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Motivation 
•  Regression models often used to analyze 

randomized trials.  
•  Models that adjust for baseline variables 

can add power to hypothesis tests. 
•  Danger: If model misspecified, may have 

large Type I and Type II error, even for 
large sample sizes.  

•  Research Question: For which models will 
hypothesis tests based on these models 
have asymptotically correct Type I error, 
even when the models are misspecified? 



Outline 
•  Regression Models in Randomized Trials: 

Current Uses, Advantages, Limitations 
•  Example of a Hypothesis Test Based on 

Regression Model 
•  Related Work (Robins, Freedman) 
•  Our Results: For many regression models, 

certain simple hypothesis tests based on 
them have asymptotically correct Type I 
error, even when model misspecified. 
(Need to assume data I.I.D.) 

•  Open Problems  



Models Often Used to Analyze  
Randomized Trials 

Pocock et al. (2002) surveyed 50 clinical trial 
reports. 

Findings:  36 used covariate adjustment 
    12 reports emphasized adjusted 

    over unadjusted analysis.  
   “Nevertheless, the statistical emphasis on 

covariate adjustment is quite complex and 
often poorly understood, and there 
remains confusion as to what is an 
appropriate statistical strategy.” 



Advantages of Model-Based Tests 

•  Can have more power than Intention-to-
Treat (ITT) based tests (e.g. if adjust for 
baseline variable(s) predictive of 
outcome).  

   [Robinson and Jewell, 1991; Hernandez et al., 
2004; Moore and van der Laan 2007; Freedman 
2007] 

•  Can test for effect modification by baseline 
variables. 

 



Misspecified Models Can Lead to 
Large Type I Error 

•  Robins (2004): for some classes of 
models, when the regression model is 
incorrectly specified, Type I error may be 
quite large even for large sample sizes. 

•  Potential for standard regression-based 
estimators to be asymptotically biased 
under the null hypothesis.  

•  Would lead to falsely rejecting null with 
probability tending to 1 as sample size 
tends to infinity (even with robust SE’s). 



Example of Model-Based 
Hypothesis Test in Rand. Trial 

•  Randomized trial of inhaled cyclosporine 
to prevent rejection after lung-
transplantation.  (Iacono et al. 2006) 
 Outcome: number of severe rejection 
events per year of follow-up time. 

•  Some baseline variables known to be 
predictive of outcome: serologic mismatch, 

   prior rejection event. 
•  Poisson Regression Used to Adjust for 

these.  



Example (continued) 

•  Poisson model for conditional mean number of 
Rejection Events given Treatment (T), Serologic 
Mismatch (M) and Prior Rejection (P): 

Log E(Rejections | T, M, P) =  
 
This Poisson model used to do hypothesis test: 
If estimate of      more than 1.96 SE’s from 0, 

reject null hypothesis of no mean treatment 
effect within strata of M and P. 

PMT 3210 ββββ +++
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Example (continued) 
Standard arguments to justify use of this 

Poisson model rely on assumption that it is 
correctly specified.  
 But what if this assumption is false?     

Our main result implies that the above 
hypothesis test will have asymptotically 
correct Type I error, if the confidence interval 
is instead computed using a robust variance 
estimator (e.g. sandwich estimator), even 
when the model is misspecified. 

Limitation of our results: we assume data I.I.D. 



Null Hypothesis Being Tested 

We test the null hypothesis of no mean 
treatment effect within strata of a set of 
baseline variables B. 

That is, for T = treatment indicator, 
E(Outcome | T =0, B) = E(Outcome | T=1, B). 
 
This is a stronger (more restrictive) null hypothesis 

than no mean overall treatment effect: 
   E(Outcome| T=0) = E(Outcome | T=1). 
It is a weaker (less restrictive) null hypothesis than 

no effect at all of treatment. 
 



Related Work 
D. Freedman (2007) shows that hypothesis tests 
based on ANCOVA model, that is, modeling 
E(Outcome| Treatment T, Baseline Variables B)  
    by  
have asymptotically correct Type I error 
regardless of the data generating distribution.  
 
J. Robins (2004) shows same for linear models 
with interaction terms. For example: 
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Scope of Our Results 

•  Our Results: 
 -Apply to larger class of linear models than 
previously known. 
 -Apply to large class of generalized linear models 
(including logistic regression, probit regression, 
Poisson regression). 
  For example, the models 

            logit-1 
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Summary of Our Main Result 

•  Null hypothesis we consider: No mean 
treatment effect within strata of baseline 
variables. 

•  Our Main Result:  
 For a surprisingly large class of commonly 
used regression models, standard regression-
based hypothesis tests (but using robust 
variance estimators) are guaranteed to have 
asymptotically correct Type I error, even when 
the models are incorrectly specified.  



Hypothesis Testing Procedure 
•  Before looking at data:  

–  Choose regression model satisfying constraints given 
in our paper (e.g. logit-1               ). 

–  Choose a coefficient      corresponding to a treatment 
term in the model (either      or      in example). 

•  Estimate the parameters of model using 
maximum likelihood estimation. 

•  Compute robust variance estimates with Huber 
sandwich estimator. 

•  Reject the null hypothesis of no mean treatment 
effect within strata of B if the estimate for     is 
more than 1.96 standard errors from 0. 
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Caveats of Hypothesis Testing 
Procedure 

What if design matrix is not full rank?  
What if maximum likelihood algorithm 

doesn’t converge? 
We always fail to reject the null hypothesis 

in these cases.  
Since standard statistical software (e.g. R) 

will return a warning message when the 
design matrix is not full rank or when the 
maximum likelihood algorithm fails to 
converge, this condition is easy to check. 



Limitations 

•  Assumption that data I.I.D.: 
Not generally the case in randomized trial. 
•  Our results are asymptotic; performance 

not guaranteed for finite sample size 
•  Our results apply to hypothesis tests, not 

to estimation. For example, if hypothesis 
test rejects null, one cannot use same 
methods to create (asymptotically) valid 
confidence interval under the alternative. 

 



Intuition behind Main Result 
•  When model misspecified, maximum 

likelihood estimator converges to maximizer 
β* of expected log-likelihood                        ; 
 for P the unknown data generating dist’n.  

•  Distribution corresponding to β* can be 
viewed as projection of true data generating 
distribution onto model, based on Kullback-
Leibler divergence. 

•  We prove that for certain models, components 
of β* corresponding to treatment variable (T) 
are zero. 

);(log βXpEP



Models That Are Not Robust to 
Misspecification 

•  Models lacking “main terms,” e.g. 

•  Median Regression Models: 
 Y = m(X, β) +          

    for         having Laplace distribution. 
•  More generally, models of the form: 

 Y = m(X, β) +          
    for         mean 0, not normally distributed. 
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Effect Modification in Linear Models 
•  Our Results imply regression-based tests of 

effect modification are robust to model 
misspecification in certain settings: 
–  Treatment T dichotomous,  
–  Outcome Y is continuous, 
–  Linear Model such as  

•  Test whether baseline variable(s) B is effect 
modifier on additive scale: null hypothesis:    

           E(Y|T=1,B) – E(Y|T=0,B) is constant. 
•  Reject null if estimate of       more than 1.96 

robust SE’s from 0.  
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Regression Model vs. 
Semiparametric Model Based Tests 

•  Important work has been done using 
semiparametric methods to construct 
estimators and hypothesis tests that are 
robust to incorrectly specified models in 
randomized trials. [e.g. Robins, 1986; van der Laan and 
Robins, 2003; Tsiatis, 2006; Tsiatis et al., 2007; Zhang et al., 2007; 
Moore and van der Laan, 2007; Rubin and van der Laan, 2007]. 

•  Our results use Regression methods: 
– Simpler to implement. 
– Can have more power if model approximately 

correctly specified. 



Overall Recommendations 

•  Freedman (2008):  
 First analyze experimental data following the ITT 
principle: compare rates or averages for subjects 
assigned to each treatment group.  
 “This is simple, transparent, and fairly robust. 
Modeling should be secondary.” 

•  In model based tests, choose robust models and 
use robust variance estimators. 

 



Open Problems 

•  Comparing Finite Sample Performance of 
Model Based Tests vs. Intention-to-Treat 
Based Tests. (This is what really matters 
in practice.) 

•  Proving results under framework that 
doesn’t assume I.I.D. data, such as 
Neyman model used by Freedman (2007). 
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Robust Variance Estimator 
    Huber’s Sandwich estimator: 

   Let               denote the 
      log likelihood implied by regression model. 

   Let       denote the maximizer of     
     Let       denote the maximum likelihood estimator.  
    The asymptotic covariance of  
    is  
   
    for 
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Models Having Robustness 
Property 

∑ ∑+ )(),( )1()0( BgBTf kkjj ββ

)()|),(( BgBBTfE kj =

I. Linear models for E(Outcome | T, B) of 
the form: 
 
where for every j, there is a k such that 
   
 
II. Generalized Linear Models with 
canonical links with linear parts of the form: 
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Model as Working Model 
•  Our approach is to never assume model is 

correct—we treat it as a “working model”. 
•  Our goal is find simple tests based on 

regression models, that is, models of  
E(Outcome | Treatment, Baseline Variables), 

 that have asymptotically correct Type I 
error regardless of the data generating 
distribution.  

Advantage of such models over ITT is 
potentially more power. 



Example of Linear Model with 
Robustness Property 

).exp()exp()exp( 3210 BTBB •+−++ ββββ

For dichotomous treatment T  
(taking values -1,1) and baseline variable B: 


