact, our lower bound on the quality of any cut-sparsifier for G is based only

on analyzing these cuts so in a sense, our lower bound is tight given the choice of cuts in

G that we used to derive infeasibility in the system of equalities characterizing α-quality

cut-sparsifiers.

5.1.3 Harmonic Analysis

We give a brief introduction to the harmonic analysis of Boolean functions, along with

formal statements that we will use in the proof of our main theorem in this section.

Consider the group F d
2 = {−1,+1}d equipped with the group operation s ◦ t = [s1 ∗

t1, s2 ∗ t2, ...sd ∗ td] ∈ F d
2 . Any subset S ⊂ [d] defines a character χS(x) =

∏
i∈S xi : F d

2 →

{−1,+1}. See [52] for an introduction to the harmonic analysis of Boolean functions.

Then any function f : {−1,+1}d → < can be written as:

f(x) =
∑
S

f̂SχS(x)

95

Fact 1. For any S, T ⊂ [d] s.t. S 6= T , Ex[χS(x)χT (x)] = 0

For any p > 0, we will denote the p-norm of f as ||f ||p =
(
Ex[f(x)p]

)1/p

. Then

Theorem 24 (Parseval). ∑
S

f̂ 2
S = Ex[f(x)]2] = ||f ||22

Definition 28. Given −1 ≤ ρ ≤ 1, Let y ∼ρ x denote choosing y depending on x s.t. for

each coordinate i, E[yixi] = ρ.

Definition 29. Given −1 ≤ ρ ≤ 1, the operator Tρ maps functions on the Boolean cube to

functions on the Boolean cube, and for f : {−1,+1}d → <, Tρ(f(x)) = Ey∼ρx[f(y)].

Fact 2. Tρ(χS(x)) = χS(x)ρ|S|

In fact, because Tρ is a linear operator on functions, we can use the Fourier represen-

tation of a function f to easily write the effect of applying the operator Tρ to the function

f :

Corollary 10. Tρ(f(x)) =
∑

S ρ
|S|f̂SχS(x)

Definition 30. The Noise Stability of a function f is NSρ(f) = Ex,y∼ρx[f(x)f(y)]

Fact 3. NSρ(f) =
∑

S ρ
|S|f̂ 2

S

Theorem 25 (Hypercontractivity). [16] [14] For any q ≥ p ≥ 1, for any ρ ≤
√

p−1
q−1

||Tρf ||q ≤ ||f ||p

A statement of this theorem is given in [52] and [24] for example.

Definition 31. A function g : {−1,+1}d → < is a j-junta if there is a set S ⊂ [d] s.t.

|S| ≤ j and g depends only on variables in S - i.e. for any x, y ∈ F d
2 s.t. ∀i∈Sxi = yi

we have g(x) = g(y). We will call a function f an (ε, j)-junta if there is a function g :

{−1,+1}d → < that is a j-junta and Prx[f(x) 6= g(x)] ≤ ε.

We will use a quantitative version of Bourgain’s Junta Theorem [17] that is given by

Khot and Naor in [41]:

96

Theorem 26. [Bourgain] [17], [41] Let f{−1,+1}d → {−1,+1} be a Boolean function.

Then fix any ε, δ ∈ (0, 1/10). Suppose that

∑
S

(1− ε)|S|f̂ 2
S ≥ 1− δ

then for every β > 0, f is a

(
2c
√

log 1/δ log log 1/ε
(δ√

ε
+ 41/ε

√
β
)
,

1

εβ

)
-junta

This theorem is often described as mysterious, or deep, and has lead to some break-

through results in theoretical computer science [41], [?] and is also quite subtle. For exam-

ple, this theorem crucially relies on the property that f is a Boolean function, and in more

general cases only much weaker bounds are known [24].

5.1.4 Characterizing Cuts via Noise-Sensitivity

Next we give a simple formula for the size of a cut in H , given the Fourier representation

of the cut. So here we consider cuts A ⊂ K to be Boolean functions of the form fA :

{−1,+1}d → {−1,+1} s.t. fA(s) = +1 iff zs ∈ A.

Lemma 14. h′(A) = k
√
d

2

1−NSρ[fA(x)]

2

Proof: We can again use the infinitesimal characterization for H , in which we choose

u ∼ρ t and allocate ∆ units of capacity from zs to zt and repeat until all
√
d units of

capacity are spent.

If we instead choose zs uniformly at random, and then choose u ∼ρ t and allocate ∆

units of capacity from zs to zt, and repeat this procedure until all k
√
d

2
units of capacity

are spent, then at each step the expected contribution to the cut is exactly ∆1−NSρ[fA(x)]

2

because 1−NSρ[fA(x)]

2
is exactly the probability that if we choose t uniformly at random, and

u ∼ρ t that fA(u) 6= fA(t) which means that this edge contributes to the cut. We repeat

this procedure k
√
d

2∆
times, so this implies the lemma.

Lemma 15. h′(A) = Θ
(
k
∑

S f̂
2
S min(|S|,

√
d)
)

97

Proof: Using the setting ρ = 1− 1√
d
, we can compute h′(A) using the above lemma:

h′(A) = k

√
d

4
(1−NSρ[fA(x)])

And using Parseval’s Theorem,
∑

S f̂
2
S = ||f ||2 = 1, so we can replace 1 with

∑
S f̂

2
S

in the above equation and this implies

h′(A) = k

√
d

4

∑
S

f̂ 2
S(1− (1− 1√

d
)|S|)

Consider the term (1−(1− 1√
d
)|S|). For |S| ≤

√
d, this term is Θ(|S|√

d
), and if |S| ≥

√
d,

this term is Θ(1). So this implies

h′(A) = Θ
(
k
∑
S

f̂ 2
S min(|S|,

√
d)
)

The edge-isoperimetric constant of the Hypercube is 1, but on subsets of the cube that

are imbalanced, the Hypercube expands more than this.

Definition 32. For a given set A ⊂ {−1,+1}[d], we define bal(A) = 1
k

min(|A|, k − |A|)

as the balance of the set A.

Given any setA ⊂ {−1,+1}[d] of balance b = bal(A), the number of edges crossing the

cut (A, {−1,+1}[d]−A) in the Hypercube is Ω(bk log 1
b
). So the Hypercube expands better

on small sets, and we will prove a similar small set expansion result for the cut-sparsifier

H . In fact, for any set A ⊂ K (which we will associated with a subset of {−1,+1}[d] and

abuse notation), h′(A) ≥ bal(A)kΩ(min(log 1
bal(A)

,
√
d)). We will prove this result using

the Hypercontractive Inequality.

Lemma 16. h′(A) ≥ bal(A)kΩ(min(log 1
bal(A)

,
√
d))

Proof: Assume that |A| ≤ |{−1,+1}[d] − A| without loss of generality. Throughout just

this proof, we will use the notation that fA : {−1,+1}d → {0, 1} and fA(s) = 1 iff s ∈ A.

Also we will denote b = bal(A).

98

Let γ << 1 be chose later. Then we will invoke the Hypercontractive inequality with

q = 2, p = 2− γ, and ρ =
√

p−1
q−1

=
√

1− γ. Then

||f ||p = Ex[f(x)p]1/p = b1/p ≈ b1/2(1+γ/2)

Also ||Tρ(f(x))||q = ||Tρ(f(x))||2 =
√∑

S ρ
2|S|f̂ 2

S . So the Hypercontractive Inequal-

ity implies

∑
S

ρ2|S|f̂ 2
S ≤ b1+γ/2 = be−

γ
2

ln 1
b

And ρ2|S| = (1− γ)|S|. Using Parseval’s Theorem,
∑

S f̂
2
S = ||f ||22 = b, and so we can

re-write the above inequality as

b− be
−γ
2

ln 1
b ≤ b−

∑
S

(1− γ)|S|f̂ 2
S ≤ b1−γ/2 =

∑
S

f̂ 2
S(1− (1− γ)|S|)

= Θ
(∑

S

f̂ 2
Sγmin(|S|, 1

γ
)
)

This implies

b

γ
(1− e−

γ
2

ln 1
b) ≤ Θ

(∑
S

f̂ 2
S min(|S|, 1

γ
)
)

And as long as 1
γ
≤
√
d,

∑
S

f̂ 2
S min(|S|, 1

γ
) ≤ 1

k
O(h′(A)) = O

(∑
S

f̂ 2
S min(|S|,

√
d)
)

If γ
2

ln 1
b
≤ 1, then e−

γ
2

ln 1
b = 1− Ω(γ

2
ln 1

b
) which implies

b

γ
(1− e−

γ
2

ln 1
b) ≥ Ω(b ln

1

b
)

However if ln 1
b

= Ω(
√
d), then we cannot choose γ to be small enough (we must

choose 1
γ
≤
√
d) in order to make γ

2
ln 1

b
small.

So the only remaining case is when ln 1
b

= Ω(
√
d). Then notice that the quantity (1 −

99

e−
γ
2

ln 1
b) is increasing with decreasing b. So we can lower bound this term by substituting

b = e−Θ(
√
d). If we choose γ = 1√

d
then this implies

1

γ
(1− e−

γ
2

ln 1
b) = Ω(

√
d)

And this in turn implies that

b

γ
(1− e−

γ
2

ln 1
b) = Ω(b

√
d)

which yields h′(A) ≥ Ω(bk
√
d). So in either case, h′(A) is lower bounded by either

Ω(bk
√
d) or Ω(bk ln 1

b
), as desired.

5.1.5 Beating the Contraction Bound

Here we show that the quality of the cut-sparsifier H is o(
√

log k), thus beating how well

the best distribution on 0-extensions can approximate cuts in G by a super-constant factor.

We will first give an outline of how we intend to combine Bourgain’s Junta Theorem,

and the small set expansion of H in order to yield this result. In a previous section, we

gave a Fourier theoretic characterization of the cut function of H . We will consider an

arbitrary cut A ⊂ K and assume for simplicity that |A| ≤ |K−A|. If the Boolean function

fA that corresponds to this cut has significant mass at the tail of the spectrum, this will

imply (by our Fourier theoretic characterization of the cut function) that the capacity of the

corresponding cut in H is ω(k). Every cut in G has capacity at most O(k
√
d) because we

can just cut every edge (zs, ys) for each terminal zs ∈ A, and each such edge has capacity
√
d. Then in this case, the ratio of the minimum cut in G to the corresponding cut in H is

o(
√
d).

But if the tail of the Fourier spectrum of fA is not significant, and applying Bourgain’s

Junta Theorem implies that the function fA is close to a junta. Any junta will have a small

cut in G (we can take axis cuts corresponding to each variable in the junta) and so for

any function that is different from a junta on a vanishing fraction of the inputs, we will be

100

able to construct a cut in G (not necessarily minimum) that has capacity o(k
√
d). On all

balanced cuts (i.e. |A| = Θ(k)), the capacity of the cut in H will be Ω(k), so again in this

case the ratio of the minimum cut in G to the corresponding cut in H is o(
√
d).

So the only remaining case is when |A| = o(k), and from the small set expansion of H

the capacity of the cut in H is ω(|A|) because the cut is imbalanced. Yet the minimum cut

in G is again at most |A|
√
d, so in this case as well the ratio of the minimum cut in G to

the corresponding cut in H is o(
√
d).

Theorem 27. There is an infinite family of graphs for which the quality of the best cut-

sparsifier is Ω(log2 log log k
log log log log k

) better than the quality of the best cut-sparsifier that can be

realized as a convex combination of 0-extensions.

In Bourgain’s Junta Theorem 26, we will choose:
1
ε

= 1
32

log d

1
β

= d1/4

1
δ′

= log2/3 d

And also let b = bal(A) = |A|
k

, and remember for simplicity we have assumed that

|A| ≤ |K − A|, so b ≤ 1
2
.

δ = δ′b

Lemma 17. If
∑

S(1− ε)|S|f̂ 2
S ≤ 1− δ then this implies

∑
S f̂

2
S min(|S|,

√
d) ≥ Ω

(
δ
ε

)
=

Ω(b log1/3 d)

Proof: The condition
∑

S(1 − ε)|S|f̂ 2
S ≥ 1 − δ implies δ ≤ 1 −

∑
S(1 − ε)|S|f̂ 2

S =

O(
∑

S f̂
2
S min(|S|ε, 1)) and rearranging terms this implies

δ

ε
≤ O(

∑
S

f̂ 2
S min(|S|, 1

ε
)) = O(

∑
S

f̂ 2
S min(|S|,

√
d))

where the last line follows because 1
ε

= O(log d) ≤ O(
√
d).

So combining this lemma and Lemma 15: if the conditions of Bourgain’s Junta The-

orem are not met, then the capacity of the cut in the sparsifier is Ω(kb log1/3 d). And of

101

course, the capacity of the minimum cut in G is at most kb
√
d, because for each zs ∈ A we

could separate A from K −A by cutting the edge (zs, ys), each of which has capacity
√
d.

Case 1

If the conditions of Bourgain’s Junta Theorem are not met, then the ratio of the mini-

mum cut inG separatingA fromK−A to the corresponding cut inH is at mostO(
√
d

log1/3 d
).

What if the conditions of Bourgain’s Junta Theorem are met? We can check what Bour-

gain’s Junta Theorem implies for the given choice of parameters. First consider the case

in which b is not too small. For our choice of parameters the following three inequalities

hold:

2c
√

log 1/δ log log 1/ε ≤ log1/24 d (5.1)
δ√
ε
≥ 41/ε

√
β (5.2)

√
db log−1/8 d ≥ d1/4 log d (5.3)

Claim 20. If (5.2) is true,
(

δ√
ε

+ 41/ε
√
β
)

= O
(
b log−1/6 d

)
Claim 21. If (5.1) and (5.2) are true, 2c

√
log 1/δ log log 1/ε

(
δ√
ε

+ 41/ε
√
β
)

= O
(
b log−1/8 d

)
Applying Bourgain’s Junta Theorem, if the conditions are met (for our given choice of

parameters), we obtain that fA is an
(
O
(
b log−1/8 d

)
, O(d1/4 log d)

)
-junta.

Lemma 18. If fA is a (ν, j)-junta, then hK(A) ≤ kν
√
d+ j k

2

Proof: Let g be a j-junta s.t. Prx[fA(x) 6= g(x)] ≤ ν. Then we can disconnect the set

of nodes on the Hypercube where g takes a value +1 from the set of nodes where g takes

a value −1 by performing an axis cut for each variable that g depends on. Each such axis

cut, cuts k
2

edges in the Hypercube, so the total cost of cutting these edges is j k
2

and then

we can alternatively cut the edge (zs, ys) for any s s.t. fA(s) 6= g(s), and this will be a cut

separating A from K − A and these extra edges cut are each capacity
√
d and we cut at

most νk of these edges in total.

So if fA is an
(
O
(
b log−1/8 d

)
, O(d1/4 log d)

)
-junta and (5.3) holds, then hK(A) ≤

O
(

kb
√
d

log1/8 d

)
.

102

Case 2

Suppose the conditions of Bourgain’s Junta Theorem are met, and (5.1), (5.2) and (5.3)

are true, then the ratio of the minimum cut in G separating A from K − A to the corre-

sponding cut in H is at most O(
√
d

log1/8 d
).

Proof: Lemma 16 also implies that the edge expansion of H is Ω(1), so given a cut |A|,

h′(A) ≥ Ω(|A|) = Ω(kb). Yet under the conditions of this case, the capacity of the cut in

G is O
(

kb
√
d

log1/8 k

)
and this implies the statement.

The only remaining case is when the conditions of Bourgain’s Junta Theorem are met

at least one of the three conditions is not true. We can apply Lemma 16 directly to get that

in this case h′(A) = ω(|A|) and of course hK(A) ≤ |A|
√
d.

Case 3

Suppose the conditions of Bourgain’s Junta Theorem are met, and at least one of the the

inequalities is not true, then the ratio of the minimum cut in G separating A from K − A

to the corresponding cut in H is at most O(
√
d log log log d
log2 log d

).

Proof: If (5.1) is false, log(1/δ′)+log(1/b) = log(1/δ) > (log log1/30 d/c)2

log log 1/ε
= Ω

(
log2 log d

log log log d

)
.

Since 1/δ′ = O(log log d), it must be the case that log(1/b) = Ω
(

log2 log d
log log log d

)
.

If (5.2) is false, b < 41/ε
√
β
√
ε

δ′
= O(d−1/8 log1/6 d), and log(1/b) = Ω(log d).

If (5.3) is false, b < d−1/4 log9/8 d and log(1/b) = Ω(log d).

The minimum of the 3 bounds is the first one. So, log(1/b) = Ω
(

log2 log d
log log log d

)
if at least

1 of the 3 conditions is false. Applying Lemma 16, we get that h′(A) ≥ Ω(|A| log 1
b
) =

Ω(|A| log2 log d
log log log d

). And yet hK(A) ≤ |A|
√
d, and this implies the statement. Combining the

cases, this implies that the quality of H is O(
√
d log log log d
log2 log d

).

Conjecture 1. The quality of H as a cut-sparsifier for G is O(d1/4) = O(log1/4 k)

We believe that establishing this conjecture would require quantitatively stronger ver-

sion of the ”Majority Is Stablest” Theorem [50] in the regime in which the probability of

flipping a bit is o(1).

103

5.2 Separation Between Flow and Cut Sparsification

In Section 3.2.2 we proved that flow-sparsification is no easier than cut-sparsification:

any α-quality flow-sparsifier is also an α-quality cut-sparsifier. Here we prove that flow-

sparsification can be asymptotically harder than cut-sparsification. We given an example in

which the quality of the best cut-sparsifier isO(1), yet the quality of the best flow-sparsifier

is Ω(log log k). The results in this section appear in [44].

5.2.1 The Graph G

Here we define the graph G = (V,E) and the set K ⊂ V , and highlight the properties of

G that will be used in proving an Ω(log log k) for the quality of the best flow-sparsifier. We

also give an O(1)-quality cut-sparsifier.

G is generated from another graph G′ = (K,E ′). Set x = log1/3 n and let k = n
x

. We

choose G′ = (K,E ′) to be an x-regular graph that has

girth(G′) ≥ Ω(
log k

log x
) = Ω(

log n

log log n
)

For each terminal a ∈ K, we denote the set of neighbors of a in G′ as Γ(a). Additionally,

order this set arbitrarily (for each node a), and let Γi(a) be the ith neighbor of a in G′. This

labeling scheme need not be consistent, and terminal a can label a neighbor b as the ith

neighbor (b = Γi(a)) but b labels a as the jth neighbor (a = Γj(b)).

We construct G = (V,E) from G′: For each terminal a ∈ K, construct a path Pa =

a, a1, a2, ...ax in G. And for each edge (a, b) ∈ G′, suppose that b = Γi(a), a = Γj(b), add

an edge in G connecting ai and bj . See Figure 5-1.

Claim 22. Any matching M in G′ can be routed in G - i.e. congG(~M) ≤ 1

Lemma 19. G = (V,E) has an O(1)-quality cut-sparsifier

Proof: LetH = (K,EH) be a complete, capacitated graph in which each edge has capacity
2
k
. For any A ⊂ K (and |A| ≤ k/2), the minimum cut in G separating A from K − A is

at most |A| because for each u ∈ A, if we cut the edge (u, u1) (on the path Pu), then there

104

d

1 2

3

1 2

3
3

1

23

2

1
b

d

c

a

1 2 3c c c c

G’ G

1 2 3

1 2 31 2 3

a a a a

b b b b d d d

Figure 5-1: Constructing the graph G = (V,E) from an x-regular, high-girth expander
G′ = (K,E ′)

is no path in G from A to K − A. Also, for any A ⊂ K (again with |A| ≤ k/2), the total

capacity crossing the cut (A,K −A) in H is |A||K −A| 2
k
≥ |A|k

2
× 2

k
= |A| and hence H

is a cut-sparsifier.

Additionally, we can partition the edges in H into a set of weighted matchings, where

the total weight is constant. Hence we can apply Claim 19 and this implies that ~H can be

routed in G with constant congestion. Using the results in Section 3.2.2, we conclude that

H has O(1)-quality as a cut-sparsifier.

Throughout the remainder of this section, we will consider only flow-sparsifiers and

when we use the term ”quality” in reference to some candidate vertex sparsifier H , we will

mean the quality of H as a flow-sparsifier.

Let H be a flow-sparsifier for G and K.

Definition 33. Let CG be the total capacity in G and let ∆(G) be the maximum degree of

G. Also let CH be the total capacity in H .

Definition 34. Let distG(u, v) and distG′(u, v) be the natural shortest path distances on

G,G′ respectively

We will need a number of properties ofG in order to prove an Ω(log log k) lower bound:

1. CG ≤ 2n

2. ∆(G) = 3

105

3. ∀u,v∈KdistG(u, v) ≥ distG′(u, v)

4. girth(G) ≥ girth(G′)

We will first give some observations that are the foundation of the proof: Suppose there

is a flow-sparsifier H that has O(1)-quality. This implies that congG(~H) = O(1), and we

can enumerate some properties of H . These are the properties that we will use to derive a

contradiction (and in fact get a quantitative bound congG(~H) ≥ Ω(log log k)):

1. The total capacity in H must be O(k)

If H had ω(k) total capacity, then there would be some terminal a ∈ K that is

incident to ω(1) total capacity in H . Yet the minimum cut in G separating a from

K − {a} is constant (G is a constant degree graph), so this would immediately yield

a super-constant lower bound on the congestion of embedding H into G.

2. Most capacity inH must be between terminals for which the distance is much smaller

than the girth of G

Suppose, for example, that H is a complete graph with uniform edge capacities of
1
k
. Then the average distance (as measured in G) between two random terminals is

roughly Ω(girth(G′)). So if we choose the natural shortest path distance in G as the

oblivious dual certificate, then

∑
a,b∈K

cH(a, b)d(a, b) ≥ Ω(girth(G′)k)

Yet
∑

(u,v)∈E c(u, v)d(u, v) = Θ(n) and this would yield a super-constant lower

bound on the congestion of embedding H into G.

3. Fix the optimal embedding of H into G. Then at most o(k) of the total capacity in H

can be routed (in the optimal embedding) along high-girth paths.

Suppose, for example, that Ω(k) total capacity in H is routed in G using high-girth

paths. The total capacity in G is Θ(n), yet each unit of capacity in H that is routed

along a high-girth path uses up Ω(girth(G)) total capacity in G and Ω(girth(G)k)

106

total capacity is consumed, but this is ω(n). So in fact, for most edges (a, b) in H ,

most of the cH(a, b) flow in the optimal embedding must traverse a path much shorter

than the girth of G, so this flow must traverse the natural shortest path between a and

b.

Additionally, the requirement that H can route any matching in G′ places constraints

on the local neighborhood of a terminal.

A There are ω(1) neighbors of a inG′, and a can route a unit flow to each such neighbor

using edges in the graph H

H cannot hope to support such flows via a direct edge, because this would require a

to be incident to ω(1) total capacity in H . So the paths that support these flows must

be indirect.

B In some sense, on average the path used to route a unit flow from a to b in H must be

constant length (using an argument similar to Condition 2 above)

If, on average, the length of any such path were ω(1), then if when we route a match-

ing in G′ in H , there are Θ(k) total edges in the matching and Θ(k) total units of

flow. But each unit of flow would use up ω(1) total capacity in H , because the paths

on average are ω(1) length in H .

C So a must be able to send a unit flow to a super-constant number of terminals, using

constant length paths. Additionally these paths must not reach any terminal b that is

too far from a in G.

So the local neighborhood of a must be able to support all these requirements - a must

be able to send a unit of flow to a super-constant number of terminals, using constant length

paths that remain within the local neighborhood. Yet we know how most of the edges in the

local neighborhood of H embed (in the optimal embedding) into G, because these edges

mostly use the natural shortest path in G. This shortest path traverses a sub-interval of Pa.

So we can derive a contradiction, because any local neighborhood that can support all these

requirements must have large cut-width, and so the natural embedding of this neighborhood

would incur super-constant congestion on some sub-interval of Pa.

107

Roughly, the outline of the argument is the same as in the previous section: we use

oblivious dual certificates to establish local constraints on how the neighborhood of any

terminal a. We can piece these local constraints together (using the fact that all matchings

in G′ can be routed in H) to reduce this question to a more structured question about cut-

width, and from this we derive a contradiction (Section 5.2.4).

5.2.2 Capacity Surgery

Let H = (K,EH) be an arbitrary flow-sparsifier. We will argue that if all matchings M

in G′ can be routed in H with congestion at most 1, then congG(~H) = Ω(log log k). We

do not assume anything structurally about H , so there are many different ways in which

the demand ~H can result in super-constant congestion. We will need a complex argument

to handle this, and ultimately we will reduce computing a lower bound on congG(~H) to a

more structured embedding question about cut-width.

Assume c1 > 32× c2 and c2 > 24

Given H , we fix the optimal embedding of H into G. This is a min-congestion routing

of ~H in G. Each edge (u, v) ∈ EH is mapped to a flow in G from u to v of value cH(u, v).

We can decompose such a flow from u to v in G into paths. We refer to such a decompo-

sition as a path decomposition, and we assume that this decomposition uses only simple

paths.

Definition 35. We call an edge (u, v) ∈ EH girth-routed if at least cH(u,v)
2

flow (of the

cH(u, v) total flow) from u to v is routed using paths (in G) of length at least girth(G′)
4

.

Definition 36. Let H ′ = (K,E(H ′)) be the graph defined by deleting all girth-routed

edges in H . Let Cgr be the total capacity of girth-routed edges in H - i.e. the total capacity

deleted from H to obtain H ′.

If H O(1)-approximates the congestion of all multicommodity flows in G, then the

total capacity in H must be O(k). This is true because each node u ∈ K has degree 1 in

G, and so if the total capacity in H is ω(k) then there is a node u ∈ K which is incident

to ω(1) total units of capacity, and even just routing the demands in ~H incident to u would

incur ω(1) congestion in G.

108

Given this, we know that ifH O(1)-approximates the congestion of all multicommodity

flows in G, then on average edges (u, v) in G′ must be able to route a unit flow from u to

v using constant length paths. Otherwise we could construct a matching M in which all

edges need super-constant length paths to route a unit flow in H , and this flow would not

be feasible in H because there would be Ω(k) pairs each using ω(1) units of capacity - but

H has only O(k) total capacity.

We need to formalize this notion, that edges in G′ must on average use short paths (and

in fact a stronger condition, that edges in G′ must also not route flow in H that reaches

nodes that are too far away according to the shortest path metric in G′). So we set D =

log2/3 n.

Definition 37. We call a path P connecting u and v (in H or H ′) good if P is length

< 1
c2

log log n and reaches no terminal a for which either distG′(u, a) or distG′(v, a) ≥ D.

We call an edge (u, v) ∈ E ′ good if u can send at least 1
2

unit of flow to v using only

good paths in H ′, and otherwise we call edge (u, v) bad.

Note that the definition of a good edge is with respect to flows in H ′, not H . We need

this for a technical reason.

Case 1

Suppose that CH ≥ k
c1

log log n

Then there is a node u ∈ K that has at least 2
c1

log log n total capacity incident in H .

And because v is degree one in G, this implies that congG(~H) ≥ 2
c1

log log n so we can

conclude that CH ≤ k
c1

log log n.

Case 2

Suppose that Cgr ≥ k

log1/3 n
.

Then, in the optimal embedding of H into G there is at least Cgr
2
≥ k

2 log1/3 n
total

capacity that uses paths of length at least girth(G′)
4

= Ω(log n/ log log n). So the total

capacity used in routingH intoG is Ω(n log1/3 n/ log log n). AndCG ≤ 2n so this implies:

congG(~H) ≥ Ω(
log1/3 n

log log n
)

109

So we can conclude that Cgr ≤ k

log1/3 n

5.2.3 Matchings

We will use the following elementary lemma to simplify the case analysis:

Lemma 20. Let G′ be an x-regular graph on k terminals. Let F ⊂ E ′, s.t. |F | ≥ ckx.

Then there is a matching M ⊂ F s.t. |M | ≥ c
2
k

Proof: Let M be a maximal matching using only edges in F . Then let A be the set of

terminals that are matched in M , and let B be the remaining terminals. No edge in F can

have both endpoints in B, because otherwise M would not be maximal. So all edges in F

are adjacent to a terminal inA. BecauseG′ is x-regular, the number of edges in E ′ adjacent

to some terminal inA is at most |A|x, and this must be at least the size of F . So |A|x ≥ ckx

In particular, |A| ≥ ck, and every terminal in A is matched in M so there are at least c
2
k

edges in M .

Case 3

Suppose that there are at least kx
4

bad edges (in G′). We let F be the set of bad edges in

G′. |F | ≥ kx
4

. We can use the above lemma to find a matching M ⊂ F so that |M | = k
8
.

M is a matching, so ~M is routable with congestion at most 1 in G, and so must also be

routable with congestion at most 1 in H .

For each edge (u, v) ∈ M , set yu,v = 1. Then using Case 2, Cgr ≤ k

log1/3 n
= o(k).

Deleting any edge (a, b) ∈ EH of capacity cH(a, b) affects at most cH(a, b) units of flow in

the routing of ~M in H because ~M can be routed in H with congestion at most 1. So we can

set y′u,v as the amount of flow remaining using the same routing scheme for ~M in H ′ as for

~M in H , just deleting paths that traverse some girth-routed edge in H (which is deleted in

order to obtain H ′).

|M | = k
8

and so
∑

u,v yu,v = k
8
. Because Cgr ≤ o(k),

∑
u,v y

′
u,v = k

8
− o(k). Let ~f ′(M)

be the flow in H ′ that satisfies y′u,v that results from deleting all flow paths that traversed

a girth-routed edge in H . Each edge (u, v) ∈ M is bad, so if we decompose ~f ′(M) into

paths, then for any (u, v) ∈ M at most 1
2

unit of flow is carried by good paths. So the total

110

flow carried by bad paths is at least

∑
u,v

y′u,v −
1

2
|M | ≥ k

8
− o(k)− 1

2
|M | = k

16
− o(k)

So there must be k
16

total units of flow on bad paths in H ′, and in particular there must

be at least k
32

total units of flow on either paths of length at least 1
c2

log log n or at least k
32

total units of flow on paths that reach nodes a that are at least distance D from one of the

two endpoints u or v of the flow. We consider these two sub-cases separately:

Case 3a

Suppose that there are k
32

total units of flow on paths inH ′ of length at least 1
c2

log log n.

Notice that the total capacity in H ′, CH′ is at most the total capacity in H , CH (because

H ′ resulted from H by deleting girth-routed edges). And the total capacity in H ′ is at least
k

32×c2 log log n. But then

CH′ ≥
k

32× c2

log log n >
k

c1

log log n ≥ CH

using Case 1, and we have a contradiction

Case 3b

Suppose that there are k
32

total units of flow on paths in H ′ that reach a node a that is

distance at least D from one of the two endpoints u or v of the path.

Consider any such path, Pu,v in H ′ that is carrying λ units of flow from y′u,v. Suppose

that a is the first node such that distG′(u, a) ≥ D or distG′(v, a) ≥ D. Assume without

loss of generality that distG′(u, a) ≥ D. Construct a demand vector ~r ∈ <(k2) as follows:

For each such path Pu,v, increment the demand ~ru,a by λ.

So for each flow path carrying λ units of flow, we have added λ demand to some coor-

dinate in ~r.

Claim 23. ~r is routable in H with congestion at most 1

Proof: We constructed ~r demands based on a flow ~f ′(M) of congestion at most 1 inH ′, and

the same routing scheme for ~f ′(M) that achieved congestion at most 1 in H ′ also achieves

111

congestion at most 1 in H . We then constructed demands by deleting segments of the flow

paths - i.e. in the above example we preserved only the sub-path of Pu,v from u to a and

deleted the rest of the path. This flow resulting from deleting sub-paths still has congestion

1 in H and also satisfies the demands ~r.

Notice that for every path carrying λ flow we have added a demand equal to this flow

value λ between two nodes u, a ∈ K which are distance at least D apart in G′ - i.e.

distG′(u, a) ≥ D.

Consider the minimum congestion embedding of the demand vector ~r into G. We can

use the natural shortest path metric on G to certify ~r has large congestion in G: for each

edge in G, place a unit of distance on this edge.

The total distance × capacity units used is CG ≤ 2n. And we note that distG(u, v) ≥

distG′(u, v) for all u, v ∈ K from the claim Section 6.1. So
∑

u,v ~ru,vdistG(u, v) ≥ k
32
D.

This implies congG(~H) ≥ congG(~r) ≥ Ω(k)D
2n

= Ω(log1/3 n). So we can conclude

using Case 3a and 3b that there are at most kx
4

bad edges in G′.

5.2.4 Cut-Width

So we can remove all bad edges in G′ from consideration, and there are at least kx
4

good

edges remaining. This implies that there is a terminal a ∈ G′ that is incident to at least x
2

good edges. Consider such a terminal a.

Let Γgood(a) be the set of neighbors u of a for which the edge (u, a) ∈ E ′ is good.

We can define the induced path Pgood as the path on just Γgood in the order in which these

nodes are labeled according to Γ. For each terminal b adjacent to a in G′, we define a

component Cj (assuming b = Γj(a)) that consists of all terminals that are distance at most

D according to G′ from terminal a and are in the depth-first search sub-tree (of G′) rooted

at terminal b. For each terminal b adjacent to a s.t. the edge (a, b) is bad, if b = Γj(a) then

choose the closest terminal c on the path Pa for which the edge (c, a) is good, and break

ties arbitrarily. For each node c ∈ Γgood, consider the set of terminals d that chose c, and

set C ′i = ∪
d chooses cCj if Γi(u) = c and Γj(u) = d, and by definition any good terminal

on the path Pa chooses itself.

112

c

good
={a , a }1 3

1 2 3

1 2 31 2 3

a a a a

b b b b d d d d

G

C’
C’

1

3

1 2 3c c c c

H

C’
1

C’
3

a

b

d

Figure 5-2: Constructing the partition {C ′i} of terminals at distance at most D

So C ′i forms a partition of the set of terminals that are distance at most D (since

girth(G′) >> D) from terminal a in G′, and for each component C ′i there is a terminal

c ∈ C ′i that is adjacent to a in G′ and for which (a, c) is a good edge.

We construct a graph B in which we add a node for a, and a node i for each component

C ′i. For each edge in H ′ from a node C ′i to a node in C ′j , we add an edge in B of the same

capacity connecting the node i to the node j (and we allow parallel edges). See Figure 5-2.

Intuitively, in B we allow routing within C ′i for free. But because each node i in B

contains a terminal c which is a neighbor of a and for which (a, c) is a good edge, terminal

a must be able to send at least 1
2

units of flow from a to terminal c in H ′ using paths that do

not reach any other node distance more than D from terminal a (according to distG′) and

using only paths of length at most 1
c2

log log n. Because in B we allow routing within C ′i

for free, and have only removed nodes that are too far from a to be on any good path, in the

graph B we must be able to send at least 1
2

units of flow of flow from a to i using paths of

length at most 1
c2

log log n.

So consider the path Pgood defined on {a}∪Γgood(a) in which nodes in Γgood are visited

according to the order defined by Γ(a). We will prove a lower bound on the minimum cut-

width embedding of B into Pgood. This will imply a cut-width lower bound on embedding

B into Pa, and because every edge in H ′ routes at least 1
2

of its capacity through paths of

length at most girth(G′)
4

(and consequently every edge in B connecting a node i to a node

j must traverse the sub-path ai, ai+1, ...aj in Pa), and so this implies a lower bound on the

113

congestion of embedding H ′ into G. So consider an interval I of Pgood:

Definition 38. Given a set of flows out of a, we define the average path length as the sum

over all flow paths P (in a path decomposition of the flow) of the weight of flow on the path

times the length of the path: v(P) × length(P).

Note that the average path length of a flow is independent of the particular choice of the

path decomposition of the flow, provided every path in the path decomposition is simple.

Definition 39. We define the minimum cost-routing into an interval I as the minimum

average path length of any flow (in B) that sends exactly 1
2

unit of flow in total to the

terminals in interval I .

Definition 40. An interval I has the (C,E) property if the total capacity (of B) crossing I

- i.e. has one endpoint to the left and one endpoint to the right of I - is at least C and if the

minimum cost routing to I is at least E.

Suppose that interval I has the (C,E)-property. Split I into I1, I2, I3, three contiguous

intervals. If there is total capacity at least 1
6

in B crossing I1 but not I , then I1 has the

(C + 1
6
, E) property (because the minimum cost routing to I1 is at least the minimum cost

routing to I). Similarly, if there is at least 1
6

capacity in B crossing I3 but not I , then I3 has

the (C + 1
6
, E) property.

Otherwise, there is at most 1
6

total capacity entering I2 from the left of I1, and at most 1
6

total capacity entering I2 from the right of I3. So consider the minimum cost routing to I2.

There must be at least 1
2
− 1

6
− 1

6
= 1

6
total flow that enters I2 from I1 or I3. So given the

minimum cost routing to I2 of cost α, we can stop paths that enter I2 from I1 or I3 short,

and reduce the cost of the routing by at least 1
6
. This would give a routing into I of cost

α − 1
6
, but the minimum cost routing into I is at least E, so α ≥ E + 1

6
. So either I1 or I3

has the (C + 1
6
, E) property or I2 has the (C,E + 1

6
) property.

So this implies that if we continue for log3
x
2

levels of this recursion (and there are in

fact x
2

nodes in the path Pgood), then we find an interval I that has the (C,E) property and

C + E ≥ log3
x
2

6
and so either C or E must be ≥ log3

x
2

12
.

If C ≥ log3
x
2

12
, then the cut-width of embeddingB into the path Pgood is at least C, which

implies that at least C total capacity in H ′ has one endpoint in C ′i and one endpoint in C ′j ,

114

h’({a}) = k−1
K

a

G = (V, E)

a

H = (K, E)
K

h ({a}) = 1

Figure 5-3: A counter-example to flow-sparsification in directed graphs.

and the interval I in Pa is contained between the image of C ′i in Pa and the image of C ′j in

Pa. Because this capacity is inH ′, and at least 1
2

of this capacity is routing using the natural

path in G and traverses the interval I , and in this case the congestion of embedding H ′ into

G (using the fixed routing of H ′ into G - note that H ′ was defined based on the optimal

embedding of H into G) is at least C
2

= Ω(log log n).

If E ≥ log3
x
2

12
, then there is a node u ∈ I for which the minimum cost routing to c is at

least log3
x
2

12
> log logn

c2
, but then the edge (a, u) would not be good. I is an interval in Pgood

and this yields a contradiction.

Theorem 28. There is an infinite family of graphs so that the best quality flow-sparsifier

has quality Ω(log log k) and yet the best quality cut-sparsifier has quality O(1).

5.3 Counter-Example to Directed Flow-Sparsification

Here prove that, in the case of directed graphs, a good quality flow-sparsifier does not

always exist. Consider the example in Figure 5-3.

The terminal a can send a unit flow to each other terminal. Additionally, no terminal

besides a can send any flow to any other terminal. Hence for any terminal b ∈ K − {a},

the total capacity of directed edges out of b in finite quality flow-sparsifier must be zero.

So the only directed edges that are assigned capacity must be from a to another terminal.

115

Yet for each b ∈ K − {a}, if a can send a unit flow to b the capacity of the edge from a to

b in H must be at least one. Hence the total capacity out of a in any flow-sparsifier (again

of finite quality) must be at least k − 1.

So a can send a total of k − 1 units of flow to other terminals in the flow-sparsifier

H . But in G, a can send at most one total unit of flow to other terminals. So the quality

of H as a flow-sparsifier is at least k − 1. In the case of directed graphs, we cannot hope

for a flow-sparsifier whose quality is poly-logarithmic in k. However, if we allow a small

number of non-terminals in H (say a linear number in k) we could still hope that good

quality flow-sparsifiers exist in the directed case.

116

Chapter 6

Additional Applications

Here give additional applications of vertex sparsification to oblivious routing and to graph

layout problems. The results in this section appear in [49].

6.1 Oblivious Routing

An oblivious routing scheme makes routing decisions based only on the starting and ending

nodes of a routing request (and independently of the current load in the network and what

other routing requests have been made). So routing decisions are based only on local

knowledge, and consequently an oblivious routing scheme can be easily implemented in a

distributed manner. We consider the routing goal of minimizing the congestion in a network

- i.e. minimizing the maximum ratio of load to capacity on any edge.

Then the competitive ratio of an oblivious routing scheme is measured by how well

the oblivious routing scheme performs (with respect to congestion) compared to the per-

formance of the optimal routing scheme with fore-knowledge of what demands need to be

routed. Valiant and Brebner [59] were the first to prove any performance guarantees for

oblivious routing on any network topology, and gave an O(log n)-competitive oblivious

routing algorithm for the hypercube (on n nodes). In a breakthrough paper, Räcke [53]

proved that for arbitrary graphs, there are oblivious routing algorithms that are poly(log n)-

competitive. Recently, Räcke [54] proved that there are in fact O(log n)-competitive obliv-

ious routing algorithms for general graphs. This performance guarantee even matches the

117

competitive ratio of (optimal) adaptive routing algorithms that are given updated knowl-

edge of the loads in the network before being asked to route each successive request!

But consider a related problem: Suppose a service provider is only responsible for

routing requests between some small set of clients. In this setting, an oblivious routing

protocol can make the assumption that all routing requests will have endpoints in some

small set of terminals K. Suppose that |K| = k, and that k2 << O(log n). These routing

requests are certainly allowed to use paths that contain nodes in the entire web graph. We

will call this problem the Steiner oblivious routing problem. If we set K = V , we recover

the original oblivious routing problem in [59].

In this restricted scenario, how well can oblivious routing perform? We could ignore

this promise that all routing requests will be between terminals in K, and we can use the

oblivious routing scheme in [54] and get an oblivious routing scheme that is O(log n)-

competitive, and still based only on local knowledge. But if k2 << O(log n), then this is a

trivial guarantee: For each pair (a, b) of terminals, we could alternatively find a minimum

congestion routing of a unit flow from a to b. Then a naive union bound over all
(
k
2

)
pairs yields a performance guarantee that outperforms the O(log n)-competitive oblivious

routing guarantee!

Here, we give an oblivious routing scheme (which only needs to pre-define a routing

for all pairs of terminals) that achieves an O(log k)-competitive ratio. Hence the guarantee

is logarithmic in the number of clients as opposed to logarithmic in the size of the web

graph.

Theorem 29. There is an algorithm to compute an O(log k)-competitive Steiner oblivious

routing scheme that runs in time polynomial in n and k.

We can use the results in Section 4.2.1 in conjunction with the results in Section 3.2.4

and this immediately implies that we can efficiently construct a distribution ~λ on pairs

Gf,T × R of a 0-decomposition Gf,T and a set of
(
k
2

)
simple paths in G - one connecting

each pair of terminals. Furthermore, this distribution will satisfy the condition that the total

load on any edge e is at most O(log k)c(e) – where the total load is the expected sum of

the capacity cH(a, b) of each edge (a, b) in H for which the corresponding path Ra,b in R

118

connecting a and b uses the edge e.

This distribution in turn defines a Steiner oblivious routing scheme: Each Gf,T is a tree

on K, and hence given a demand vector ~r, the minimum congestion routing of ~r in Gf,T is

the natural routing in which for each pair of terminals a, b ∈ K, we send ~ra,b units of flow

directly on the unique path in Gf,T from a to b. Note that since Gf,T is a flow-sparsifier,

any demand vector ~r that can be routed in G with congestion at most one, ~r has congestion

at most one when routed in Gf,T .

For each pair a, b ∈ K we will determine how to route λGf,T×R~ra,b total units of flow

based on Gf,T and R: Let p = a, u1, u2, ..ur, b be the unique simple path connecting a and

b in Gf,T . And let Ra,u1 , Ru1,u2 , ...Rur,b denote the set of paths in R connecting a to u1 and

u1 to u2, ... ur to b respectively. Then we will send a total of λGf,T×R~ra,b units of flow

along the path p = Ra,u1 ◦ Ru1,u2 ◦Rur,b where ◦ denote the concatenation operator.

Notice that this routing scheme decides how to route between two terminals based only on

the identity of the start and end location and hence this routing scheme is oblivious.

The total amount of flow that we route for each pair of terminals a, b ∈ K is ~ra,b. To

analyze the competitive ratio, suppose that the ~r is routable in G with congestion at most

one. Hence ~r is routable in each Gf,T with congestion at most one and consequently the

total load incurred by this routing scheme on any edge e will be at most

∑
f,T,K

λGf,T×RloadGf,T×R(e) ≤ O(log k)c(e)

This routing scheme incurs congestion at most O(log k) when routing ~r and so this routing

scheme is O(log k)-competitive.

For comparison, we note that the routing scheme given in Section 3.2.1 are not oblivious

(but can still be computed in time polynomial in the number of terminals, and independent

of the size of G), but can achieve an O(1)-competitive ratio in graphs that exclude a fixed

minor. The oblivious routing scheme, however, cannot achieve a competitive ratio better

than Ω(log k) even in planar graphs [12], [47].

119

6.2 Layout Problems

Here we demonstrate another pattern for applying our results: we re-write graph layout

problems using an un-crossing argument. This allows us to prove that the value of solutions

to graph layout problems are approximately preserved by a good quality flow-sparsifier,

although here the optimal value to a layout problem is not determined by a single minimum

cut but rather based on a nested family of minimum cuts. Specifically, we apply our results

on vertex sparsification to Steiner generalizations of minimum cut linear arrangement and

minimum linear arrangement.

The minimum cut linear arrangement problem is defined as: Given an undirected, ca-

pacitated graph G = (V,E) we want to find an ordering of the vertices v1, v2, ...vn which

minimizes the value of

C = max
1≤i≤n

h({v1, v2, ...vi})

We can define a natural generalization of this problem in which we are given a set

K ⊂ V of size k, and we want to find an ordering of the terminals in K, u1, u2, ...uk and

a partition A1, A2, ...Ak of the remaining nodes V − K (and let Bi = Ai ∪ {ui}) which

minimizes the value of

CK = max
1≤i≤k

h(∪1≤j≤iBi)

We will refer to this problem as Steiner minimum cut linear arrangement and we will

refer to the sets Bi as a Steiner layout. We can also give an identical generalization to

minimum linear arrangement too. Here, we can re-write this optimization problem using

an un-crossing argument so that the value only depends on the terminal cut function hK .

Lemma 21. Given an ordering u1, u2, ...uk of the terminals we can find a partition

A1, A2, ...Ak

120

of V such that Ai ∩K = {ui} and

h(∪ij=1Aj) = hK({u1, u2, ...ui})

Proof: The cut function h : 2V → R+ is a submodular function. So for all S, T ⊂ V :

h(S) + h(T) ≥ h(S ∩ T) + h(S ∪ T)

For each i, find a setBi ⊂ V such thatBi∩K = {u1, u2, ...ui} and h(Bi) = hK({u1, u2, ...ui}).

Consider the sets B1 and B2. We can find sets C1, C2 such that C1 ⊂ C2 and h(B1) =

h(C1), h(B2) = h(C2) and C1 ∩ K = B1 ∩ K, C2 ∩ K = B2 ∩ K. This is true via

submodularity: Choose C1 = B1 ∩B2 and C2 = B1 ∪B2.

SoC1∩K = (B1∩K)∩(B2∩K) = (B1∩K) and alsoC2∩K = (B1∩K)∪(B2∩K) =

B2 ∩K because B1 ∩K ⊂ B2 ∩K.

Also h(B1)+h(B2) ≥ h(C1)+h(C2) via submodularity. However h(B1) is the minimal

value of an edge cut separating B1 ∩K from K − (B1 ∩K) and C1 also separates B1 ∩K

from K − (B1 ∩K), and a similar statement holds for C2. So the above inequality implies

h(B1) = h(C1), h(B2) = h(C2)

We can continue the above argument and get sets C1, C2, ...Ck such that

h(Ci) = hK({u1, u2, ...ui}) and C1 ⊂ C2... ⊂ Ck

Lastly, we set Ai = Ci − ∪i−1
j=1Ci and this implies the lemma.

Since an α-quality cut-sparsifier preserves all values of hK within an α-factor, we can

once again algorithmically reduce G to a tree at the cost of an O(log k)-factor using Theo-

rem 20. Note that the results of [60] and [23] give polynomial time algorithms for minimum

cut-linear arrangement and minimum linear arrangement when the input graph is a tree.

Also, since Gf,T is a cut-sparsifier for G and K, we can apply Lemma 21 and this

121

implies given a layout for Gf,T of cost C we can find a Steiner layout of cost at most C (for

either the minimum cut linear arrangement or the minimum linear arrangement problems):

Corollary 11. There is a polynomial time O(log k)-approximation algorithm for Steiner

minimum cut linear arrangement.

Corollary 12. There is a polynomial time O(log k)-approximation algorithm for Steiner

minimum linear arrangement.

122

Chapter 7

Open Questions

The main open question in this work is whether allowing additional non-terminals can

result in better (or even constant) quality flow-sparsifiers. We do not know of any bound

f(k) for which every graph G and set of k terminals K ⊂ V has a constant quality flow-

sparsifier that contains at most f(k) non-terminals.

Open Question 2. Does allowing non-terminals allow a flow-sparsifier to be significantly

more expressive?

Answering this question, either in the positive or negative, may require a significant

departure from the techniques in this thesis. One technical difficulty is that if we allow

non-terminals, the set of good flow-sparsifiers (or even the set of good cut-sparsifiers) is

no-longer convex.

Another interesting question is to determine the integrality gap of the semi-metric re-

laxation for the 0-extension problem. The integrality gap is only known to be bounded

between O(log k
log log k

) and Ω(
√

log k). Improving the upper bound on this integrality gap

would immediately result in an asymptotic improvement in the quality of both cut and

flow-sparsifiers. In fact, even improving this bound in the case in which the input metric is

`1 would improve the best known bounds for cut-sparsifiers.

Additionally, we do not know of any hardness results for constructing cut or flow-

sparsifiers.

Open Question 3. Is it hard to compute the best quality flow-sparsifier?

123

Open Question 4. Is it hard to compute the best quality cut-sparsifier?

An exact algorithm for the congestion minimization problem would immediately yield

an algorithm for computing the best flow-sparsifier, yet we suspect that computing the best

quality cut-sparsifier is computationally difficult.

124

Bibliography

[1] M. Adler, N. Harvey, K. Jain, R. Kleinberg, and A. R. Lehman. On the capacity of
information networks. In SODA, pages 251–260, 2006.

[2] A. Aggarwal and J. Vitter. The input/output complexity of sorting and related prob-
lems. Communications of the ACM, pages 116–127, 1988.

[3] R. Ahlswede, N. Cai, S. Y. Li, and R. Yeung. Network information flow. IEEE
Transactions on Information Theory, pages 1204–1216, 2000.

[4] R. Andersen and U. Feige. Interchanging distance and capacity in probabilistic map-
pings. Arxiv, 2009.

[5] A. Archer, J. Fakcharoenphol, C. Harrelson, R. Krauthgamer, K. Talwar, and E. Tar-
dos. Approximate classification via earthmover metrics. In SODA, pages 1079–1087,
2004.

[6] S. Arora, J. Lee, and A. Naor, ‘ Euclidean distortion and the sparsest cut. Journal of
the AMS, pp. 1–21, 2008. Preliminary version in STOC, pages 553-562, 2005.

[7] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph
partitioning. Journal of the ACM, 2009. Preliminary version in STOC, pages 222-231,
2004.

[8] Y. Aumann and Y. Rabani. An O(log k) approximate min-cut max-flow theorem and
approximation algorithm. SIAM Journal on Computing, pages 291–301, 1998.

[9] Y. Azar, E. Cohen, A. Fiat, K. Haim, and H. Räcke. Optimal oblivious routing in
polynomial time. In STOC, pages 383–388, 2003.

[10] K. Ball. Markov chains, Riesz transforms and Lipschitz maps. Geometric and Func-
tional Analysis, pages 137–172, 1992.

[11] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applica-
tions. In FOCS, pages 184–193, 1996.

[12] Y. Bartal and S. Leonardi. On-line routing in all optimal networks. Theoretical Com-
puter Science, pages 19–39, 1999. Preliminary version in ICALP, pages 516–526,
1997.

125

[13] J. Batson, D. Spielman, and N. Srivastava. Twice-ramanujan sparsifiers. In STOC,
pages 255–262, 2009.

[14] W. Beckner. Inequalities in Fourier analysis. Annals of Mathematics, pages 159–182,
1975.

[15] A. Benczúr and D. Karger. Approximating s-t minimum cuts in õ(n2) time. In STOC,
pages 47–55, 1996.

[16] A. Bonami. Etude des coefficients de Foureir des fonctions de lp(g). Annales de
’institut Fourier, pages 335–402, 1970.

[17] J. Bourgain. On the distribution of the Fourier spectrum of boolean functions. Israel
Journal of Mathematics, pages 269–276, 2002.

[18] G. Calinescu, H. Karloff, and Y. Rabani. Approximation algorithms for the 0-
extension problem. SIAM Journal on Computing, pages 358–372, 2004. Preliminary
version in SODA 2001, pages 8–16.

[19] Y. Chan, W. Fung, L. Lau, and C. Yung. Degree bounded network design with metric
costs. In FOCS, pages 125–134, 2008.

[20] M. Charikar, T. Leighton, S. Li, A. Moitra. Vertex sparsifiers and abstract rounding
algorithms. In FOCS 2010, to appear.

[21] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear programming formulation and
approximation algorithm for the metric labeling problem SIAM Journal on Discrete
Math, pages 608–625, 2004. Preliminary version in SODA, pages 109–118, 2001.

[22] P. Chew. There is a planar graph almost as good as the complete graph. In SoCG,
pages 169–177, 1986.

[23] F. Chung. On optimal linear arrangements of trees. Computers and Math with Appli-
cations, pages 43–60, 1984.

[24] I. Dinur, E. Friedgut, G. Kindler, and R. O’Donnell. On the fourier tails of bounded
functions over the discrete cube. Israel Journal of Mathematics, pages 389–412,
2007. Preliminary version in STOC, pages 437–446, 2006.

[25] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-Cohen, and K. Talwar.
Vertex sparsifiers: new results from old techniques. In APPROX 2010, to appear.

[26] J. Fakcharoenphol, C. Harrelson, S. Rao, and K. Talwar. An improved approximation
algorithm for the 0-Extension Problem. In SODA 2003, pages 257–265.

[27] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. Journal of Computer and System Sciences, pages 485–497,
2004. Preliminary version in STOC 2003, pages 448–455.

126

[28] J. Fakcharoenphol and K. Talwar. An improved decomposition theorem for graphs
excluding a fixed minor. In APPROX + RANDOM, pages 36–46, 2003.

[29] R. Floyd. Permuting information in idealized two-level storage. Complexity of Com-
puter Calculations, pages 105–109, 1972.

[30] N. Garg and J. Könemann. Faster and simpler approximation algorithms for multi-
commodity flow and other fractional packing problems. SIAM Journal on Computing,
pp. 680–652, 2007. Preliminary version in FOCS, pages 300-309, 1998.

[31] N. Garg, V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut
theorems and their applications. SIAM Journal on Computing, 25:235–251, 1996.
Preliminary version in STOC 1993, pages 698–707.

[32] D. Golovin, V. Nagarajan, and M. Singh. Approximating the k-multicut problem. In
SODA, pages 621–630, 2006.

[33] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization. Springer Verlag, 1993.

[34] A. Gupta, V. Nagarajan, and R. Ravi. An improved approximation algorithm for
requirement cut. Operations Research Letters, pages 322–325, 2010.

[35] C. Harrelson, K. Hildrum, and S. Rao. A polynomial-time tree decomposition to
minimize congestion. In SPAA, pages. 34–43, 2003.

[36] N. Harvey, R. Kleinberg, and A. R. Lehman. On the capacity of information networks.
IEEE Transactions on Information Theory, pages 2345–2364, 2006.

[37] K. Jain, V. Vazirani, R. Yeung, and G. Yuval. On the capacity of multiple unicast
sessions in undirected graphs. IEEE International Symposium on Information Theory,
2005.

[38] W. Johnson, J. Lindenstrauss, and G. Schechtman. Extensions of Lipschitz maps into
Banach spaces. Israel Journal of Mathematics, pages 129–138, 1986.

[39] A. Karzanov. Minimum 0-extensions of graph metrics. European Journal of Combi-
natorics, pages 71–101, 1998.

[40] R. Khandekar, S. Rao, and U. Vazirani. Graph partitioning using single commodity
flows. Journal of the ACM, 2009. Preliminary version in STOC, pages 385-390, 2006.

[41] S. Khot and A. Naor. Nonembeddability theorems via fourier analysis. In FOCS
2005, pages 101–112.

[42] P. Klein, S. Plotkin, and S. Rao. Excluded minors, network decomposition, and mul-
ticommodity flow. In STOC, pages 682–690, 1993.

[43] L. C. Lau. An approximate max-steiner-tree packing min-steiner-cut theorem. Com-
binatorica, pages 71–90, 2007. Preliminary version in FOCS, pages 61–70, 2004.

127

[44] T. Leighton and A. Moitra. Extensions and limits to vertex sparsification. In STOC
2010, pages 47–56.

[45] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM, pages 787–832, 1999.
Preliminary version in FOCS 1988, pages 422-431.

[46] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, pages 215–245, 1995. Preliminary version
in FOCS 1994, pages 577–591.

[47] B. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. Westermann. Exploiting
locality for networks of limited bandwidth. In FOCS, pages 284–293, 1997.

[48] K. Makarychev and Y. Makarychev. Metric extension operators, vertex sparsifiers and
Lipschitz extendability. In FOCS 2010, to appear.

[49] A. Moitra. Approximation algorithms for multicommodity-type problems with guar-
antees independent of the graph size. In FOCS, pages 3–12, 2009.

[50] E. Mossel, R. O’Donnell, K. Oleszkiewicz. Noise stability of functions with low
influences: invariance and optimality. Annals of Mathematics, pages 389–412, 2007.
Preliminary version in FOCS, pages 21–30, 2005.

[51] V. Nagarajan and R. Ravi. Approximation algorithms for requirement cut on graphs.
In APPROX + RANDOM, pages 209–220, 2005.

[52] R. O’Donnell. Some topics in the analysis of boolean functions. In STOC, pages
569–578, 2008.

[53] H. Räcke. Minimizing congestion in general networks. In FOCS 2002, pages 43–52.

[54] H. Räcke. Optimal hierarchical decompositions for congestion minimization in net-
works. In STOC 2008, pages 255–264.

[55] D. Randall. Mixing. In FOCS, pages 4–15, 2003.

[56] D. Shmoys. Approximation algorithms for Cut problems and their application. to
divide-and-conquer In Approximation Algorithms for NP-hard Problems. PWS, 1997.

[57] D. Spielman and N. Srivastava. Graph sparsification by effective resistances. In
STOC, pages 563–568, 2008.

[58] D. Spielman and S. Teng. Nearly-linear time algorithms for graph partitioning, spar-
sification and solving linear systems. In STOC, pages 81–90, 2004.

[59] L. Valiant and G. Brebner. Universal schemes for parallel communication. In STOC,
pages 263–277, 1981.

128

[60] M. Yannakakis. A polynomial time algorithm for the min-cut linear arrangement of
trees. Journal of the ACM, pages 950–988, 1985. Preliminary version in FOCS, pages
274–281, 1983.

[61] N. Young. Sequential and parallel algorithms for mixed packing and covering. In
FOCS, pages 538–546, 2001.

129

