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Data in high dimension is difficult to 
visualize and understand. This has al-
ways been the case and is even more 
apparent now with the availability of 
large high-dimensional datasets and 
the need to make sense of them.

The classical statistics approach 
to understanding data is to find a 
simple probabilistic model that could 
have generated it. The model is usu-
ally a probability distribution on a 
large domain and each data point is 
generated independently from the 
same distribution. While more com-
plex models without the assumption 
of independent, identically distrib-
uted data points are also studied, the 
independent data model is the pre-
dominant one and is reasonable for 
many situations. Even this framework 
would not be very useful or interesting 
without further assumptions—the 
distribution could be considered uni-
form over the data encountered. The 
key is to model complex, large data 
with a simple distribution. Finding 
such a fit (if one exists) would likely 
give an insightful explanation and the 
parameters of the simple distribution 
might even have predictive powers. 

What distribution to use? The 
central limit theorem suggests the 
most reasonable candidate would be 
a Gaussian distribution. This is what 
any aggregate distribution will eventu-
ally converge. Indeed, trying to find the 
single best-fit Gaussian to a given da-
taset is a commonly used and efficient 
approach. The Gaussian is estimated 
using the mean and covariance matrix 
of the data. Unfortunately, this works 
well only in rather special cases.

Thus we arrive at a widely used 
framework in statistics, called a mix-
ture model. Here we assume that data 
is generated from a mixture of a small 
number of distributions of known 
type; the most common assumption 
is a mixture of Gaussians. The prob-
lem is to find the best-fit mixture of 
a small number of Gaussians to the 

given data. The number of component 
Gaussians, k, is much smaller than n, 
the ambient dimension. Unlike the 
case of a single Gaussian (k = 1), where 
it is straightforward to estimate the 
underlying Gaussian, the problem be-
comes much more difficult for general 
k. Even the case of a two-Gaussian mix-
ture remained open for a long time.

Kalai, Moitra, and Valiant3 show how 
to solve the problem for a mixture of two 
arbitrary n-dimensional Gaussians. Be-
sides relying on a simple and ingenious 
reduction to the case of a mixture of two 
1-dimensional Gaussians, their analy-
sis relies on the following fundamental 
fact about the identifiability of Gauss-
ian mixtures: two distinct mixtures of 
Gaussians have different density func-
tions; as the density of two mixtures 
gets closer, so must the mixtures (the 
means, variances, and mixing weights 
of one mixture must be approximated 
by those of the other). Such a property is 
not true for general mixtures, not even 
for mixtures of nice distributions such 
as those with logconcave densities, but 
it is true for Gaussian mixtures. More-
over, unlike the classical proof, they 
establish a polynomial bound on the 
number of samples needed to identify 
the components of a mixture to within 
a desired accuracy. Surprisingly, this is 
the first improvement on the sample 
complexity from the classical exponen-
tial bound, in spite of mixture models 
being studied for over a century.5

The key insight of their method is 
to show that a finite set of moments 
(six of them for the case of two 1-di-
mensional Gaussians) suffice to iden-
tify the components. With this tool in 
hand, they consider several random, 
1-D projections of an n-dimensional 
mixture, identify the projections of 
the components in each, correctly 
cluster them according to component 
of origin, and thereby gather enough 
constraints on the original compo-
nents to estimate their means, cova-
riance matrices, and mixing weights.

In a follow-up paper, Moitra and 
Valiant4 extended this approach to 
a mixture of k Gaussians, with com-
plexity growing exponentially in k, but 
polynomially in all other parameters; 
thus a polynomial-time algorithm for 
any fixed k. A simple exponential de-
pendence on k is unavoidable even in 
the sample complexity, at least if the 
goal is to identify the components 
of an arbitrary mixture of Gaussians 
with no separation condition. A simi-
lar bound was also proved indepen-
dently using a different algorithm in 
a more abstract (and general) setting 
with possibly non-Gaussian compo-
nents by Belkin and Sinha.1

The work presented in the following 
paper settles an important open prob-
lem, establishes fundamental facts 
and thereby advances classical statis-
tics, and raises very interesting ques-
tions for computer science; among 
them: What can we hope to do for non-
Gaussian mixtures (for which robust 
identifiability does not hold in gen-
eral)? Can we handle Gaussian mix-
tures with some noise? In other words, 
is there an agnostic algorithm for 
learning Gaussian mixtures? Perhaps 
most interestingly, what reasonable 
assumptions lead to fully polynomial 
or even practical algorithms? (much 
work in the field assumes separation 
between components, which might 
be unavoidable for efficiency; for ex-
ample, a polynomial-time algorithm is 
given assuming each component can 
be mostly separated by some hyper-
plane from the rest of the mixture;2 one 
clean conjecture is that any probabilis-
tically separable mixture is identifiable 
in polynomial-time).	
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