
1

Efficient and Explicit
Coding for Interactive Communication

Ran Gelles, Ankur Moitra and Amit Sahai

Abstract—We revisit the problem of reliable interactive com-
munication over a noisy channel, and obtain the first fully
explicit (randomized) efficient constant-rate emulation procedure
for reliable interactive communication. Our protocol works for
any discrete memoryless noisy channel with constant capacity,
and fails with exponentially small probability in the total length
of the protocol.

Following a work by Schulman [Schulman 1993] our simu-
lation uses a tree-code, yet as opposed to the non-constructive
absolute tree-code used by Schulman, we introduce a relaxation
in the notion of goodness for a tree code and define a potent tree
code. This relaxation allows us to construct an explicit emulation
procedure for any two-party protocol. Our results also extend to
the case of interactive multiparty communication.

We show that a randomly generated tree code (with suitable
constant alphabet size) is an efficiently decodable potent tree
code with overwhelming probability. Furthermore we are able
to partially derandomize this result by means of epsilon-biased
distributions using only O(N) random bits, where N is the depth
of the tree.

I. INTRODUCTION

In this work, we study the fundamental problem of reliable
interactive communication over a noisy channel. The famous
coding theorem of Shannon [1] from 1948 shows how to
transmit any message over a noisy channel with optimal rate
such that the probability of error is exponentially small in the
length of the message. However, if we consider an interactive
protocol where individual messages may be very short (say,
just a single bit), even if the entire protocol itself is very long,
Shannon’s theorem does not suffice.

In a breakthrough sequence of papers published in 1992
and 1993 [2], [3], Schulman attacked this problem and gave a
non-constructive proof of the existence of a general method to
emulate any two-party interactive protocol such that: (1) the
emulation protocol only takes a constant-factor longer than the
original protocol, and (2) if the emulation protocol is executed
over a noisy channel, then the probability that the emulation
protocol fails to return the same answer as the original protocol
is exponentially small in the total length of the protocol. These

Manuscript received January 00, 0000; revised January 00, 0000; accepted
January 00, 0000. This work was supported in part by a Fannie and John
Hertz Foundation Fellowship, a DARPA/ONR PROCEED award, NSF grants
1118096, 1065276, 0916574 and 0830803, a Xerox Foundation Award, a
Google Faculty Research Award, an equipment grant from Intel, and an Okawa
Foundation Research Grant.

R. Gelles and A. Sahai are with University of California, Los angeles,
USA (e-mail: gelles@cs.ucla.edu, sahai@cs.ucla.edu). A. Moitra is with the
Institute for Advanced Study, New Jersey, USA (e-mail: moitra@ias.edu).

This material is based upon work supported by the Defense Advanced
Research Projects Agency through the U.S. Office of Naval Research under
Contract N00014-11-1-0389. The views expressed are those of the author and
do not reflect the official policy or position of the Department of Defense or
the U.S. Government.

results hold for any discrete memoryless channel with constant
capacity, including the important case of a binary symmetric
channel1 with some constant crossover probability less than 1

2 .
Unfortunately, Schulman’s 1992 emulation procedure [2]

either required a nonstandard model in which parties already
share a large amount of randomness before they communicate,
where the amount of shared randomness is quadratic in the
length of the protocol to be emulated2, or required inefficient
encoding and decoding. On the other hand, Schulman’s 1993
emulation procedure [3] is non-constructive in that it relies on
the existence of absolute tree codes3. The only known proofs
of the existence of absolute tree codes are non-constructive,
and finding an explicit construction remains an important open
problem. Indeed picking a tree code uniformly at random
almost surely results in a bad tree code.
Our Results. In this work, we revisit the problem of reliable
interactive communication, and give the first fully explicit em-
ulation procedure for reliable interactive communication over
noisy channels with a constant communication overhead. Our
results hold for any discrete memoryless channel with constant
capacity (including the binary symmetric channel), and our
protocol achieves failure probability that is exponentially small
in the length of the original communication protocol4. To
obtain this result, we do the following:
• We introduce a new notion of goodness for a tree code,

and define the notion of a potent tree code. We believe
that this notion is of independent interest.

• We prove the correctness of an explicit emulation pro-
cedure based on any potent tree code. (This replaces the
need for absolute tree codes in the work of Schulman [3].)
This procedure is efficient given a black box for effi-
ciently decoding the potent tree code.

• We show that a randomly generated tree code (with
suitable constant alphabet size) is a potent tree code with
overwhelming probability. Furthermore, we show that a
randomly generated tree code (when combined with a
good ordinary error-correcting code) can be efficiently

1The binary symmetric channel with crossover probability p is one that
faithfully transmits a bit with probability 1− p, and toggles the bit with
probability p.

2Note that in Schulman’s 1992 shared randomness protocol (called the
“public coin” protocol in that paper [2]), if the parties communicated the
shared randomness to each other, this would result in an inverse polynomial
rate for the protocol overall. Schulman obtained his main result in the standard
model (called the “private coin” model there) by applying an inefficient
transformation, that destroys explicitness.

3We note, with apology, that what we are calling an “absolute tree code”
is what Schulman calls a “tree code.” We make this change of terminology
because we will introduce an alternative relaxed notion of goodness for a tree
code that will lead to our notion of a “potent tree code.”

4Here we assume that we know the length of the protocol in advance.

2

decoded with respect to any discrete memoryless channel
with constant capacity with overwhelming probability.

• Finally, we are able to partially derandomize the above re-
sult by means of epsilon-biased distributions. Specifically,
using highly explicit5 constructions of small bias sample
spaces [4], we give a highly explicit description of what
we call small bias tree codes of depth N using only O(N)
random bits. We show that such small bias tree codes are
not only potent with overwhelming probability, but that
the efficient decoding procedure above still works for any
discrete memoryless channel with constant capacity.

With the above work done, our result is immediate: Since
only O(N) random bits are needed for choosing a small bias
tree code, these random bits can be chosen once and for all,
encoded using an ordinary block error-correcting code, and
sent to the other party. Then a deterministic procedure can be
used to finish the protocol.

We then present an alternative explicit randomized con-
struction of potent tree codes that achieves better potency, but
with somewhat higher probability of failure. Our construction
is first based on the observation that the above application
of epsilon-biased sample spaces can be applied to partially
derandomizing random linear tree codes, achieving the same
level of potency as small bias tree codes. We can then compose
such codes with explicit constructions of weak tree codes [5]
which guarantee good distance for all length c logN length
divergent paths. This composition (which works by simply
concatenating symbols) achieves potency for sub-constant ε
with probability of failure exponentially small in εN .

We use this improved construction to extend our result to
the case of any number of parties. Our explicit emulation
procedure will have a O(logm) slowdown for m parties
(regardless of the length of the protocol). To obtain our result,
we adapt the (non-explicit) emulation procedure based on
absolute tree codes given by Rajagopalan and Schulman [6],
that achieved the same asymptotic slowdown of O(logm).

Also, another result we obtain relates to the recent work
of Braverman and Rao [7]. They give a new simulation
procedure, again based on absolute tree codes, which uses
a constant-sized alphabet and succeeds against an adversarial
channel as long as the fraction of errors is at most 1/4−ε (the
simulation tolerates a 1/8−ε error fraction when using a binary
alphabet). These results improve over the result of Schulman
which can only tolerate a fraction of errors that is below 1/240.
We further demonstrate the applicability of potent tree codes
by showing that the same result can be obtained once again by
replacing an absolute tree code with a potent tree. However,
like all previous work on the adversarial error case, we cannot
efficiently perform the decoding steps needed in order to run
the simulation procedure.

Our approach. We begin our investigation by asking the
question: What properties does a tree code need in order to be
useful for emulating protocols over noisy channels? (Without
loss of generality, assume that protocols only exchange one bit
at a time from each party.) For the purpose of this paper, a tree

5By a “highly explicit” object, we mean that the ith bit of the object should
be computable in time polylogarithmic in the size of the object.

code is simply any deterministic on-line encoding procedure in
which each symbol from the input alphabet Σ is (immediately)
encoded with a single symbol from the output alphabet S, but
the encoding of future input symbols can depend on all the
input symbols seen so far. As such, any such deterministic
encoding can be seen as a complete |Σ|-ary tree with each
edge labeled with a single symbol of the output alphabet S.

P

1

P’

Fig. 1. A very bad tree code with two long paths that violate the hamming
distance condition.

The usefulness of some kind of tree code for protocol
emulation seems immediate, since each party must encode
the bit it needs to send, before knowing what other bits it
needs to send later (which it will not know until it receives
messages from the other party). Let us associate every path
from the root to a node in the tree code with the concatenation
of output symbols along that path. Then, at first glance, it may
appear that all we need from the tree code is for “long-enough”
divergent paths to have large relative Hamming distance. That
is, suppose that the tree code illustrated in Figure 1 has the
property that the relative Hamming distance between the path
from node 1 to P and the path from node 1 to P’ is very small,
even though each of those paths is long. This would certainly
be problematic since the protocol execution corresponding to
each path could be confused for the other. As long as all
long divergent paths had high Hamming distance, however, it
seems plausible that eventually the protocol emulation should
be able to avoid the wrong paths. Also, it is important to note
that with suitable parameters, a randomly generated tree code
would guarantee that all long divergent paths have high relative
Hamming distance with overwhelming probability.

However, this intuition does not seem to suffice, because
while the protocol emulation is proceeding down an incorrect
path, one party is sending the wrong messages – based on
wrong interpretations of the other party’s communication.
After a party realizes that it has made a mistake, it must then be
able to “backtrack” and correct the record going forward. The
problem is that even short divergent paths with small relative
Hamming distance can cause problems. Consider the tree code
illustrated in Figure 2. In this figure suppose the path along
the nodes 1, 2, and 3 is the “correct” path, but that the short
divergent paths from 1 to A, 2 to B, and 3 to C all have
small relative Hamming distance to the corresponding portions
of the correct path. Then in the protocol emulation, because
of the bad Hamming distance properties, the emulation may
initially incorrectly proceed to node A, and then realize it made
a mistake. But instead of correcting to a node on the correct
path, it might correct to the node A’ and proceed down the

3

path to B. Then it may correct to B’, and so on. Because the
protocol emulation keeps making mistakes, it may never make
progress towards simulating the original protocol.

1

2

3
A

B
C

A’

B’

Fig. 2. A bad tree code with multiple short paths that violate the hamming
distance.

Schulman [3] dealt with this problem by simply insisting
that all divergent paths have large relative Hamming distance
in his definition of an absolute tree code. This would prevent
all such problems, and guarantee that any errors in emulation
could be blamed on channel errors. The downside of this
approach is that randomly generated tree codes would have
short divergent paths with small (even zero) relative Hamming
distance with overwhelming probability, and thus would not
be absolute tree codes.

Our main observation is that this requirement goes too far.
If a tree code has the property that for every path from root
to leaf, there are only a few small divergent branches with
low relative Hamming distance (as illustrated in Figure 3),
then the emulation protocol will be able to recover from these
few errors without any problems. We call such tree codes
potent tree codes since they are sufficiently powerful to enable
efficient and reliable interactive communication over a noisy
channel.

Fig. 3. A potent tree code with small number of bad paths.

More precisely, let ε and α be two parameters from the
interval [0, 1]. Define a path from node u to a descendant
node v (of length `) to be α-bad if there exists a path from u
to another descendant node w (also of length `) such that u
is the first common ancestor or v and w, and the Hamming
distance between the u-v path and the u-w path is less than α`.
(Note that the u-v path and the u-w path must diverge at u,
since u is the first common ancestor of v and w.) Then an

(ε, α)-potent tree code of depth N is such that for every path
Q from root to leaf, the number of nodes in the union of all
α-bad paths contained in Q is at most εN .

We show that randomly generated tree codes (with suitable
constant alphabet sizes) are potent tree codes with over-
whelming probability. As hinted above, because every root-
leaf path has good properties, a potent tree code will work
for emulating any (adversarially chosen) interactive protocol.
With some additional randomization, we show that within
such emulations, decoding of a randomly generated potent tree
code can be done efficiently even for an adversarially chosen
protocol.

Naturalness of our definition. We can elucidate the rela-
tionship between potent tree codes and Schulman’s absolute
tree codes through an analogy with ordinary error correcting
codes. Here, potent tree codes with ε = 0 correspond to
maximum distance separable (MDS) codes, yet just as MDS
codes are powerful and useful objects, but not necessary for
most applications, so too we can regard Schulman’s absolute
tree codes as powerful and useful, but not necessary for
important applications like reliable interactive communication
where potent tree codes suffice.

Other Related Work. Peczarski [8] provides a randomized
way for constructing absolute tree codes. The construction
succeeds with probability 1 − ε using alphabet with size
proportional to ε−1. Therefore, using Peczarski’s method to
construct an absolute tree code with exponentially small failure
probability ε, yields a polynomial slowdown; or a sub-linear
but super-logarithmic slowdown if ε is negligible (in the
length of the simulated protocol). Braverman [9] defines a
“product” operator on tree-codes which yields a determinis-
tic construction of an absolute tree codes which takes sub-
exponential time. Other methods for constructing an absolute
tree code are reported by Schulman [5], yet they require
polynomial-size alphabet (in the depth of the tree), resulting
in a logarithmic slowdown using Schulman’s emulation [3].
Schulman [5] also provides methods for constructing tree
codes with weaker properties such as satisfying the Hamming
distance property for only a logarithmic depth (which yields
a failure probability that is inverse-polynomial). Ostrovsky,
Rabani, and Schulman [10] consider a relaxed problem of
communication for control of polynomially bounded systems,
and gave explicit constructions of codes suitable for that
setting.

II. PRELIMINARIES

We begin with several definitions that we use later. Unless
otherwise mentioned, we use base 2 for all logarithms. Our
model of communication assumes that some noisy discrete
memoryless channel affects all communication between par-
ties. A representative example of such a channel is the binary
symmetric channel:

Definition 1. A binary symmetric channel (BSC) with error
probability pBSC is a binary channel {0, 1} → {0, 1} such
that each input bit is independently flipped with probability
pBSC .

4

This channel is memoryless because conditioned on any bit in
the input stream, the corresponding output bit is independent
of all other bits in the input.

Shannon’s coding theorem asserts the existence of an error-
correcting code that reduces the error probability (for a single
message) to be exponentially small, while increasing the
amount of transmitted information by only a constant factor.
We will not define the notion of a channel capacity formally,
but for a binary symmetric channel with pBSC < 1/2, the
corresponding channel capacity C is strictly greater than zero.

Lemma II.1 (Shannon Coding Theorem [1]). For any discrete
memoryless channel T with capacity C, an alphabet S and
any ξ > 0, there exists a code enc : S → {0, 1}n and dec :
{0, 1}n → S with n = O(1

C ξ log |S|) such that

Pr [dec(T (enc(m))) 6= m] < 2−Ω(ξ log |S|).

This coding theorem will not be sufficient for coding in
the context of interactive communication, since it assumes
the entire messages is known to the encoding procedure. We
require an encoding scheme in which the prefix of a message
can be encoded independently of later bits in the message.
The main structure we use is a tree code, introduced by
Schulman [3], [11].

Definition 2. The Hamming distance ∆(σ, σ′) of two strings
σ = σ1 . . . σm and σ′ = σ′1 . . . σ

′
m of length m over an

alphabet S, is the number of positions i such that σi 6= σ′i.

A tree code is a (usually regular) tree for which every arc i
in the tree is assigned a label σi over some fixed alphabet S.
Denote with w(s) the label of the arc between a node s and
its parent, and with W (s) the concatenation of the labels
along the path from root to s. We associate a message with
a root-to-leaf path, encoded as the symbols along the path. In
a typical application, one requires a tree code to have good
“distance” properties—divergent paths must be far apart in
Hamming distance. We call these tree codes (as introduced by
Schulman [11]), absolute tree codes:

Definition 3 (Tree Codes [11]). An absolute d-ary tree code
over an alphabet S, of distance parameter α and depth N ,
is a d-ary tree code such that for every two distinct nodes
s and r at the same depth,

∆(W (s),W (r)) ≥ αl,

where l is the distance from s and r to their least common
ancestor.

It is shown in [11] that for every distance parameter α ∈
(0, 1), there exists an absolute d-ary tree code of infinite depth,
labeled using |S| ≤ 2b(2d)

1
1−α c − 1 symbols. Although these

tree codes are known to exist, finding an efficient, explicit
construction remains an open question.

Tree codes can be used to communicate a node u between
the users, by sending the labels W (u). Decoding a transmis-
sion means recovering the node at the end of the route defined
by the received string of labels. In order to reduce the error
probability of the label transmission, each label is separately
coded using a standard error-correcting code. Note that the

incremental communication cost of specifying a node v that
is a child of u, after already transmitting the string W (u) is
just the cost of communicating the symbol w(v). Our goal in
most applications is to choose S to be constant-sized.

III. POTENT TREE CODES

A. Potent Tree Codes and Their Properties

We now formally define the set of potent trees and its
complement, the set of bad trees. The latter contains trees
that are not useful for our purpose: at least one of their paths
is composed of “too many” sub-paths that do not satisfy the
distance condition, i.e., the total length of these sub-paths
is at least ε fraction of the tree depth N , for some fixed
constant ε > 0.

Definition 4. Let u, v be nodes at the same depth h of a
tree-code, and let w be their least common ancestor, located
at depth h − `. We call the nodes u and v α-bad nodes (of
length `) if ∆(W (u),W (v)) < α`. Also, we call the path (of
length `) between w and u an α-bad path (similarly, the path
between w and v would also be a bad path). Additionally, we
call the interval [h− `, h] an α-bad interval (of length `).

Definition 5. An (ε, α)-bad tree is a tree of depth N that has
a path Q for which the union of α-bad intervals corresponding
to the α-bad subpaths of Q has total length at least εN . If the
tree is not (ε, α)-bad tree, then we will call it an (ε, α)-potent
tree code.

We stress that a bad tree is not necessarily bad in all of its
paths, since the existence of a single bad path is sufficient.

Suppose we randomly pick each label of the tree – call
this construction a Random Tree Code (RTC). A RTC is a
potent tree except with probability exponentially small in the
depth of the tree (see details in [12]). The drawback of such
a construction is that its description is exponential. However,
we observe that requiring the entire tree to be random can
be replaced with requiring any two paths along the tree to
be independent. Using a method of Alon, Goldreich, Håstad
and Peralta [4] we are able to construct a tree in which any
two paths are almost independent – and we call such a code a
Small-Biased Tree Code (SBTC). Moreover, such a tree has an
efficient description and the randomness required to seed the
construction is proportional to the depth of the tree (and hence
the total communication required by the original protocol).

B. Small-Biased Random Trees as Potent Trees

In order to agree on a RTC with alphabet S, the users need
to communicate (or pre-share) O(dN log |S|) random bits. Sur-
prisingly, we can reduce the description size to O(N log |S|)
and still have a potent code with overwhelming probability. To
accomplish this, we make use of Alon et al.’s construction of a
sample space with an efficient description that is ε-biased [4].

Definition 6 (ε-biased sample space [13], [4]). A sample space
X on n bits is said to be ε-biased with respect to linear tests
if for every sample x1 · · ·xn and every string α1 · · ·αn ∈
{0, 1}n r {0}n, the random variable y =

∑n
i=1 αixi mod 2

satisfies |Pr[y = 0]− Pr[y = 1]| ≤ ε.

5

We use [4, Construction 2] to achieve a sample space Bn

on n bits which is ε-biased with respect to linear tests. Let p
be an odd prime such that p > (n/ε)2, and let χp(x) be the
quadratic character of x (mod p). Let Bn be the sample space
described by the following construction. A point in the sample
space is described by a number x ∈ [0, 1, . . . , p − 1], which
corresponds to the n-bit string r(x) = r0(x)r1(x) · · · rn−1(x)

where ri(x) =
1−χp(x+i)

2 .

Proposition III.1 ([4], Proposition 2). The sample space Bn

is n−1√
p + n

p -biased with respect to linear tests.

We use this to construct a d-ary tree code of depth N
with labels over an alphabet S. Without loss of generality
we assume that |S| is a power of 2, and describe the tree as
the dN log |S|-bit string constructed by concatenating all the
tree’s labels in some fixed ordering. Since each n-bit sample
describes a tree-code, we are sometimes negligent with the
distinction between these two objects.

Definition 7. A d-ary Small-Biased Tree Code (SBTC) of
depth N , is a tree described by a sample from the sample
space Bn with n = dN log |S|, ε = 1/2cN log |S| for some
constant c which we choose later.

We note that small-bias trees have several properties which
are very useful for our needs. Specifically, every set of labels
are almost independent.

Definition 8 (almost k-wise independence [4]). A sample
space on n bits is (ε, k)-independent if for any k positions
i1 < i2 < · · · < ik and k-bit string ξ,

|Pr[xi1xi2 · · ·xik = ξ]− 2−k| ≤ ε

Due to a lemma by Vazirani [14] (see also Corollary 1
in [4]), if a sample space is ε-biased with respect to linear
tests, then for every k, the sample space is ((1−2−k)ε, k)-
independent. Thus, Bn is (ε, k)-independent, for any k.

Corollary III.2. Let T be a d-ary SBTC of depth N , then
any 1 ≤ k ≤ dN labels of T are almost independent, that
is, any k log |S| bits of T ’s description are (2−cN log |S|, k)-
independent.

Finally, let us argue that such a construction is efficient (i.e.,
highly explicit). Let p = O((n/ε)2) and assume a constant
alphabet |S| = O(1). Each sample x takes log p = O(N)
bits, and each ri(x) can be computed by poly(N) operations.

We now prove a main property about SBTCs. Except with
negligible probability, a SBTC is potent.

Theorem III.3. Suppose ε, α ∈ (0, 1). Except with prob-
ability 2−Ω(N), a d-ary SBTC of depth N over alphabet
|S| > (2d)(2+2/ε)/(1−α) is (ε, α)-potent.

Proof: We show that the probability of a d-ary SBTC
of depth N to be (ε, α)-bad is exponentially small for a
sufficiently large constant size alphabet S.

For a fixed node v, we bound the probability that v is α-bad
of length l, i.e., the probability that there exists a node u at
the same depth as v which imposes a bad interval of length l.
Denote by Wl(u) the last l labels of W (u). Since the tree is

(1/2cN log |S|, 2l log |S|)-independent, then Wl(u) and Wl(v)
are almost independent.

Lemma III.4. For any two nodes v, u at the same depth with
a common ancestor l levels away,

Pr[∆(W (u),W (v)) = j] ≤
(

l

l − j

)(
1

|S|

)l−j
+ 2−Ω(N).

Proof: Note that W (u) and W (v) are identical ex-
cept for the last l labels. Using the fact that the la-
bels are almost independent we can bound the probability
Pr[∆(W (u),W (v)) = j] ≤ (2−2l log |S| + 2−cN log |S|) ×
22l log |S|(l

l−j
) (

1
|S|

)l−j (|S|−1
|S|

)j
. Choosing c > 3 completes

the proof. For the ease of notation, in the following we use

2
(
l
l−j
) (

1
|S|

)l−j
as an upper bound of the above probability.

The above lemma leads to the following bound on the
probability that two (fixed) nodes at the same depth are α-
bad.

Corollary III.5. Pr[∆(W (v),W (u)) ≤ αl] ≤ 2 2l

|S|(1−α)l .

For a fixed node v, the probability that there exists a node
u 6= v with least common ancestor l level away such that v
and u do not satisfy the distance requirement, is bounded by∑
u 2 2l

|S|(1−α)l ≤ 2(2d/|S|1−α)l, using a union bound.
Assume that the tree is bad, that is, there exists a path from

root to some node z with bad intervals of total length εN .
Due to the following Lemma III.6 there must exist disjoint
bad intervals of total length at least εN/2. Note that there are
at most

∑N
j=εN/2

(
N
j

)
≤ 2N ways to distribute these disjoint

intervals along the path from root to z.

Lemma III.6 ([11]). Let `1, `2, . . . , `n be intervals on N,
of total length X . Then there exists a set of indices I ⊆
{1, 2, . . . , n} such that the intervals indexed by I are disjoint,
and their total length is at least X/2. That is, for any i, j ∈ I ,
`i ∩ `j = ∅, and

∑
i∈I |`i| ≥ X/2.

A proof is given in [11].
Consider again the path from root to z, and the disjoint

bad intervals of total length at least εN/2 along it. There
are at most 2N labels involved (along both the path to z
and the colliding paths). Since the intervals are disjoint, their
probabilities to occur are almost independent as well, and
the probability that a specific pattern of intervals happens is
bounded by their product. Hence, the probability for a SBTC
to be (ε, α)-bad is bounded by

Pr[SBTC is (ε, α)-bad]

≤
∑
z

∑
`1,`2,... disjoint,
of length≥εN/2

∏
i

2(2d/|S|1−α)`i

≤ dN · 2N (4d/|S|1−α)
∑
i `i ≤ (2d)N (4d/|S|1−α)εN/2

which is exponentially small in N for a constant alphabet size
|S| > (4d · (2d)2/ε)1/(1−α).

6

IV. POTENT TREES APPLICATIONS

A. Simulation with Adversarial Errors

In a recent paper [7] Braverman and Rao show how to
simulate any 2-party protocol over an adversarial channel, as
long as the fraction of errors is at most 1/4 − ε2, for any
constant ε2 > 0. Their simulation is also based on absolute
tree codes.

We show that the analysis of Braverman and Rao can be
repeated using a (ε1, 1− ε2)-potent tree instead of an absolute
tree code, and withstand error rate of up to 1/4 − 2ε1 − ε2.
Intuitively, for every node which is not (1−ε2)-bad, the potent
tree code behaves exactly like an absolute tree code (i.e., many
channel errors are required for having a decoding error). On
the other hand, for every possible path along the potent tree,
there are at most ε1N nodes which are (1 − ε2)-bad, that
is, at most ε1N additional times in which the scheme differs
from an absolute tree code (in each one of the directions of
communication). This gives an algorithm that withstand up to
1/4− (2ε1 + ε2) fraction of (adversarial) errors.

Theorem IV.1. For any 2-party binary protocol π and any
constant ε > 0 there exist a protocol Π that simulates π over
an adversarial channel in which the fraction of errors is at
most 1/4 − ε, uses potent tree-codes with a constant-sized
alphabet and imposes a constant slowdown.

We re-iterate that like all previous work on the adversarial
error case, we cannot efficiently perform the decoding steps
needed in order to run the simulation procedure.

The proof follows the analysis of Braverman and Rao [7]
in a straightforward way, assuming the tree code in use is
(ε1, 1−ε2)-potent (that is, α = 1−ε2). In [7] the users consider
π as a binary tree T . Each path in the tree describes a possible
transcript of π, where odd levels describe party A’s outputs and
even levels describe B’s outputs. The users use an absolute
tree code to communicate the vertices of T according to their
inputs.

Assume that at time t user A sends at and let a′t be the label
received at B’s side (similarly, user B sends bt, etc.). Upon
receiving a′t, user B decodes the received string a′1, . . . , a

′
t and

obtains a possible transcript of π, from which he can compute
his next step in π. This process is repeated for R = dT/ε2e
times.

Let D(a′1, . . . , a
′
t) denote a set of vertices in T described by

decoding the received string. We denote with m(i) the largest
number such that the first m(i) symbols of D(a′1, . . . , a

′
i)

are equal to a1, . . . , am(i) and the first m(i) symbols of
D(b′1, . . . , b

′
i) are equal to b1, . . . , bm(i).

Define N (i, j) to be the number of transmission errors in
the [i, j] interval of the simulation (for both users). In the
analysis of [7], a lower bound on the number of errors is
obtained assuming that simulation fails. We now show that
using a (ε1, 1 − ε2)-potent tree, the lower bound changes by
at most ε1.

The analysis of [7] begins by considering a simpler sim-
ulation in which the alphabet size might be polynomial,
and then extends the result to a constant alphabet size in a
straightforward way. In order to ease the proof, we show that

the theorem holds for the simple protocol with polynomial
alphabet. Extending the result to the constant-alphabet protocol
is immediate.

Proof: (Theorem IV.1.) We redefine the quantity N
to allow us consider possible errors caused by the tree in
addition to channel errors. Let N (i, j, d) be the number of
communication errors between rounds i and j, assuming that
the total length of bad intervals along the paths ai, . . . , aj and
bi, . . . , bj in the potent tree, is at most d.

Lemma IV.2 (replacing lemma 4 of [7]). N (m(i)+1, i, d) ≥
(1− ε2)(i−m(i))/2− d

Proof: Without loss of generality, we assume that the
(m(i) + 1)-th symbol in D(a′1, . . . , a

′
i) differs from am(i)+1.

Consider two cases. If the node ai is not α-bad, then the only
way to get a decoding error of magnitude l = i−m(i) is if at
least αl/2 = (1− ε2)(i−m(i))/2 communication errors have
happened (this is identical to [7]).

In the second case, the node ai is α-bad. If i − m(i) ≤
d the lemma is trivial. Otherwise, ai must be an α-bad
node of maximal length at most d. ∆(a1 · · · ai, a′1 · · · a′i) ≥
α(i−m(i)) and again such a decoding error implies at least
(1− ε2)(i−m(i))/2 communication errors.

The quantity t(i) is defined by [7] as the earliest round j
such that both users announced the first i edges of T within
their transmissions. The following Lemma is stated in [7].

Lemma IV.3 (Lemma 5 of [7]). For i ≥ 0, k ≥ 1, if i+ 1 <
t(k), then m(i) < t(k − 1)

The proof of this lemma is independent of the tree code in use,
and thus it is valid for simulation with potent tree as well.

Last, we show the following lower bound on the number of
errors.

Lemma IV.4 (replacing lemma 6 of [7]). For i ≥ −1, k ≥ 0,
if i+ 1 < t(k), then N (1, i, d) ≥ (i− k + 1)(1− ε2)/2− d

Proof: We prove by induction. N (1, i, d) =
N (1,m(i), x) +N (m(i) + 1, i, d−x) assuming that the total
length of the imposed bad-intervals between rounds 1 and
m(i) (that is, along the paths a1, . . . , am(i) and b1, . . . , bm(i))
is exactly x, 0 ≤ x ≤ d. Lemma IV.2 guarantees that
N (m(i) + 1, i, d− x) ≥ (1− ε2)(i−m(i))/2− (d− x). By
Lemma IV.3, m(i) < t(k − 1) and we can use the induction
hypothesis on the first part, which gives

N (1,m(i)−1, x) ≥ ((m(i)−1)−(k−1)+1)(1−ε2)/2−x .

Summing these two bounds proves the lemma.
Note that the in the case of an absolute tree code, d = 0, which
gives exactly Lemma 6 of [7]. With a potent tree, d ≤ 2ε1N
which reduces the maximal error rate by 2ε1.

In a similar way Lemma 8 of [7] can be adapted to potent
trees, which completes the proof of Theorem IV.1, by setting
ε ≥ ε1/2 + ε2.

B. Efficient Simulation with Random Errors

In the case of a noisy channel, our simulation (based
on potent tree-codes) can also be implemented efficiently

7

and fails only with exponentially-small probability. In 1992
Schulman proposed an efficient randomized scheme that solves
this problem [2] in an alternative non-standard model which
requires a quadratic number of shared randomness between
parties ahead of time6. By using potent trees (realized via
SBTCs), we improve the result of Schulman and obtain a
linear communication (i.e., a constant dilation) which includes
the communication required to agree on the same SBTC. The
scheme we obtain is efficient and constructive. We then extend
our proof to any multiparty protocol following the analysis
of Rajagopalan and Schulman [6], again, by replacing the
absolute tree code with a potent tree.

Our simulation follows the method of Schulman [3], [11]
(See model and full details in the Appendix). We prove the
following results.

Theorem IV.5. There exists a randomized simulation that runs
in expected polynomial time and simulates a 2-party proto-
col π of length T over a BSC. The length of the simulation
is always at most O(T), and the simulation succeeds with
probability 1−2−Ω(T) over the channel errors and the choice
of the SBTC.

We extend our result to the m-party case [6], and show the
following.

Theorem IV.6. There exists a constructible and efficient
simulation that computes any n-party protocol π of length T
using a BSC for communication. The simulation succeeds with
probability 2−Ω(T), and imposes a dilation of O(m).

See proof in the Appendix.
Rajagopalan and Schulman [6] give a dilation of

O(log (r + 1)) where r ≤ m is the maximal level of con-
nectivity. In the following Section V we give a construction
of more “potent” potent trees, and achieve an improved
O(log(r+1)) dilation too, yet the failure probability increases
to 2−Ω(T/m).

V. GREATER POTENCY AND IMPROVED MULTIPARTY
PROTOCOLS

In this section we give a construction of a d-ary (ε, α)-
potent tree of depth N which, for a constant α and an
arbitrary ε, requires a constant-size alphabet and fails with
probability 2−Ω(εN).

Theorem V.1. For a constant α ∈ (0, 1) and arbitrary ε, there
exists an efficient and explicit construction of a d-ary (ε, α)-
potent tree-code of depth N over a constant-size alphabet S,
such that the labels of any two divergent paths of length k ≤
N are almost k-independent. The construction succeeds with
probability at least 1− 2−Ω(εN).

If we set ε = O(1/m), then this construction along with
the analysis of Theorem IV.6 immediately yields the following
result.

6The trivial way to convert this protocol to the standard model without
shared randomness would be to have one user send this shared randomness
to the other. However, no efficient derandomization is known so far, although
Schulman gave an inefficient method to reduce the number of bits required
to linear in the depth, sacrificing efficiency of the simulation.

Theorem V.2. There exists a constructible and efficient simu-
lation that computes any m-party protocol π (in which the
maximum connectivity is r) of length T over a BSC. The
simulation achieves dilation O(log(r + 1)) and takes O(T)
rounds. The simulation succeeds with probability at least
1− 2−Ω(T/m).

Proof: (Theorem V.1) Our construction consists of two
parts. In the first part we build a “weak” tree-code T1 in
which each two paths of length at most logN satisfy the
distance property. Such a tree can easily be constructed using
an efficient deterministic method by Schulman [5]: we find
an absolute tree code of depth 2 logN over some constant
size alphabet S1, and then, starting at depth logN we overlap
another copy of the absolute tree code at every depth that is a
multiple of logN , so that each label of T1 is a concatenation
of the labels of the two overlapping absolute tree code.

In the second part we construct a linear-SBTC T2 in the
following way. Consider the small-biased random7 lower-
triangular matrix GN×N over some finite field F, say of
characteristic at least d. We will set our second alphabet S2 =
F. The labels assigned to the path a1, a2, a3, . . . , aN , where
ai ∈ {0, 1, . . . , d − 1}, are given by G · (a1, a2, . . . , aN)T. It
is easy to verify that each label does not depend on the path
beneath, which makes this construction a valid tree code.

We get our final tree code T over S = S1 × S1 × S2, by
concatenating, for each arc, the label of the matching arc in
T1 and in T2. Note the following properties: any two divergent
paths in T which do not satisfy the distance property must be
of length at least logN . Moreover, due to the linearity of T2, it
is clear that there exists an α-bad path at depth d of length `
if and only if the path 0̄ = (0, 0, . . . , 0) has an α-bad path
contained within it at the same depth d and of the same total
length `. This means that in order to bound the probability
of T to be α-bad we only need to analyze bad paths of length
at least logN where the common ancestor lies on the 0̄ path.
Last, note that for any two divergent paths of length k ≤ N
in T2, the labels are almost k-independent (however, in contrast
to the SBTC, this is not the case for labels which are not on
two divergent paths).

We now show that a constant alphabet size is sufficient for T
to be (ε, α)-potent with probability 1−2−Ω(εN). Assume that
T is α-bad, that is, the 0̄ path have bad sub-paths of total
length at least εN (and thus, this path is α-bad both in T1

and T2. We focus on T2 for the rest of this analysis). Using
Lemma III.6, there exists bad sub-paths l1, l2, . . . , ln of total
length

∑
i li > εN/2. Note that for any i, we have that li >

logN , thus we can consider only n ≤ εN/2 logN . Trivially,
there are at most N2n ≤ 2εN ways to distribute the intervals
along the 0̄ path. As analyzed above (see Corollary III.5), the
probability that a node u, that imposes the fixed ith interval of
length li, exists is at most 2(2d/|S2|1−α)li .

Pr[T is α-bad] ≤
∑

l1,l2,... disjoint,
of length≥εN/2

∏
i

2(2d/|S2|1−α)li

7That is, the O(N2 log |F|) bits required to define G are drawn from a
small-biased sample space Bn with bias 2−O(N log |F|).

8

≤ 2εN2n(2d/|S2|1−α)
∑
i li ≤ (16d/|S|1−α)εN/2,

thus, for a constant alphabet |S2| > (16d)1/(1−α), the claim
holds.

ACKNOWLEDGMENTS

We would like to thank Leonard Schulman and Anant
Sahai for many useful discussions during this research. We
also thank Madhu Sudan, David Zuckerman, and Venkatesan
Guruswami for several helpful conversations. We would like
to thank Alan Roytman for miscellaneous remarks.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 1, pp. 3–55, 2001, originally appeared in Bell System Tech. J. 27:379–
423, 623–656, 1948.

[2] L. J. Schulman, “Communication on noisy channels: a coding theorem
for computation,” Foundations of Computer Science, Annual IEEE
Symposium on, vol. 0, pp. 724–733, 1992.

[3] ——, “Deterministic coding for interactive communication,” in STOC
’93: Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing. New York, NY, USA: ACM, 1993, pp. 747–756.

[4] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, “Simple constructions
of almost k-wise independent random variables,” Random Structures &
Algorithms, vol. 3, no. 3, pp. 289–304, 1992.

[5] L. J. Schulman, “Postscript to “coding for interactive commu-
nication”,” 2003, schulman’s homepage. http://www.cs.caltech.edu/
∼schulman/Papers/intercodingpostscript.txt.

[6] S. Rajagopalan and L. Schulman, “A coding theorem for distributed
computation,” in STOC ’94: Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing. New York, NY, USA: ACM,
1994, pp. 790–799.

[7] M. Braverman and A. Rao, “Towards coding for maximum errors in
interactive communication,” in Proceedings of the 43rd annual ACM
symposium on Theory of computing, ser. STOC ’11. New York, NY,
USA: ACM, 2011, pp. 159–166.

[8] M. Peczarski, “An improvement of the tree code construction,” Infor-
mation Processing Letters, vol. 99, no. 3, pp. 92–95, 2006.

[9] M. Braverman, “Towards deterministic tree code constructions,” Elec-
tronic Colloquium on Computational Complexity (ECCC) TR11-064,
2011.

[10] R. Ostrovsky, Y. Rabani, and L. J. Schulman, “Error-correcting codes
for automatic control,” in FOCS, 2005, pp. 309–316.

[11] L. J. Schulman, “Coding for interactive communication,” IEEE Trans-
actions on Information Theory, vol. 42, no. 6, pp. 1745–1756, 1996.

[12] R. Gelles and A. Sahai, “Potent Tree Codes and their applica-
tions: Coding for Interactive Communication, revisited,” Apr. 2011,
arXiv:1104.0739 (cs.DS).

[13] J. Naor and M. Naor, “Small-bias probability spaces: efficient construc-
tions and applications,” in Proceedings of the twenty-second annual
ACM symposium on Theory of computing, ser. STOC ’90. New York,
NY, USA: ACM, 1990, pp. 213–223.

[14] U. V. Vazirani, “Randomness, Adversaries and Computation,” Ph.D.
dissertation, EECS, UC Berkeley, 1986.

[15] J. M. Wozencraft, “Sequential decoding for reliable communication,”
Massachusetts Institute of Technology, Tech. Rep. 325, 1957.

[16] B. Reiffen, “Sequential encoding and decoding for the discrete mem-
oryless channel,” Research Laboratory of Electronics. Massachusetts
Institute of Technology, Tech. Rep. 374, 1960.

[17] R. M. Fano, “A heuristic discussion of probabilistic decoding,” IEEE
Transactions on Information Theory, vol. 9, no. 2, pp. 64–74, 1963.

APPENDIX

A. Interactive Protocol Over Noisy Channels

We consider a distributed computation of a fixed function f ,
performed by two users who (separately) hold the inputs. Let
π be a 2-party distributed protocol which on inputs xA, xB ,
both parties output the value f(xA, xB). In each round, A and

B send a single message to each other, based on their input
and messages previously received. The protocol π assumes an
ideal communication channel which contains no errors. Under
these assumptions, π takes T rounds of communication to
output the correct answer, where one round means both users
simultaneously send each other a message.

In a more realistic model, the channel between A and B
may be noisy, so that each message needs to be encoded in
order to identify and correct possible errors. Shannon’s Coding
Theorem [1] (see Lemma II.1) shows that an exponentially
small decoding error in the length of the message |m| can
be achieved, if the message is encoded into a code word of
length c|m|, for some constant c determined by the channel
capacity. However, if we use a standard Shannon code to
encode multiple messages, then the probability of having at
least a single decoding error is proportional to the number of
messages sent, rather than arbitrarily small. In this paper we
explore the worst case scenario of the above tradeoff between
the number of messages and their size. Namely, we assume
that a total amount of T bits of information is divided into
T messages of a single bit each. Our aim is to send O(T)
bits over the channel and obtain an exponentially small failure
probability. We assume that in each round the users send
only a single bit, which is the worst case in terms of the
communication complexity. Indeed, if many bits are grouped
into a single message they can be coded in a more efficient
way.

Let us formalize this model of interactive communication
and the associated protocol π. During each round, each user
i ∈ {A,B} sends one bit according to its input xi and the
messages received so far. Let πi(xi, ∅) denote the first bit sent
by user i, and let π(x, ∅) ∈ {00, 01, 10, 11} be the two bits
transmitted in the first round by A and B respectively, where
x = xAxB . Generally, let m1, . . . ,mt be the first t two-bit
messages exchanged during the protocol, then the information
sent in round t+ 1 is defined by π(x,m1 . . .mt).

GameTree

00 01

00 01 10 11

10 11

Fig. 4. An illustration of the GameTree.

The computation (over a noiseless channel) can be described
as a single route γπ,x along the GameTree, a 4-ary tree of
depth T (see Figure 4). The path γπ,x begins at the root of the
tree and the tth edge is determined by the 2 bits exchanged
in the tth round, i.e., the first edge in the path is π(x, ∅), the
second is π(x, π(x, ∅)), etc. Also, for a vertex v ∈ GameTree,
let πi(xi, v) be the bit transmitted by user i at some round
t+1 = depth(v)+1 if the information received in the previous
t rounds is the labels along the path from root to v.

http://www.cs.caltech.edu/~schulman/Papers/intercodingpostscript.txt
http://www.cs.caltech.edu/~schulman/Papers/intercodingpostscript.txt

9

B. Simulating π Over a Noisy Channel
Our goal is to simulate a run of π over a noisy channel.

In order to do so, we use the method of Schulman [11]. The
idea behind the simulation is the following. Each user keeps
a record of (his belief of) the current progress of π, described
as a pebble on one of the GameTree nodes.

Each round, according to the transmissions received so far,
the user makes a guess for the position of the other user’s
pebble, and infers how his own pebble should move. The
user sends a message that describes the way he moves his
pebble (out of six possible movements corresponding to the 4
child nodes, ‘H’ to keep the pebble at the same place or ‘B’
to back up to the parent node) and his output bit according
to his current position on the GameTree. Each one of these
12 options represents a child in a 12-ary tree denoted as the
StateTree (Figure 5).

StateTree

00x0 00x1 01x0 01x1 10x0

. . .

10x1 11x0 11x1 Hx0 Hx1 Bx0 Bx1

Fig. 5. An illustration of the StateTree.

The user communicates8 the label assigned to the edge in
the StateTree that describes his move. The state of the user is
the current node on the StateTree, starting from its root, and
changing according to the edge communicated. The protocol
is given in Figure 6 (described for user A; the protocol for B
is identical).

Informally speaking, the simulation works since the least
common ancestor of both users’ pebbles always lie along the
path γπ,x. If both users take the correct guess for the other
user’s pebble position, they simulate π correctly and their
pebbles move along γπ,x. Otherwise, their pebbles diverge,
yet the common ancestor remains on γπ,x. On the following
rounds, when the users acknowledge an inconsistency in the
pebbles’ positions, they move their pebbles backwards until
the pebbles reach their common ancestor, and the protocol
continues. Repeating the above process for N = O(T) rounds
is sufficient for simulating π with exponentially small error
probability (over the channel errors). We refer the reader
to [11] for a detailed description of the protocol and its
analysis.

We now replace the (non-constructive) absolute tree code
originally used by Schulman by a potent tree, and show that

8We imply here using a (standard) error-correcting code in order to send
the label over the noisy channel, with constant slowdown (as given by
Lemma II.1). Throughout the paper, any transmission of a label is to be
understood in this manner.

9For the simulation to be well defined, we must extend π to N rounds. We
assume that in each of the N − T spare rounds, π outputs 0 for each user
and every input.

Begin with own pebble at the root of GameTree and own state
SA at the StateTree root’s child labeled H×πA(xA, ∅). Repeat
the following N times9:

1) Send w(SA) to user B.
2) Given the sequence of messages Z received so far from

user B, guess the current state g of B as the node that
minimizes ∆(W (g), Z). From g, infer B’s assumed pebble
position, pebble(g), as well as B’s assumed message b =
πB(xB , pebble(g))

3) Set own pebble’s movement and new state according to
the current position v of your pebble:
a) If v = pebble(g) then move pebble according to the

pair of bits (πA(xA, v), b) to a state v′. The new state
is SA’s child labeled with the arc (πA(xA, v), b) ×
πA(xA, v

′).
b) If v is a strict ancestor of pebble(g): own movement is

H , and the next state is along the arc H × πA(xA, v).
c) Otherwise, move pebble backwards. New state is along

the arc B × πA(xA, v
′) where v′ is the parent of v.

Fig. 6. Interactive protocol Simπ for noisy channels [11].

the simulation still succeeds with overwhelming probability.
Moreover, if we are given an oracle to a tree code decoding
procedure, the obtained protocol is efficient.

Theorem A.1. Given a (1
10 , α)-potent tree code with a

constant-size alphabet |S|, an oracle for a decoding procedure
of that tree code, and a protocol π of length T , the protocol
Simπ (Figure 6) efficiently simulates π, takes N = O(T)
rounds and succeeds with probability 1 − 2−Ω(T) over the
channel errors, assuming an error correcting code with (label)
error probability p < 2−42/α.

In Section C we show a decoding procedure that is efficient
on average, given that the tree is SBTC. This immediately
leads to the following Theorem.

Theorem A.2. There exists an efficient simulation that com-
putes any distributed 2-party protocol π of length T , using
a BSC for communication and a pre-shared SBTC. The
simulation imposes a constant slowdown, and succeeds with
probability 1−2−Ω(T) over the channel errors and the choice
of the SBTC.

We now give the proof idea for Theorem A.1 and later
complete the formal proof. We begin by defining a good move:
a move that advances the simulation of π in one step, and a
bad move: an erroneous step in the simulation that requires
us to back up and re-simulate that step. We show that any
bad move is associated with a decoding error, i.e., recovering
a wrong node u, due to channel errors or tree defects. This
allows us to bound the number of bad moves by bounding
the probability for channel errors and tree defects. The latter
is exponentially small due to the properties of Shannon codes
and the properties of potent trees.

Recall the following properties of the simulation Simπ .

Lemma A.3. The least common ancestor of the two pebbles
lies on γπ,x.

10

Lemma A.4. Let vA and vB be the positions of the two
pebbles in the GameTree at some time t, and let v̄ denote
the least common ancestor of vA and vB . Define the mark of
the protocol as the depth of v̄ minus the distance from v̄ to
the further of vA and vB .

If during a specific round, both users guess the other’s state
correctly (a good move), the mark increases by 1. Otherwise
(a bad move), the mark decreases by at most 3.

Proofs for both the above lemmas are given in [11].
Our goal is to show that the probability of having more

than cN bad rounds is exponentially small. By setting c = 1/5
and N = 5T we guarantee that at the end of the calculation
the mark will be (at least) T . Since the common ancestor of
the pebbles always lies along the path γπ,x, a mark of value T
indicates that the common ancestor has reached depth T , and
π was successfully simulated.

For a bad round at time t, we assume that (at least) one
of the users takes a wrong guess of the (other user’s) current
state. Suppose that the least common ancestor of the right state
and the wrongly guessed state in the StateTree, are distanced
l levels away (i.e., an error of magnitude l). Define the error
interval (of length l) corresponding to the erroneous guess as
[t− l, t].

We now show that given a potent tree, Simπ simulates π
over a noisy channel with overwhelming probability.

Proof: (Theorem A.1). Suppose the parties share a
(1

10 , α)-potent tree code10, for some 0 < α < 1. Assume
that a specific run of a simulation failed, and thus it must be
that more than N/5 errors have occurred.

Note that the (failed) simulation defines a path from the
root of the StateTree to one of its leaves. This path contains
bad intervals of total length at most N/10. We assume a worst
case scenario in which each α-bad node causes a bad move
in the simulation. In that case, the probability to have N/10
additional bad moves in the remaining nodes, is exponentially
small.

Consider a specific bad move at time t caused by erro-
neously decoding a node which is not α-bad. Namely, the
user guesses a wrong node r instead of the real transmitted
node s. For an error of magnitude li, W (s) and W (r) are
identical from the root to the least common ancestor of r and s
at level t − l. Since the decoding is done by minimizing the
Hamming distance, making such a wrong guess is independent
of transmissions prior to round t − l. It follows that such an
error (of magnitude l) can happen only if at least αl/2 channel
errors have occurred during the last l rounds. Due to the same
reason, it is easy to see that decoding errors of which the error
intervals are disjoint, are independent.

We consider again the bad moves at nodes which are not
α-bad. Each such a bad move (i.e., a decoding error) imposes
an error interval of length li > 1, such that the length of the
union of these intervals is at least N/10. Each such an error
happens with probability at most

∑li
j=αli/2

(
li
j

)
pj ≤ 2lipαli/2.

10Theorem III.3 guarantees that as long as |S| > (2d)22/(1−α), only
exponentially-small fraction of the SBTCs are (1

10
, α)-bad. Therefore, for

obtaining a potent tree with overwhelming probability, we require log |S| ≥
101.

Due to Lemma III.6 we can find a set of disjoint intervals of
length at least N/20. Since the intervals are disjoint, these
errors are independent, and their probability to jointly occur
is bounded by ∏

i

2lipαli/2 = (2pα/2)l.

We conclude the proof by bounding the probability for
having any possible error pattern of total length at least N/20
along the bad moves associated with nodes which are not α-
bad, by using a union bound over all the

∑N
j=N/20

(
N
j

)
≤ 2N

possible error patterns, for each one of the users. The proba-
bility is bounded by∑

user U

∑
pattern of

l≥N/20 errors

(2pα/2)l ≤ 2 · 2N (2pα/2)N/20,

which is 2−Ω(N) = 2−Ω(T) for p < 2−42/α.

C. Efficient Decoding

A decoding process outputs a node u (at depth t)
that minimizes the Hamming distance ∆(W (u), r), where
r = r1r2 · · · rt is the received string of labels. Although the
above Theorem A.1 is proven assuming an oracle to tree-
code decoding procedure, this requirement is too strong for
our needs. Since we count any node which is α-bad as an
error (even when no error has occurred), it suffices to have an
oracle that decodes correctly given that the (transmitted) node
is not α-bad.

We follow techniques employed by Schulman [11] (which
are based on ideas from [15], [16], [17]), and show an
efficient decoding that succeeds if the node is not α-bad. While
the decoding process of [11] is based on the fact that the
underlying tree is an absolute tree code, in our case the tree
code is a SBTC.11

The decoding procedure is the following. For a fixed
time t, let gt−1 be the current guess of the other user’s state,
and denote the nodes along the path from root to gt−1 as
g1, g2, . . . , gt−1. Set gt to be the child node of gt−1 along
the arc labeled with rt, if such exists (break ties arbitrarily).
Otherwise, set gt as an arbitrary child of gt−1.

Recall that Wm(u) denotes the m-suffix of W (u), i.e., the
last m labels along the path from the tree’s root to u. We look
at the earliest time i such that ∆(riri+1 · · · rt,Wt−i+1(gt)) ≥
α(t− i)/2. For that specific i, exhaustively search the subtree
of gi and output the node u (at depth t) that minimizes the
Hamming distance ∆(r1r2 · · · rt,W (u)).

Note that when gt is an α-bad node of maximal length l,
any path from root to some other node g′t, where the least
common ancestor of gt and g′t is located l′ > l levels
away, must have a Hamming distance ∆(Wl′(gt),Wl′(g

′
t)) ≥

αl′. Therefore, if all the suffixes of length l′ > l satisfy
∆(rt−l′+1 · · · rt,Wl′(gt)) < αl′/2, we are guaranteed to find
the node minimizing the Hamming distance within the subtree
of gt−l. On the other hand, it is possible that the decoding
procedure outputs a node u which is a descendant of gt−l,

11A similar proof works also for a RTC, see [12].

11

yet does not minimize the Hamming distance. This happens
when the decoding procedure explores a smaller subtree, i.e.,
i > t− l.

The following proposition bounds the probability for a
decoding error of magnitude l.

Proposition A.5. Assume a SBTC is used to communicate
the string W (v) over a BSC. Using the efficient decoding
procedure (with some constant α ∈ (0, 1)), the probability
for a specific user to make a decoding error of magnitude l

is bounded by 2
(

4d
|S|

)l
+ 2

(
2d
|S|1−α

)l
, assuming an error

correction code with (label) error probability p < |S|−2.

Proof: A decoding error of magnitude l occurs if the
decoding process outputs a node u 6= v, such that the common
ancestor of u, v is l levels away. Such an error can happen due
to one of the following reasons:

(i) For the received string r = r1r2 . . . rl it holds that
∆(r,W (u)) ≤ ∆(r,W (v)). This happens when the
Hamming distance ∆(W (u),W (v)) is j = 0, 1, . . . , l and
more than j/2 channel errors occurred.

(ii) The decoding process did not return the node that mini-
mizes the Hamming distance.

Note that we only need to consider the paths from root to u
and to v and thus use the 2N -wise independence of the tree’s
labels. Recall that the probability to have a specific set of l <
2N labels is 2−cN log |S| away from uniform with c = O(1),
and that the probability for a given Hamming distance between
W (u) and W (v) is bounded by Lemma III.4. Let p < |S|−2

be the maximal label error of the channel, and for i ∈ N
let Ei be the event that at least i channel (symbol) errors have
occurred. Using a union bound for every possible node u, the
probability of part (i) is bounded by

Pr[Error of magnitude l]

≤
∑
u

l∑
j=0

Pr[∆(W (v),W (u)) = j] Pr[Ej/2]

≤ dl
l∑

j=0

2

(
l

l − j

)(
1

|S|

)l−j l∑
k=j/2

(
l

k

)
pk(1− p)l−k

≤ 2 · dl
l∑

j=0

(
l

l − j

) l∑
k=j/2

(
l

k

)
|S|j−l|S|−2k

≤ 2 · dl · 2l · 2l · |S|−l ,

which is exponentially small in l as long as |S| > 4d.
For part (ii), note that the decoding process does not

output the node that minimizes the Hamming distance if
l > t− i, for i determined by the decoding procedure.
For the output node u, ∆(rt−l+1 · · · rt,Wl(u)) < αl/2.
However, since u does not minimize the Hamming distance,
there must exist a node z of distance at most l, such that
∆(Wl(z), rt−l+1 · · · rt) ≤ ∆(rt−l+1 · · · rt,Wl(u)). By the
triangle inequality, ∆(Wl(z),Wl(u)) ≤ αl. Using the union
bound for any possible z and any possible Hamming distance

up to αl, we bound the probability of this event by

dl
αl∑
j=0

2

(
l

l − j

)
|S|−(l−j) ≤ 2(2d)l|S|−l(1−α) .

A union bound on the two cases completes this proof.
We stress that the above decoding process always outputs

the correct node (i.e., the node that minimizes the Hamming
distance), if the transmitted node is not α-bad. For that reason,
the proof of Theorem A.1 is still valid, since it only requires
the decoding procedure to succeed when the node is not α-bad
(and assumes that the simulation has a bad move in each node
which is a bad node).

We now show that this procedure is efficient in expectation.
Let L(t) be the depth of the subtree explored at time t. The
decoding process takes O

(∑N
t=1 d

L(t)
)

steps (this dominates
terms of O(L(t)) required to maintain the guess, etc).

For a time t, if L(t) = l then ∆(rt−l+1 · · · rt,Wl(gt)) ≥
αl/2 yet for l′ > l, ∆(rt−l′+1 · · · rt,Wl′(gt)) < αl′/2,
thus ∆(rt−l+1 · · · rt,Wl(gt)) = dαl/2e. Let the transmitted
sequence of labels be W (v) for some node v of depth t. A
Hamming distance of exactly dαl/2e happens with probability
at most

≤
l∑

j=0

Pr[∆(Wl(gt),Wl(v) = j] Pr[E|dαl/2e−j|]

≤
l∑

j=0

2

(
l

l − j

)(
1

|S|

)l−j l∑
k=|dαl/2e−j|

(
l

k

)
pk(1− p)l−k,

which is bounded by 22l+1|S|−l(1−α/2) for p < |S|−2.
With a sufficiently large yet constant alphabet, e.g., |S| >

(8d)1/(1−α/2), we bound the probability that L(t) equals l to
be 2−γl < d−l. The expected running time is then given by

O

(∑N
t=1E

[
dL(t)

])
, which equals

O

(N∑
t=1

t∑
l=0

[
2−γldl

])
= O

(N∑
t=1

2γ

2γ − d

)
= O(N).

We repeat the simulation step for N = O(T) times, and the
computation is efficient in expectation. Finally, we mention
that [11] presents a data structure which allows us to perform
the above decoding procedure with overhead O(L(t)).

D. Simulating m-Party Protocols

In this section we extend our result to support a simulation
of a protocol π with any number m of users. This is done by
incorporating the tools described in the previous sections with
the method of simulating an m-party protocol over a disturbed
channel developed by Rajagopalan and Schulman [6]. The
paper [6] shows that a scheme for simulating multiparty
protocol over a disturbed channel exists, yet the question of
its efficient implementation has been open since 1994. The
Scheme presented there obtains a communication dilation of
O(log(r + 1)) where r is the maximal connectivity degree,
that is, the maximal number of parties connected to a specific
user.

12

Rajagopalan and Schulman describe how to adapt the 2-
party simulation of [11] to an arbitrary number of users. The
key idea is to replace the 12-ary StateTree with a ternary tree
(that is, d = 3), where each node has three child nodes marked
with {0, 1, bkp}. The values 0 and 1 indicate the output bit of
the user in the simulated round, and bkp indicates that the
last simulated round is suspected to be invalid and should be
deleted and re-simulated. The simulation (described here for a
specific user i) is completely defined by the following process.
Each round, the user uses all the previous communications to
infer the current simulated round of π and sends his output
bit to user j (by communicating the label assigned with arc
to child 0 or 1 respectively, in the ternary StateTree shared
between users i and j). If the user finds an inconsistency,
he transmits bkp which denotes deleting the last received
(undeleted) bit and rolling the protocol π one step back. The
user shares such a ternary tree with each of the r parties
connected to him, and is allowed to output a different bit to
each party. Yet, when the user decides to roll back he outputs
bkp on each of the outgoing links. Inconsistency is defined
as one of the two following cases: (1) the current decoded
transcript of the StateTree disagrees with the bits sent so far,
or (2) the user received bkp from one of his neighbors. We
refer the reader to [6] for a complete description and analysis
of this scheme.

One can easily check that the bulk of the analysis performed
in [6] applies for the case of replacing the absolute ternary tree
code with a ternary SBTC (or RTC). The analysis is composed
of two parts. The first part shows that if after t rounds the
scheme simulates step t− l of π then at least l/2 errors have
occurred in decoding the correct tree-node during the history
cone of the user at time t (i.e., all the transmissions that affect
the user state at time t). The other part bounds the probability
of having a constant fraction of errors (out of the number of
rounds). While the first part is completely independent of the
fact that we replace the absolute tree code with a SBTC, in
order to complete the proof, we must adapt the second part to
the usage of SBTC. This is done by Lemma A.8 below.

Let us formally describe these two parts. We begin by
defining the notion of the history cone [6]. Let (p, t) denote a
user p at time t.

Definition 9 ([6]). (p, t) and (p′, t′) are time-like if messages
sent by user p at time t has an affect on the computation of
user p′ at time t′ (or vice versa).

That is, (p, t) and (p, t′) are always time-like, and (p, t) and
(q, t+ 1) are time-like if p and q are neighbors.

Definition 10 ([6]). A t time-like path is a sequence
{(pi, i) | 1 ≤ i ≤ t} such that any two elements in the path
are time-like (i.e., for every i, pi and pi+1 are either neighbors
or the same party).

The proof of [6] follows from the next two lemmas

Lemma A.6 (Lemma (5.1.1) of [6]). If a user p at time t has
successfully simulated only the first t − l rounds of π, then
there is a t time-like sequence that ends at (p, t) and includes
at least l/2 tree-decoding errors.

Lemma A.7 (Lemma (5.1.2) of [6]). Using error correcting
codes with dilation O(log(r + 1)), the probability that any
fixed t time-like path has more than t/4 tree-decoding errors,
is less than 1

(2(r+1))t .

The proof of the multiparty case is given by setting t =
N = 2T . The first lemma states that if the simulation failed
(the first N/2 rounds of π are not valid for some user) then
there must exist one user who has N/4 errors along one of
his N time-like sequences. The probability of this event is
bounded by the Lemma A.7 to be less than 1

(2(r+1))t summed
over all the N(r + 1)N possible time sequences, which is
bounded by N2−N .

While the above Lemma A.6 holds regardless of the tree
in use, we prove a variant of the above Lemma A.7 for the
case of using a potent tree. Moreover, although Lemma A.7
holds for any time 1 ≤ t ≤ N , only t = N is required for
completing the proof for the multiparty case, which we prove
in the following lemma.

Lemma A.8. Suppose each two users share a (1
16m , α)-potent

tree, for some α ∈ (0, 1). If an error correcting code with label
error probability p is used, then for any fixed N time-like path,
the probability that there are more than N/4 tree-decoding
errors is bounded by (217pα/2)N/16, over the errors of the
channel.

Proof: We assume an oracle for the decoding process,
which can easily be replaced by the efficient decoding proce-
dure given in Section C, if we use a SBTC. Assume that at
least N/4 errors have occurred in a specific N time-like path.
Fix a specific user i and assume that the errors of this user are
included in error intervals of total length li. By Lemma III.6,
there exist disjoint error intervals of total length at least
li/2. Recall that each error interval of length ` corresponds
to an error of magnitude `, and recall that in each tree, at
most N/16m of the nodes are α-bad. Thus, at least ki ≡
max{0, li/2−N/16m} of the errors of user i in the N time-
like path occur in nodes which are not on an α-bad interval.
These errors can only be originated due to channel errors12,
and since the intervals are disjoint, they are independent. As
above (see proof of Theorem A.1), the probability of having
errors that correspond to these (fixed) disjoint error intervals
is bounded by 2kipαki/2. Clearly, tree-decoding errors of
a specific user are independent of the communication (and
channel errors) of other users. It follows that the probability
for all the users to have a total amount of N/4 errors matching
the fixed intervals pattern is bounded by (2pα/2)

∑
i ki . With∑

i li > N/4 and at most n users, this probability is bounded
by (2pα/2)N/8−m(N/16m) = (2pα/2)N/16.

Using a union bound we sum the probability over any
number j ≥ N/4 of errors and over any one of the

(
N
j

)
different ways to distribute j errors along the fixed time-like
path. The probability that there are at least N/4 errors in this

12This claim also applies to the efficient decoding procedure, as it always
returns the node that minimized the Hamming distance, if it is not α-bad. See
the proof of Theorem A.1 and discussion in Section C.

13

fixed N time-like path is bounded by
N∑

j=N/4

(
N

j

)
(2pα/2)j/2−N/16 ≤ (217pα/2)N/16 .

For p < (5(r+1))−32/α, this probability is at most 1
(2(r+1))N

.

Corollary A.9. Suppose each two users share a SBTC13

with |S| ≥ ((2d)32m+2)1/(1−α) for some α ∈ (0, 1), and
use an error correcting code with (label) error probability
less than p ≤ (5(r + 1))−32/α. Then, except with probability
2−Ω(N) over the choice of the SBTC, for any fixed N time-
like path, the probability that there are more than N/4 tree-
decoding errors is less than 1

(2(r+1))N
over the channel errors.

13The same tree can be used by all users.

That is, with |S| ≥ ((2d)32m+2)1/(1−α) the SBTC is
(1

16m , α)-potent, with overwhelming probability, due to The-
orem III.3. Each label in an alphabet of size |S| requires
log |S| = O(m) bits. Due to Lemma II.1, we can use an error
correcting code such that each transmission is O(m) and the
label error probability is less than the required (5(r+1))−32/α.
Specifically, for efficient decoding we require p < |S|−2,
which can be done with code of length O(m) as well. The
above lemma replaces Lemma 5.1.2 of [6], and leads to the
following theorem.

Theorem A.10. There exists a constructible and efficient
simulation that computes any m-party protocol π of length T
using a BSC for communication and a pre-shared SBTC. The
simulation succeeds with probability 1−2−Ω(T), and imposes
a dilation of O(m).

	Introduction
	Preliminaries
	Potent Tree Codes
	Potent Tree Codes and Their Properties
	Small-Biased Random Trees as Potent Trees

	Potent Trees Applications
	Simulation with Adversarial Errors
	Efficient Simulation with Random Errors

	Greater Potency and Improved Multiparty Protocols
	References
	Appendix
	Interactive Protocol Over Noisy Channels
	Simulating Over a Noisy Channel
	Efficient Decoding
	Simulating m-Party Protocols

