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After conducting a randomized trial, it is often of interest to determine
treatment effects in the overall study population, as well as in certain subpop-
ulations. These subpopulations could be defined by a risk factor or biomarker
measured at baseline. We focus on situations where the overall population is
partitioned into two predefined subpopulations. When the true average treat-
ment effect for the overall population is positive, it logically follows that it
must be positive for at least one subpopulation. We construct new multiple
testing procedures that are uniformly most powerful for simultaneously re-
jecting the overall population null hypothesis and at least one subpopula-
tion null hypothesis, when outcomes are normally distributed. We prove our
procedures do not require any sacrifice for detecting a treatment effect in
the overall population, compared to the uniformly most powerful test of the
overall population null hypothesis. The proofs rely on a general method for
transforming analytically difficult expressions arising in some multiple test-
ing problems into more tractable nonlinear optimization problems, which are
then solved using intensive computation.

1. Introduction. Planning a randomized trial of an experimental treatment
can be challenging when it is suspected that certain populations may benefit more
than others. For example, consider studies of metastatic breast cancer in which hu-
man epidermal growth factor receptor-2 (HER2) is overexpressed. The estimated
benefit of trastuzumab treatment was greater for patients with higher levels of
pretreatment HER2 overexpression (Slamon et al., 2001). As another example, a
metastudy by Kirsch et al. (2008) of certain antidepressant medications suggests
that there may be a clinically meaningful benefit only for those with severe depres-
sion at baseline.

We take the perspective of a researcher designing a randomized trial of a new
treatment, where it is suspected that the magnitudes of treatment effects may differ
in predefined subpopulations. We focus on the case of two predefined subpopula-
tions that partition the overall study population, though we prove a result for k > 2
subpopulations as well.
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For a given population, the mean treatment effect is defined as the difference
between the mean outcome were everyone assigned to the treatment and the mean
outcome were everyone assigned to the control. We develop procedures to simulta-
neously test the null hypotheses of no positive mean treatment effect for subpopu-
lation one (H01), for subpopulation two (H02), and for the overall study population
(H0∗). These hypotheses are defined formally in Section 3.3 below. For each of
these null hypotheses, the alternative hypothesis is that there is a positive mean
treatment effect for the corresponding population.

In some cases, there is a subpopulation for which a larger treatment benefit is
conjectured. We call this the favored subpopulation, and refer to the other as the
complementary subpopulation. Since it is usually not known with certainty before
the trial that the treatment will benefit the favored subpopulation, preplanning a
hypothesis test for it is important. Also, in trials where the overall population null
hypothesis is rejected, it is of clinical importance to determine if the treatment ben-
efits the complementary subpopulation, since there was more a priori uncertainty
about treatment effects for this group. Therefore, preplanning a hypothesis test for
this subpopulation is also valuable. This motivates our interest in testing both sub-
population null hypotheses.

Our goal is to maximize power for simultaneously rejecting the overall popula-
tion null hypothesis and at least one subpopulation null hypothesis. We give new
multiple testing procedures that maximize this power, uniformly over all possible
alternatives, in the case of two subpopulations and outcomes that are normally dis-
tributed. These procedures, which we denote byMUMP andMUMP+, are defined in
Section 4.1. They require no sacrifice in detecting treatment effects for the overall
population; that is, their probability of rejecting the null hypothesisH0∗ equals that
of the uniformly most powerful test of H0∗, for any data generating distribution.

In Section 5, we show our new procedures are consonant. According to Bittman
et al. (2009) “A testing method is consonant when the rejection of an intersec-
tion hypothesis implies the rejection of at least one of its component hypotheses.”
Consonance was introduced by Gabriel (1969), and subsequent work on conso-
nant procedures includes (Hommel, 1986; Romano and Wolf, 2005; Bittman et al.,
2009; Brannath and Bretz, 2010; Romano, Shaikh and Wolf, 2011). Consonance is
desirable since whenever an intersection of null hypotheses is false, it follows logi-
cally that at least one of the corresponding individual null hypotheses must be false
as well. A non-consonant procedure is one that may reject an intersection of null
hypotheses without rejecting any of the corresponding individual null hypotheses.
For example, in our context a non-consonant procedure would sometimes make
claims that logically imply the treatment is superior to control in at least one of the
two subpopulations, without indicating which one. To the best of our knowledge,
our procedures are the first multiple testing procedures for our problem that are
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consonant.
The above properties hold for our procedures regardless of the relative sizes of

the two subpopulations. Though we focus on one-sided tests, we also construct
a consonant procedure corresponding to two-sided tests, and prove it satisfies a
maximin optimality property.

We prove two impossibility results, showing certain properties cannot be si-
multaneously satisfied by any multiple testing procedure. First, consider any data
generating distributionQ for whichH0∗ is false. This implies that underQ, at least
one subpopulation null hypothesis is false. Assume outcomes under treatment and
control, for each subpopulation, are normally distributed under Q. We show no
multiple testing procedure has all of the following properties:

i. Equal or greater power at Q for simultaneously rejecting the overall popu-
lation null hypothesis and at least one subpopulation null hypothesis, com-
pared to our procedure MUMP.

ii. It dominates a multiple testing procedure of (Rosenbaum, 2008, Section 2),
which we describe in Section 6 below.

iii. Strong control of the familywise Type I error rate at level 0.05.

Though the procedure of (Rosenbaum, 2008, Section 2) neither satisfies (i) nor is
consonant, it does have important advantages described below. Our second negative
result is that for more than two subpopulations, it is not possible simultaneously to
be consonant (as defined in Section 5) and to have probability of rejecting H0∗ at
least that of the uniformly most powerful test of H0∗.

2. Related work. Multiple testing procedures for the family of null hypothe-
ses H0∗, H01, H02 can be constructed using the methods of, e.g., Holm (1979),
Bergmann and Hommel (1988), Maurer, Hothorn and Lehmacher (1995), Song
and Chi (2007), Rosenbaum (2008), and Alosh and Huque (2009). Each of these
strongly controls the familywise Type I error rate, as defined by Hochberg and
Tamhane (1987). However, none of these procedures is uniformly most powerful
for simultaneously rejecting the overall population null hypothesis and at least one
subpopulation null hypothesis, as defined in Section 3.6. We compare the power of
our uniformly most powerful procedures to this prior work, in Section 7.

3. Multiple testing problem.

3.1. Randomized trial description. We consider two-armed randomized tri-
als. Membership in each subpopulation must be a prespecified function of pre-
randomization variables. For each subpopulation s ∈ {1, 2}, let ps > 0 denote
the fraction of the overall population in subpopulation s. Since by assumption the
subpopulations partition the overall population, we have p1 + p2 = 1.
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Let a = 1 denote the treatment arm and a = 0 denote the control arm. We let nsa
denote the number of participants in subpopulation s ∈ {1, 2} who are assigned to
study arm a ∈ {0, 1}. Denote the total sample size by n. We assume the fraction
of trial participants in each subpopulation s, (ns0 +ns1)/n, equals the correspond-
ing population proportion ps. We also assume the proportion of participants from
each subpopulation that are assigned to the treatment arm is 1/2; this can be ap-
proximately ensured if block randomization is used for each subpopulation. We
conjecture our results extend to the case of unequal randomization probabilities,
but this is an area for future research.

3.2. Data collected on each participant. For each participant i, denote his/her
subpopulation by Si ∈ {1, 2}, study arm assignment by Ai ∈ {0, 1}, and outcome
by Yi ∈ R. We assume for each participant i, conditioned on his/her subpopulation
Si = s and study arm assignmentAi = a, that his/her outcome Yi is a random draw
from an unknown distribution Qsa and this draw is independent of the data of all
other participants. Let µ(Qsa) denote the mean and σ2(Qsa) denote the variance
of the outcome distribution Qsa for subpopulation s ∈ {1, 2} and study arm a ∈
{0, 1}. For compactness we represent (Q10, Q11, Q20, Q21) by Q.

We make no parametric model assumptions on the form of each outcome distri-
bution Qsa. Instead, we make a weaker assumption, given next. For fixed C > 0,
let Q denote the class of data generating distributions Q whose components Qsa
each satisfy

(3.1) EQsa |Y − µ(Qsa)|3 /{σ2(Qsa)}3/2 < C.

This condition, combined with the multivariate, Berry-Esseen central limit theorem
of Götze (1991), implies the joint distribution of subpopulation-specific z-statistics
(defined below) converges uniformly to a multivariate normal distribution. Such
uniform convergence is generally required to ensure that even the standard, one-
sided z-test strongly controls the asymptotic, familywise Type I error rate, in the
uniform sense that we define in the next section.

Condition (3.1) is satisfied, for example, by any Q whose components Qsa are
normally distributed, as long as we set C > 2. Also, for fixed K > 0 and τ > 0,
condition (3.1) is satisfied for the class of distributions where eachQsa has support
in [−K,K] and variance at least τ , if we set C > (2K)3/τ3/2. We assume C is a
fixed value, i.e., it does not depend on sample size.

3.3. Hypotheses tested. The null hypotheses to be tested, which correspond to
no positive mean treatment effect in subpopulation one, in subpopulation two, and
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FIG 1. The relationship among the null hypotheses H01, H02, and H0∗. The dashed rectangle corre-
sponds to the null hypothesis H0∗ for the overall population.

in the overall population, respectively, are

H01 = {Q ∈ Q : µ(Q11)− µ(Q10) ≤ 0} ;(3.2)

H02 = {Q ∈ Q : µ(Q21)− µ(Q20) ≤ 0} ;(3.3)

H0∗ = {Q ∈ Q : p1 {µ(Q11)− µ(Q10)}+ p2 {µ(Q21)− µ(Q20)} ≤ 0} .(3.4)

We refer to these as elementary null hypotheses. The corresponding alternative
hypotheses are the complements of each of these null hypotheses. We prove results
for the null hypotheses of zero mean treatment effect, and the corresponding two-
sided alternative hypotheses, in Section 4.2.

The key relationship among the above null hypotheses is:

(3.5) (H01 ∩H02) ⊂ H0∗ ⊂ (H01 ∪H02) .

The set of distinct intersections of the three elementary null hypotheses is

H = {H0∗, H01, H02, H01 ∩H02, H0∗ ∩H01, H0∗ ∩H02}.

The intersection H01 ∩H02 ∩H0∗ does not appear in the above list since it equals
H01 ∩H02.

We focus on the set of null hypotheses {H01, H02, H0∗} rather than the simpler
set {H01, H02, H01∩H02}. The reason is that the primary hypothesis in many ran-
domized trials concerns the average effect of treatment versus control in the overall
population, as represented, e.g., in H0∗. If H0∗ is false, the clinical implication is
that giving everyone in the overall population the treatment, rather than giving ev-
eryone the control, improves the average outcome. In contrast, if the intersection
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hypothesis H01 ∩ H02 is false, the aforementioned clinical implication does not
necessarily hold.

A multiple testing procedure M is defined as a deterministic map from the data
generated in the randomized trial described in Sections 3.1 and 3.2 to a subset of
{H01, H02, H0∗} representing the null hypotheses that are rejected. In order that
probabilities such as the familywise Type I error rate of M are well-defined, we
assume each M satisfies a measurability condition that we define next.

For total sample size n, denote the class of possible data sets by
Ω = ({1, 2} × {0, 1} × R)n. Let F denote the product σ-algebra generated from
{P({1, 2})× P({0, 1})× B}n, where B is the Borel σ-algebra on R, and for any
set A, P(A) denotes the power set of A. Let Ω′ = P({H01, H02, H0∗}), and let
F ′ = P(Ω′). We assume each multiple testing procedure M is a measurable map
from (Ω,F) to (Ω′,F ′). In what follows, when a property of a multiple testing
procedure holds except on an event E ∈ F with P (E) = 0, we say it occurs with
probability 1.

Consider the multiple testing procedure MSTD, defined to be the standard, one-
sided z-test at level α for H0∗, i.e., the test that pools all participants and rejects if
the standardized difference between sample means in the treatment arm and control
arm exceeds Φ−1(1 − α). It is uniformly most powerful for H0∗ when outcomes
under treatment and control are normally distributed with known variances; this
follows directly from Proposition 15.2 of (van der Vaart, 1998).

We say a multiple testing procedure M ′ dominates a procedure M if for any
H ⊆ {H01, H02, H0∗}, M ′ rejects H (and possibly additional null hypotheses)
whenever M rejects H , with probability 1.

3.4. Definition of strong control of asymptotic, familywise Type I error rate.
We require that all our testing procedures strongly control the familywise Type I
error rate, also called the studywide Type I error rate, as defined by Hochberg and
Tamhane (1987). Regulatory agencies such as the U.S. Food and Drug Admin-
istration and the European Medicines Agency generally require studywide Type
I error control for confirmatory randomized trials involving multiple hypotheses
(FDA and EMEA, 1998).

For a given multiple testing procedure, class of distributionsQ′, and sample size
n, define the worst-case, familywise Type I error rate to be

(3.6) sup
Q∈Q′

PQ,n (at least one true null hypothesis is rejected) ,

where PQ,n is the probability distribution resulting from outcome data being gener-
ated according toQ, at sample size n. We say a multiple testing procedure strongly
controls the familywise Type I error rate at level α over Q′ if for all sample sizes
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n, (3.6) is at most α. We say a multiple testing procedure strongly controls the
asymptotic, familywise Type I error rate at level α, over Q′, if

(3.7) lim sup
n→∞

sup
Q∈Q′

PQ,n (at least one true null hypothesis is rejected) ≤ α.

For concreteness, we focus in what follows on the commonly used significance
level α = 0.05.

Strong control of the asymptotic, familywise Type I error rate as defined in (3.7)
is desirable since it implies for any ε > 0, there is a sample size Nε that suffices to
guarantee the familywise Type I error rate is at most 0.05 + ε, no matter what the
data generating distribution (among those in Q′). In contrast, under the following
weaker, pointwise condition:

(3.8) sup
Q∈Q′

lim sup
n→∞

PQ,n (at least one true null hypothesis is rejected) ≤ α,

such a sample size may not exist. Though we focus on strong control of the asymp-
totic, familywise Type I error rate in the uniform sense as defined in (3.7), we also
show in Section C.1 of the Supplementary Material that our main result, Theo-
rem 4.1, still holds if we replace this by the pointwise condition (3.8).

3.5. Subpopulation-specific and overall population z-statistics. For subpopu-
lation one, subpopulation two, and the overall population, respectively, define the
following z-statistics:

Z1 =

∑
i:Si=1 {YiAi − Yi(1−Ai)}

σ1(Q)(np1)1/2
, Z2 =

∑
i:Si=2 {YiAi − Yi(1−Ai)}

σ2(Q)(np2)1/2
,(3.9)

Z∗ =
1

σ∗(Q)n1/2

n∑
i=1

{YiAi − Yi(1−Ai)} ,(3.10)

where for each s ∈ {1, 2}, σ2s(Q) =
{
σ2(Qs0) + σ2(Qs1)

}
/2, and

σ2∗(Q) = p1σ
2
1(Q) + p2σ

2
2(Q).

For each j ∈ {∗, 1, 2}, it follows that Zj has variance 1. Also, for each subpop-
ulation s ∈ {1, 2}, it follows that the correlation between Zs and Z∗, which we
denote by ρs, satisfies

(3.11) ρs =
[
psσ

2
s(Q)/

{
p1σ

2
1(Q) + p2σ

2
2(Q)

}]1/2
> 0,

and that we have the following relationships:

(3.12) ρ21 + ρ22 = 1 and Z∗ = ρ1Z1 + ρ2Z2.
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For clarity of presentation, we assume throughout that the variances σ2(Qsa)
are known, i.e., they are an input to any multiple testing procedure. However, we
prove asymptotic versions of certain results (indicated in Sections 4.1 and 4.2) hold
when the variances σ2(Qsa) are estimated by sample variances rather than assumed
known, under the following additional condition: for some fixed C ′ > 0, for each
s ∈ {1, 2}, a ∈ {0, 1},

(3.13) EQsa {Y − µ(Qsa)}4 /{σ2(Qsa)}2 < C ′.

This condition guarantees uniform convergence of sample variances to the popula-
tion variances σ2(Qsa).

3.6. Optimality criteria. Let QN denote the class of data generating distri-
butions Q ∈ Q in which each outcome distribution Qsa is normally distributed.
Let C denote the class of all multiple testing procedures for {H01, H02, H0∗} that
strongly control the familywise Type I error rate at level 0.05 over QN . This in-
cludes but is not limited to procedures based on the closure principle of Marcus,
Peritz and Gabriel (1976), or procedures based on partitioning as in Finner and
Strassburger (2002), for example.

We say a multiple testing procedure M ∈ C is uniformly most powerful for
simultaneously rejecting H0∗ and at least one subpopulation null hypothesis, if for
all Q ∈ QN for which H0∗ is false and all n > 0, it satisfies

PQ,n(M rejects H0∗ and at least one of H01, H02)

= sup
M ′∈C

PQ,n(M ′ rejects H0∗ and at least one of H01, H02).(3.14)

For conciseness, we say a multiple testing procedure M ∈ C is uniformly most
powerful for (3.14) to mean for allQ ∈ QN for whichH0∗ is false and all n > 0, it
achieves the supremum (3.14). We give two different procedures that are uniformly
most powerful for (3.14), in Section 4.1. This shows there is not a unique procedure
that is uniformly most powerful for (3.14).

Consider the following properties:

A. Whenever the null hypothesis H0∗ for the overall population is rejected, at
least one subpopulation null hypothesis is rejected, with probability 1.

B. The probability of rejecting the null hypothesisH0∗ is at least that ofMSTD,
i.e., the standard, one-sided z-test of H0∗, at level 0.05, for any data generat-
ing distribution.

C. Strong control of the familywise Type I error rate at level 0.05 over QN .

It follows from Theorem 3.2.1 of Lehmann and Romano (2005) that having prop-
erties B and C is equivalent to the following: rejecting H0∗ if and only if Z∗ >
Φ−1(0.95), with probability 1.
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In Section C.4 of the Supplementary Material, we prove for the case of two
subpopulations:

THEOREM 3.1. Any multiple testing procedure in C is uniformly most powerful
for (3.14) if and only if it has properties A and B.

4. Uniformly most powerful tests. We present results for tests of H01, H02,
and H0∗ in Section 4.1. In Section 4.2, we give results for the null hypotheses of
zero mean treatment effect, and corresponding two-sided alternative hypotheses.

4.1. One-sided hypotheses and tests. Let MUMP denote the following multi-
ple testing procedure:

Define S to be subpopulation one if Z1− (3/4)ρ1 ≥ Z2− (3/4)ρ2, and
subpopulation two otherwise. If Z∗ > Φ−1(0.95), reject H0∗ and H0S .

In Section C of the Supplementary Material, we prove:

THEOREM 4.1. MUMP satisfies the following:

i. Properties A, B, and C from Section 3.6. Furthermore, it strongly controls
the asymptotic, familywise Type I error rate at level 0.05 over Q. This also
holds if we replace Z∗, Z1, Z2, ρ1, ρ2 by corresponding quantities in which
the variances σ2(Qsa) are estimated by sample variances rather than as-
sumed known, under the additional condition (3.13).

ii. It is uniformly most powerful for (3.14).

Properties A and B follow directly from the definition of MUMP. The main
difficulty in proving Theorem 4.1 is showing MUMP has property C. In Section 8,
we explain why this is a challenging problem, and present our method for solving
it and proving the other claims in part (i). We prove part (ii) follows from part (i)
and Theorem 3.1, in Section C.5 of the Supplementary Material.

In the special case that ρ1 = ρ2, the procedure MUMP reduces to the simpler
procedure that, when Z∗ > Φ−1(0.95), rejects the overall population null hypoth-
esis and the null hypothesis for the subpopulation with larger z-statistic. We de-
note this simpler procedure by M0. This special case occurs, for example, when
each subpopulation makes up exactly half the overall population and the variances
σ2(Qsa) are all equal. However, when the subpopulations have different sizes or
when these variances differ, M0 can fail to strongly control the familywise Type I
error rate, unlike the procedure MUMP.

We now describe the intuition for how MUMP reduces the worst-case, fami-
lywise Type I error rate, compared to the simpler procedure M0. For clarity, we
restrict to data generating distributions where outcomes are normally distributed.
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We focus on the scenarios where the familywise Type I error rate of M0 can ex-
ceed 0.05. This cannot happen if H0∗ is true, since M0 makes a Type I error only
if Z∗ > Φ−1(0.95), and under H0∗ this happens with probability at most 0.05. A
familywise Type I error cannot occur if both H01, H02 are false, since then H0∗ is
false as well, making a Type I error impossible.

The remaining case is the class of data generating distributions, denoted by Q̃,
for which H0∗ is false and a single subpopulation null hypothesis, call it H01 with-
out loss of generality, is false as well. Then M0 only makes a Type I error when
it rejects H02, which occurs if both Z∗ > Φ−1(0.95) and Z2 − Z1 > 0. Direct
computation shows this occurs with probability exceeding 0.05 only when the cor-
relation between Z∗ and Z2−Z1, which equals ρ2−ρ1, is positive. The procedure
MUMP raises the threshold for rejecting H02 in such cases, and therefore has a
lower Type I error probability than M0. The tradeoff is MUMP has a higher Type I
error probability than M0 for Q ∈ Q̃ when ρ2− ρ1 < 0. However, since the Type I
error probability for M0 exceeds 0.05 only in the former case, this tradeoff reduces
the worst-case Type I error probability over all Q ∈ Q̃. We further explain this
tradeoff, and how we selected the constant 3/4 in the procedure MUMP, in Section
C.6 of the Supplementary Material.

We now show how to augment the procedure MUMP to allow simultaneous re-
jection of all three null hypotheses H0∗, H01, H02 in some cases, while still having
all of the properties in Theorem 4.1. We consider each possible value of ρ1 ∈ (0, 1)
separately, and use a threshold function a(ρ1) that we describe below. The aug-
mented procedure MUMP+, where the new part is in italics, is:

Define S to be subpopulation one if Z1− (3/4)ρ1 ≥ Z2− (3/4)ρ2, and
subpopulation two otherwise. If Z1 and Z2 are both greater than a(ρ1),
reject all three null hypothesesH0∗, H01, H02. Else, ifZ∗ > Φ−1(0.95),
reject H0∗ and H0S .

For each value ρ′1 ∈ (0, 1), we set the threshold value a(ρ′1) to be the smallest
such that we can prove MUMP+ strongly controls the asymptotic, familywise Type
I error rate over {Q ∈ Q : ρ1(Q) = ρ′1} at level 0.05. In Section D of the Sup-
plementary Material, we give an algorithm to compute a(ρ1), and plot the function
a(ρ1). The set of values {a(ρ1) : ρ1 ∈ (0, 1)} ranges between 1.92 and 2.19, with
the minimum occurring at ρ1 = 2−1/2, i.e., where ρ1 = ρ2.

All of the above results hold for any value of p1 : 0 < p1 < 1; that is, regardless
of the fraction p1 of the overall population in subpopulation one, our procedure
MUMP has properties A, B, and C, and is uniformly most powerful for (3.14). Since
MUMP+ dominates MUMP, we have MUMP+ is also uniformly most powerful for
(3.14).
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4.2. Two-sided tests. We consider testing the null hypotheses of zero mean
treatment effect. That is, we consider the null hypotheses HT

0∗, H
T
01, H

T
02 defined

by replacing each occurrence of “≤ 0” by “= 0” in (3.2), (3.3), and (3.4). The
corresponding alternative hypotheses are the complements of each of these null
hypotheses. We define the multiple testing procedure MTS (where “TS” abbrevi-
ates “two-sided”) as follows:

Define S′ to be subpopulation one if |Z1| − (1/2)ρ1 ≥ |Z2| − (1/2)ρ2,
and subpopulation two otherwise. If |Z∗| > Φ−1(0.975), rejectHT

0∗ and
HT

0S′ .

This procedure has properties analogous to A, B, and C, which we describe next.
Define the standard, two-sided z-test for HT

0∗ at level α to be the test that pools all
subjects and rejects for large absolute values of the standardized difference between
sample means in the treatment and control arms, i.e., when |Z∗| > Φ−1(1− α/2).
Define properties AT ,BT , and CT , as follows:

AT . Whenever the null hypothesis HT
0∗ is rejected, at least one of the subpopula-

tion null hypotheses HT
01, H

T
02 is rejected, with probability 1.

BT . The probability of rejecting HT
0∗ is at least that of the standard, two-sided

z-test of HT
0∗ at level 0.05, for any data generating distribution.

CT . Strong control of the asymptotic, familywise Type I error rate at level 0.05
over QN .

It follows from the definition of MTS that it has properties AT and BT . We prove
in Section E of the Supplementary Material that it has property CT .

Just as there is no uniformly most powerful test for HT
0∗ (as shown, e.g., in

(van der Vaart, 1998, Section 15)), there is no uniformly most powerful test for
simultaneously rejectingHT

0∗ and at least one ofHT
01, H

T
02. We prove this in Section

E of the Supplementary Material. However, the procedure MTS has a maximin
optimality property that we define next.

Let ∆min > 0 denote the magnitude of the minimum, clinically meaningful
difference between means under treatment versus control. Let v represent an upper
bound on the variances σ2(Qsa). Define the class of alternatives ω to be those
Q ∈ QN satisfying both:

i. The mean treatment effect µ(Qs1)−µ(Qs0) ≥ ∆min for both subpopulations
s ∈ {1, 2}, or the treatment effect µ(Qs1) − µ(Qs0) ≤ −∆min for both
subpopulations s ∈ {1, 2}.

ii. For each study arm a ∈ {0, 1}, the variance of the outcome is the same for
both subpopulations and is at most v, i.e., σ2(Q1a) = σ2(Q2a) ≤ v.
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We say a multiple testing procedure is maximin optimal over ω if for each sam-
ple size n, it maximizes

(4.1) inf
Q∈ω

PQ,n(reject HT
0∗ and at least one of HT

01, H
T
02),

among all multiple testing procedures for HT
0∗, H

T
01, H

T
02 with property CT . We

prove the following in Section E of the Supplementary Material:

THEOREM 4.2. MTS has the following properties:

i. Properties AT , BT , and CT . Furthermore, it strongly controls the asymptotic,
familywise Type I error rate at level 0.05 over Q. This also holds if we re-
place Z∗, Z1, Z2, ρ1, ρ2 by corresponding quantities in which the variances
σ2(Qsa) are estimated by sample variances rather than assumed known, un-
der the additional condition (3.13).

ii. It maximizes (4.1) among all multiple testing procedures with property CT .

The proof of the above theorem uses our general method described in Section 8
in combination with a method of Romano, Shaikh and Wolf (2011) for proving
maximin optimality of consonant procedures.

5. Relationship between property A and consonance. We first define a prop-
erty related to consonance. Coherence is the property for multiple testing proce-
dures that whenever an intersection of null hypotheses is not rejected, neither is the
intersection of any subset of these null hypotheses. Sonnemann and Finner (1988)
show that any multiple testing procedure can be converted into a coherent proce-
dure that rejects the same null hypotheses (and possibly more) without affecting
the familywise Type I error rate. In our context, by definition, any coherent proce-
dure that rejectsH0∗ must rejectH0∗∩H01∩H02. By (3.5), this intersection equals
H01 ∩H02. Thus, any coherent procedure that rejects H0∗ must reject H01 ∩H02.

There are multiple variants of the definition of consonance, as described by
Brannath and Bretz (2010). Here, we call a testing procedure consonant if for
each non-empty subset J ⊆ {∗, 1, 2}, rejection of the intersection null hypothe-
sis ∩j∈JH0j implies rejection of at least one elementary null hypothesis H0j′ for
j′ ∈ J . In particular, a consonant procedure that rejects H01 ∩ H02 must reject
at least one of the elementary null hypotheses H01, H02. Combining this with the
claim at the end of the previous paragraph, we have that any consonant, coherent
procedure must reject at least one ofH01, H02 whenever it rejectsH0∗. That is, any
consonant, coherent procedure must have property A from Section 3.6. The con-
verse holds as well, when restricting to coherent multiple testing procedures with
properties B and C, and focusing on the class of normally distributed data gener-
ating distributions QN defined above; this is expressed in the following theorem,
proved in Section F of the Supplementary Material:
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THEOREM 5.1. Consider any coherent multiple testing procedure M for the
family of null hypothesesH. AssumeM satisfies properties B and C for the class of
distributions QN . Then for any Q ∈ QN , property A holds for M with probability
1 (under Q) if and only if M is consonant with probability 1 (under Q).

As described in Section F of the Supplementary Material, this close link between
property A and consonance arises from the relationship (3.5) between subpopula-
tion and overall population null hypotheses.

Romano, Shaikh and Wolf (2011) give a general algorithm for constructing a
consonant procedure from a multiple testing procedure that is not consonant. How-
ever, the resulting procedure will not necessarily satisfy property A. This is due to
a subtle difference in the definition of consonance here and in (Romano, Shaikh
and Wolf, 2011), which we describe in Section F of the Supplementary Material.

6. Existing multiple testing procedures. The fixed sequence method of Mau-
rer, Hothorn and Lehmacher (1995) can be applied to the ordering (H0∗, H01, H02).
The resulting procedure, denoted MFS, involves proceeding along this ordering,
testing each H0j using the test Zj > Φ−1(0.95), until the first failure to reject,
at which point the procedure stops. This procedure may be desirable when one
has prior evidence that the treatment effect is likely to be stronger in subpopula-
tion one compared to subpopulation two; however, a downside is that H01 must be
rejected before H02 can even be considered. This downside is especially relevant
when it is not known with certainty which subpopulation will benefit more from
an experimental treatment, or when the subpopulation proportions and variances
make a treatment benefit more difficult to detect in subpopulation one compared to
subpopulation two (e.g., when p1 < p2 or σ1(Q) > σ2(Q)).

The following multiple testing procedure, denoted MR, was given in the case of
p1 = 1/2 by (Rosenbaum, 2008, Section 2):

MR: If Z∗ > Φ−1(0.95), reject H0∗ as well as each subpopulation null
hypothesis H0s, s ∈ {1, 2}, for which Zs > Φ−1(0.95).

Rosenbaum (2008) shows this procedure strongly controls the familywise Type I
error rate at level 0.05 over QN . A straightforward extension of that proof shows
the result holds for any p1 ∈ (0, 1). By construction, MR has property B. How-
ever, it does not have property A. That is, the procedure may reject the overall
population null hypothesis without rejecting any subpopulation null hypothesis.
This follows since Z∗ > Φ−1(0.95) does not imply at least one of Z1, Z2 is greater
than Φ−1(0.95). We give a data example in which Z∗ > Φ−1(0.95), but neither
Z1 nor Z2 exceeds Φ−1(0.95), in Section A of the Supplementary Material. Since
MR dominates MFS, we only consider the former in the power comparison below.
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Bergmann and Hommel (1988) give an improvement to the Holm step-down
procedure for hypotheses that are logically related. As described by Hommel and
Bernhard (1999), the procedure of Bergmann and Hommel (1988), here denoted
MBH, involves first specifying which subsets of elementary null hypotheses are
“exhaustive.” For any index set J ⊆ {∗, 1, 2}, the subset {H0j , j ∈ J} is defined to
be exhaustive if there exists a data generating distribution under which all and only
the null hypotheses in this subset are true. In our problem, all subsets are exhaustive
except {H01, H02} and the singleton {H0∗}, since the relationship (3.5) implies
that whenever H01, H02 are both true also H0∗ is true, and whenever H0∗ is true at
least one of H01, H02 is true. The procedure MBH rejects the null hypotheses with
indices {∗, 1, 2} \ A, where A is defined as the union of all subsets J ⊆ {∗, 1, 2}
that satisfy:

{H0j , j ∈ J} is exhaustive and max{Zj : j ∈ J} < Φ−1(1− 0.05/|J |).

We show in Section B of the Supplementary Material that this procedure has neither
properties A nor B.

Song and Chi (2007) and Alosh and Huque (2009) designed multiple testing
procedures involving the overall population and a single, prespecified subpopu-
lation s∗. Here, in contrast, we are interested in the larger family of hypotheses
including the subpopulation complementary to s∗. To tailor the procedure of Song
and Chi (2007) to our context, we augment it to additionally allow rejection for the
complementary subpopulation, without any loss in power for H0∗ or for H0s∗ , and
while maintaining strong control of the familywise Type I error rate. We denote the
augmented procedure by MSC+,s∗ , which, for prespecified thresholds α0, α1, α2

satisfying 0 ≤ α0 < 0.05 < α1 ≤ 1, and 0 ≤ α2 ≤ 1, is defined as follows:

If Z∗ > Φ−1(1 − α0), reject H0∗ as well as each subpopulation null
hypothesis H0s, s ∈ {1, 2}, for which Zs > Φ−1(1− 0.05).
If Φ−1(1 − α0) ≥ Z∗ > Φ−1(1 − α1) and Zs∗ > Φ−1(1 − α2), then
reject H0s∗ , and if in addition Z∗ > Φ−1(1− 0.05) then reject H0∗.

The original procedure of Song and Chi (2007), which we denote by MSC,s∗ ,
is the same as above except it does not allow rejection of the null hypothesis com-
plementary to s∗. We chose α0 = 0.045 and α1 = 0.1. We then used the method
of Song and Chi (2007) to compute, for each scenario we consider, the largest α2

(which depends on p1) such that the above procedure strongly controls the fam-
ilywise Type I error rate at level 0.05. For p1 = 1/2, we have α2 = 0.023; for
p1 = 3/4, we have α2 = 0.025. We show in Section B of the Supplementary
Material that MSC+,s∗ strongly controls the asymptotic, familywise Type I error
rate at level 0.05, and in general it has neither properties A nor B. The procedure
MSC,s∗ of Song and Chi (2007) has similar performance to a procedure of Alosh
and Huque (2009), so we only include the former in our comparison below.
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7. Simulations to assess power and Type I error.

7.1. Power comparison. We compare the power of MUMP+, MR, MBH,
MSC,1, MSC+,1, and MSC+,2. We consider a wide variety of data generating dis-
tributions Q, and give full results in Section B.2 of the Supplementary Material.
Here, we focus on five representative cases. In each case, we set each outcome
distribution Qsa to be normally distributed with all variances σ2(Qsa) equal to a
common value denoted by σ2.

We consider two types of scenarios. In the first, we set the mean treatment effect
µ(Qs1)−µ(Qs0) for each subpopulation s to be the same value ∆µ > 0, where ∆µ
(defined in Section B.1 of the Supplementary Material) is the value at which the
standard, one-sided z-test ofH0∗ has 80% power. In the second type of scenario, we
set only subpopulation one to benefit from treatment, by letting µ(Q11)−µ(Q10) =
∆µ and µ(Q21)− µ(Q20) = 0. In each scenario, we consider several values of p1.

We say a multiple testing procedure rejects at least the set of null hypotheses
G, if it rejects all of these null hypotheses and possibly more. For each testing
procedure and data generating distribution, we ran 106 Monte Carlo iterations and
recorded the empirical probabilities of rejecting each subset of null hypotheses.
These are given in Table 1, rounded to the nearest percent. In scenario 1, all null
hypotheses are false; in scenario 2, only H0∗ and H01 are false, and so power is
given only for subsets involving these null hypotheses.

In all cases, MUMP+ has the maximum power for rejecting H0∗ and at least
one false subpopulation null hypothesis. It is precisely this goal that MUMP+ is
designed for. Also, in all cases, MUMP+ has the maximum power for rejecting at
least the overall population null hypothesis H0∗.

The augmented versionMSC+,1 of the procedureMSC,1 of Song and Chi (2007)
has substantially more power (up to 52% more) than MSC,1 to reject H02 in sce-
nario 1. This is not surprising, since MSC,1 was designed for testing only
{H0∗, H01}, rather than {H0∗, H01, H02} as considered here.

The procedure MR has the same power as MUMP+ to reject H0∗, and has 5-6%
less power to simultaneously reject H0∗ and at least one of H01, H02 in scenario 1.
However, MR is roughly equal to or improves on the power of MUMP+ in all other
cases, with a large improvement (up to 14%) in scenario 1 in the power to reject all
three null hypotheses.

It would be ideal to construct a multiple testing procedure in our setting having
both the advantages of MR (including dominating MFS, and having properties B
and C) and the advantages of MUMP+ (including properties A, B, C, and being
uniformly most powerful for (3.14)). Unfortunately, this is not possible, in that:

THEOREM 7.1. No multiple testing procedure for {H01, H02, H0∗} simulta-
neously has properties A, B, and C, and dominates the fixed sequence procedure
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TABLE 1
Power Comparison. Each cell reports the probability (as a percent) that the procedure in that row

rejects at least the set of null hypotheses corresponding to that column. The column heading
“H0∗+sub” means H0∗ and at least one of H01, H02; “all” means all three null hypotheses.

Scenario 1: Both subpopulations benefit equally from treatment
p1 = 1/2 p1 = 3/4{ {

H0∗ H0∗ H0∗ H0∗ all H0∗ H0∗ H0∗ H0∗ all
+sub +H01 +H02 +sub +H01 +H02

MUMP+ 80 80 49 49 19 80 80 62 28 10
MR 80 74 52 52 30 80 75 67 32 24
MBH 66 65 48 48 30 66 66 60 29 24
MSC,1 79 52 52 0 0 79 67 67 0 0
MSC+,1 79 74 52 52 30 79 75 67 32 24
MSC+,2 79 74 52 52 30 79 75 66 32 24

Scenario 2: Only subpopulation one benefits from treatment
p1 = 1/2 p1 = 2/3 p1 = 3/4{ { {

H0∗ H0∗ H01 H0∗ H0∗ H01 H0∗ H0∗ H01

+H01 +H01 +H01

MUMP+ 34 31 31 51 47 47 59 55 55
MR 34 30 30 51 47 47 59 55 55
MBH 22 20 38 36 35 49 44 43 54
MSC,1 34 29 36 50 46 52 58 55 60
MSC+,1 34 29 36 50 46 52 58 55 60
MSC+,2 33 28 28 48 45 45 57 54 54
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MFS. Also, no multiple testing procedure for {H01, H02, H0∗} with property C
simultaneously dominates MFS and is uniformly most powerful for (3.14).

We prove the above theorem in Section G of the Supplementary Material. The
upshot is that there is a tradeoff between dominating MFS on the one hand, and
being uniformly most powerful for rejecting H0∗ and at least one subpopulation
null hypothesis on the other hand, for procedures with property C.

The above scenarios capture the main features of the extensive simulations de-
picted in Figures 2 and 3 of Section B.2 of the Supplementary Material. The one
exception is the scenario, not represented above, but depicted in Figure 2, where
the mean treatment effect is negative for one subpopulation and positive for the
other. This is called a qualitative interaction, as opposed to a quantitative interac-
tion. Since these treatment effects partially cancel out for the overall population,
all the procedures above have relatively low power for rejecting H0∗. In such sce-
narios, MBH has the most power to reject at least one of H01, H02, but this power
is not very large. All the above procedures, including our new procedures and the
existing procedures we compared against, are for situations where it is suspected
that there may be quantitative, rather than qualitative, interactions. In cases where
one suspects a qualitative interaction, other methods should be considered.

7.2. Familywise Type I error rate. In the special case where each outcome dis-
tribution Qsa is normally distributed, the familywise Type I error rate of MUMP+

is at most 0.05, at any sample size. In general, the familywise Type I error guar-
antee in Theorem 4.1 is asymptotic, as sample size goes to infinity, as defined in
Section 3.4. We did extensive simulations based on skewed and heavy-tailed dis-
tributions in Q̃, with sample sizes from 50 to 500 participants. These are described
in Section B.3 of the Supplementary Material. As a benchmark for how challeng-
ing each data generating distribution Q ∈ Q̃ is, we computed the Type I error of
the standard, one-sided z-test for H0∗ under c(Q), where c(Q) is the distribution
resulting from centering each component distribution of Q to have mean 0. For
each data generating distribution Q ∈ Q̃ we simulated from, the familywise Type I
error rate ofMUMP+ underQ was never more than the Type I error of the standard,
one-sided z-test under c(Q).

8. General method for finding the least favorable distribution. The main
challenge in showing the proceduresMUMP andMUMP+ strongly control the fam-
ilywise Type I error rate at level 0.05 is to identify, for each procedure, the least
favorable data generating distribution, that is, the distribution that maximizes the
familywise Type I error rate. To show why this is not trivial, consider the global
null distribution, defined as the Q ∈ QN for which each subpopulation’s mean
treatment effect µ(Qs1)− µ(Qs0) is zero, and all variances equal 1. It is not clear,
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a priori, whether this distribution is least favorable for MUMP. In fact, we show
in Section C.6 of the Supplementary Material that for the simpler procedure M0

defined in Section 4.1, the least favorable distribution is not the global null distri-
bution, and the resulting familywise Type I error rate exceeds 0.05. The proof of
Theorem 4.1 involves showing this does not occur forMUMP. We present the main
steps of the proof below. The full proof is given in Section C of the Supplementary
Material.

Recall that we place only the minimal constraints from Section 3.2 on the means
and variances of the outcome distribution for each subpopulation and treatment
arm, and put no constraints on the proportions of the overall population in each
subpopulation. Finding the least favorable distribution involves optimizing over all
possible values of these to find the distribution that maximizes the familywise Type
I error rate. This is a nonlinear optimization problem that is either difficult or im-
possible to analytically solve. However, we can solve it to any desired precision
with a combination of analytical arguments and intensive computation. Though
this approach, broadly speaking, is similar to that in (Rosenblum and van der Laan,
2011), the specifics are quite different. Each new multiple testing procedure re-
quires new analytic arguments for transforming the corresponding, difficult opti-
mization problem into a small set of computationally tractable problems. We ex-
plain the simplest case below.

To compute the least favorable distribution for procedure MUMP, we first com-
pute this within the subclass of data generating distributions Q ∈ Q for which H0∗
is true, which we denote byQ∗. This is the class of Q ∈ Q for which, for all n, we
have EQ,n(Z∗) ≤ 0. For Q ∈ Q for which H0∗ is true, a familywise Type I error
occurs under MUMP if and only if Z∗ > Φ−1(0.95). By the uniform central limit
theorem of Götze (1991) and the assumptions in Section 3.2, we have

(8.1) lim
n→∞

sup
Q∈Q∗,t∈R

|PQ,n {Z∗ − EQ,n(Z∗) > t} − Φ(−t)| = 0.

This implies, taking t = Φ−1(0.95), that for the class Q∗, the asymptotic, family-
wise Type I error rate is at most 0.05.

It remains to consider the class of data generating distributionsQ ∈ Q for which
H0∗ is false. If H0∗, H01, and H02 are all false, the familywise Type I error rate
equals 0. It therefore suffices to considerQ ∈ Q for whichH0∗ is false, and exactly
one subpopulation null hypothesis, say H01 without loss of generality, is false.
Recall this class is denoted by Q̃.

For each Q ∈ Q̃ and n > 0, define the centered statistics Zcj = Zj − EQ,nZj ,
for each j ∈ {∗, 1, 2}. Define ρ′(Q) = 2−1/2 {ρ2(Q)− ρ1(Q)}. For any Q ∈ Q̃
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and n > 0, the probability MUMP makes a familywise Type I error is

PQ,n
{
Z∗ > Φ−1(0.95), Z2 − (3/4)ρ2(Q) > Z1 − (3/4)ρ1(Q)

}
(8.2)

= PQ,n
{
Zc∗ > Φ−1(0.95)− EQ,nZ∗,

(Zc2 − Zc1)/
√

2 > (3/4)ρ′(Q)− EQ,n(Z2 − Z1)/
√

2
}

= PQ,n

{(
Zc∗, (Z

c
2 − Zc1)/

√
2
)
∈ (λ1(Q,n),∞)× (λ2(Q,n),∞)

}
,(8.3)

where

λ1(Q,n) = Φ−1(0.95)− EQ,nZ∗
= Φ−1(0.95)− ρ1(Q)EQ,nZ1 − ρ2(Q)EQ,nZ2;(8.4)

λ2(Q,n) = (3/4)ρ′(Q)− EQ,n (Z2 − Z1) /
√

2.(8.5)

Let G(y) denote a bivariate normal random vector with zero mean and covari-
ance matrix with 1s on the main diagonal and y off the main diagonal. Apply-
ing the uniform central limit theorem of Götze (1991), and that the covariance of
(Zc∗, (Z

c
2 − Zc1)/

√
2) is ρ′(Q), we have

(8.6)
lim
n→∞

sup
Q∈Q̃,A∈A

∣∣∣PQ,n {(Zc∗, (Zc2 − Zc1)/
√

2
)
∈ A

}
− P

{
G(ρ′(Q)) ∈ A

}∣∣∣ = 0,

where A denotes the set of all Borel measurable, convex subsets of R2. The above
display, combined with the equality of (8.2) and (8.3), implies the following char-
acterization of the asymptotic, worst-case over Q ∈ Q̃, familywise Type I error:

lim sup
n→∞

sup
Q∈Q̃

PQ,n

{
Z∗ > Φ−1(0.95), Z2 −

3

4
ρ2(Q) > Z1 −

3

4
ρ1(Q)

}
= lim sup

n→∞
sup
Q∈Q̃

P
{
G(ρ′(Q)) ∈ (λ1(Q,n),∞)× (λ2(Q,n),∞)

}
.(8.7)

For any n, the term inside the lim sup in (8.7) can be replaced by

(8.8) sup
(x1,x2,x3)∈An

P {G(x3) ∈ (x1,∞)× (x2,∞)} ,

whereAn is the set of triples {(λ1(Q,n), λ2(Q,n), ρ′(Q))}Q∈Q̃. We have reduced
the problem of computing the asymptotic, worst-case over Q ∈ Q̃, familywise
Type I error rate to the optimization problem (8.8).

In Section C.1 of the Supplementary Material, we precisely characterize the
region An, and show An does not depend on n. We then give an algorithm and
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R code to solve the non-convex optimization problem (8.8) to any desired accu-
racy. This is achieved by doing a grid search over An, where at each grid point
(x1, x2, x3) ∈ An we compute the bivariate normal probability in (8.8) using the R
package mvtnorm, and take the maximum found over all grid points. We then prove
an analytic bound on the approximation error in the grid search, by bounding the
gradient of P {G(x3) ∈ (x1,∞)× (x2,∞)}with respect to (x1, x2, x3) and using
the mean value theorem. The result is that (8.8) is at most 0.0461, which by (8.7)
implies the same for the asymptotic, familywise Type I error rate for MUMP over
Q ∈ Q̃. Combining this with the above upper bound of 0.05 over the subclass Q∗,
we have the asymptotic, familywise Type I error rate for MUMP over the class Q
is at most 0.05.

Our method for solving the non-convex optimization problem (8.8) has the ad-
vantage that despite the presence of local optima, it is guaranteed to give a solution
to any desired accuracy. This is an improvement over methods such as simulated
annealing and the Nelder-Mead algorithm, which may get stuck in local optima.
Our method relies on partitioning the overall optimization problem into computa-
tionally tractable smaller problems. It can be quite challenging to devise such a par-
tition, and the bulk of Sections C and E of the Supplementary Material is devoted to
constructing such partitions for our multiple testing procedures MUMP,MUMP+,
and MTS.

9. More than two subpopulations. In the case of two subpopulations, we
exhibited procedures that are uniformly most powerful as in (3.14), and that have
properties A, B, and C. This raises the hope this may be possible for k > 2 subpop-
ulations. Consider the case where the overall population is partitioned into k > 2
subpopulations, in proportions p1, . . . , pk. The definitions in Section 3 for two sub-
populations naturally generalize to k > 2 subpopulations. Define the null hypothe-
ses of no positive mean treatment effect in each subpopulation and in the overall
population, respectively, as:

H0s = {Q ∈ Q : µ(Qs1)− µ(Qs0) ≤ 0} , for each s ∈ {1, . . . , k};

H0∗ =

{
Q ∈ Q :

k∑
s=1

ps {µ(Qs1)− µ(Qs0)} ≤ 0

}
.

In Section G of the Supplementary Material we prove:

THEOREM 9.1. Consider any k > 2, and assume the overall population is par-
titioned into k > 2 subpopulations. No multiple testing procedure simultaneously
has properties A, B, and C.

To explain the key idea underlying the proof of Theorem 9.1, take the simplest
case of k = 3 subpopulations and p1 = p2 = p3 = 1/3. For each j ∈ {1, 2, 3},
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define Q(j) to be the data generating distribution in QN having mean treatment
effect δ > 0 for subpopulation j, and 0 for the remaining two subpopulations; we
describe how δ is chosen below. Define Q(0) to have mean treatment effect 0 in
all subpopulations. Set all variances σ2(Q(j)

sa ) = 1. Consider any multiple testing
procedureM with properties A and B. We prove in Section G of the Supplementary
Material that the familywise Type I error rate of M exceeds 0.05 for at least one
distribution Q(j) for j ∈ {0, 1, 2, 3}, under a certain choice of δ. We next explain
the main steps in this proof.

Assume, for the sake of contradiction, that M has Type I error at most 0.05 for
each Q(j). Since M has property B, with probability 1, it rejects H0∗ whenever
Z∗ > Φ−1(0.95). By property A, whenever this occurs, M must reject at least one
subpopulation null hypothesis as well. For any j ∈ {1, 2, 3}, this leads to a Type I
error under Q(j) unless the rejected null hypothesis is H0j , i.e., the null hypothesis
corresponding to the single subpopulation where there is a positive mean treatment
effect δ. We prove in Section G of the Supplementary Material that for small values
of δ > 0, under Q(j), it is impossible to reliably pick out subpopulation j; we use
this to show for a certain choice of δ, the familywise Type I error rate exceeds
0.05 for at least one of the Q(j). An extension of this idea is used to prove the
general case of k > 2 subpopulations and any set of subpopulation proportions.
We formalize the above argument in Section G of the Supplementary Material.

10. Discussion. Having constructed procedures that are uniformly most pow-
erful for (3.14) allowed us determine what properties are possible (and impossible)
to simultaneously achieve in our setting, and to demonstrate tradeoffs connected
with these properties. We showed for two subpopulations that no procedure domi-
nating MR or MFS can be uniformly most powerful for (3.14). Therefore, one has
to choose which properties are most important when selecting a multiple testing
procedure.

The power comparisons in Section 7 provide information that may be useful in
selecting a multiple testing procedure. If it is strongly desired to guarantee reject-
ing at least one subpopulation null hypothesis whenever H0∗ is rejected, MUMP+

could be useful. The procedure MR, though lacking this property, has quite favor-
able overall performance in the power comparison in Section 7 and in the Sup-
plementary Material; in particular, it has substantially greater power than MUMP+

for simultaneously rejecting all three null hypotheses. This can be an important
consideration for use in practice. It is an open research problem to simultaneously
optimize a weighted combination of (i) power for simultaneously rejecting all three
null hypotheses, and (ii) power for rejectingH0∗ and at least one subpopulation null
hypothesis, each at certain alternatives of interest.

We compare our new multiple testing procedures to existing procedures in a data
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example from a trial of trastuzumab to treat metastatic breast cancer in Section
A of the Supplementary Material. In this example, our new procedures MUMP

and MUMP+ reject the overall population null hypothesis and a subpopulation null
hypothesis, while all the other procedures considered in this paper reject only the
former or reject nothing.
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In Section A of the Supplementary Material, we illustrate the methods compared
above in a data example based on a randomized trial of treatments for metastatic
breast cancer. Section B presents simulations comparing power and familywise
Type I error rates. We prove Theorems 3.1 and 4.1 in Section C. Section D gives
the algorithm for the threshold a(ρ1) used in the augmented procedure MUMP+.
We prove Theorem 4.2 for two-sided tests in Section E. We discuss the relationship
between property A and consonance, and prove Theorem 5.1, in Section F. Proofs
of Theorems 7.1 and 9.1, which show certain properties cannot be simultaneously
satisfied by any multiple testing procedure, are given in Section G.

References.
ALOSH, M. and HUQUE, M. F. (2009). A flexible strategy for testing subgroups and overall popu-

lation. Statistics in Medicine 28 3–23.
BERGMANN, B. and HOMMEL, G. (1988). Improvements of general multiple test procedures for

redundant systems of hypotheses. In Multiple Hypothesenprüfung–Multiple Hypotheses Testing
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GÖTZE, F. (1991). On the rate of convergence in the multivariate CLT. The Annals of Probability 19
724-739.

HOCHBERG, Y. and TAMHANE, A. C. (1987). Multiple Comparison Procedures. Wiley Interscience,
New York.

HOLM, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6 65–70.
HOMMEL, G. (1986). Multiple test procedures for arbitrary dependence structures. Metrika 33 321-

336.
HOMMEL, G. and BERNHARD, G. (1999). Bonferroni procedures for logically related hypotheses.

Journal of Statistical Planning and Inference 82 119 - 128.
KIRSCH, I., DEACON, B. J., HUEDO-MEDINA, T. B., SCOBORIA, A., MOORE, T. J. and JOHN-

SON, B. T. (2008). Initial severity and antidepressant benefits: a meta-analysis of data submitted
to the Food and Drug Administration. PLoS Med 5 e45.

LEHMANN, E. L. and ROMANO, J. P. (2005). Testing Statistical Hypotheses, 3rd ed. ed. Springer,
New York.

MARCUS, R., PERITZ, E. and GABRIEL, K. R. (1976). On closed testing procedures with special
reference to ordered analysis of variance. Biometrika 63 655-660.

MAURER, W., HOTHORN, L. A. and LEHMACHER, W. (1995). Multiple comparisons in drug clin-
ical trials and preclinical assays: a-priori ordered hypotheses. In Biometrie in der chemische-
pharmazeutichen Industrie (J. VOLLMAN, ed.) 6. Fischer Verlag, Stuttgart.

ROMANO, J. P., SHAIKH, A. and WOLF, M. (2011). Consonance and the closure method in multiple
testing. The International Journal of Biostatistics 7.

ROMANO, J. P. and WOLF, M. (2005). Exact and approximate stepdown methods for multiple hy-
pothesis testing. J. Am. Statist. Assoc. 100 94-108.

ROSENBAUM, P. R. (2008). Testing hypotheses in order. Biometrika 95 248-252.
ROSENBLUM, M. and VAN DER LAAN, M. J. (2011). Optimizing randomized trial designs to dis-

tinguish which subpopulations benefit from treatment. Biometrika 98 845-860.
SLAMON, D. J., LEYLAND-JONES, B., SHAK, S., FUCHS, H., PATON, V., BAJAMONDE, A.,

FLEMING, T., EIERMANN, W., WOLTER, J., PEGRAM, M., BASELGA, J. and NORTON, L.
(2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast
cancer that overexpresses HER2. New England Journal of Medicine 344 783-792.

SONG, Y. and CHI, G. Y. H. (2007). A method for testing a prespecified subgroup in clinical trials.
Statistics in Medicine 26 3535–3549.
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