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In this chapter, we discuss issues that arise when devel-
oping, writing up, and implementing clinical study
designs that incorporate Bayesian models and calcula-
tions. We have had the opportunity to work with
many such designs at The University of Texas M. D.
Anderson Cancer Center. We feel that study designs that
incorporate Bayesian models offer many advantages
over traditional frequentist designs, and we will discuss
these advantages in this chapter. At the same time,
Bayesian models require a lot of thought and close work
with the clinical investigators. Also, there may be some
reluctance on the part of some clinical investigators to
accept a study design that is built on Bayesian consid-
erations. We will provide some arguments and real
examples that may help statisticians overcome such
reluctance. Although our examples tend to come from
the field of oncology, the lessons and underlying ideas
have broad application. (See Carlin and Louis [1] for a
general introduction to Bayesian methods.)

WHY BAYESIAN DESIGNS

What Are Bayesian Designs?
Types of Bayesian Designs

First we need to define what we mean by a Bayesian
design. In the first paragraph, we specifically avoided
writing the term “Bayesian design,” choosing instead
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the phrase “clinical study designs that incorporate
Bayesian models and calculations.” The latter phrase
allows us to include many designs that are not fully
Bayesian, meaning that they do not choose the design
to minimize some risk. Instead, many of these “cali-
brated Bayes” (2) designs incorporate a Bayesian
model, possibly considering prior information, in the
stopping rules of the study.

An example of this calibration is the following.
The statistician and clinical investigators decide on the
general form of the criteria for decisions at interim
analyses, such as basing decisions on the posterior
probability that the treatment’s success probability
exceeds a threshold value. Next, the statistician will
typically carry out a large number of simulations under
various scenarios. The statistician reviews the simula-
tion results with the clinical investigators, allowing
them to decide on the criteria that yield the best (to
their minds) operating characteristics. This process may
include changing the benchmark value against which
one compares the posterior treatment-related success
probability or the degree of certainty (e.g., 80% or
90%) that one will require before one will consider
stopping the study.

There also exist more formal Bayesian designs for
clinical trials. Berry argues for the application of deci-
sion theory in clinical trial design (3, 4). Even if one
takes a fully Bayesian view, one will still find that
reviewing these a priori simulations serves to make the
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transition from frequentist designs to Bayesian ones eas-
ier for clinical investigators. Simulations under various
scenarios also help reveal sensitivity of the study’s deci-
sions and inferences to prior assumptions. We discuss
these ideas later in this chapter through our examples.

Advantages of Bayesian Designs

Why is one interested in Bayesian designs for clinical
trials? One can view a clinical trial as an experiment
that will lead to a decision (use the new treatment or
do not use the new treatment) or prediction (the new
treatment regimen will provide a benefit of so much
over the standard treatment). Bayesian methods are
ideal for decision making (i.e., minimizing risk or
maximizing utility) and for prediction.

Additionally, Bayesian methods are ideal for com-
bining disparate sources of information. Thus, one can
construct a coherent probability model to combine the
information from the current study with historical data
and with any information available from ongoing stud-
ies using Bayesian considerations. Perhaps a further
impetus to the current interest in Bayesian designs is
the fact that the Bayesian inference obeys the likelihood
principle. Many of the clinical studies we see include
interim analyses, and when there is no provision for
interim analyses, we often suggest them in our reviews.
The likelihood principle is important as it relates to
interim analyses of an ongoing study. One develops fre-
quentist stopping rules, such as group sequential
designs (5), in a way that preserves the overall type I
error under the null hypothesis. Thus, a treatment
effect that might have been statistically significant with-
out any prior interim analyses may not be significant
after accounting for the number of prior analyses. The
likelihood principle, however, requires that data that
lead to the same likelihood for the parameter of inter-
est should lead to the same inference (6). A conse-
quence of the likelihood principle is that the number of
interim analyses does not affect Bayesian inference,
since the likelihood is the same whether the current
analysis had been the first or the most recent of sev-
eral earlier analyses. All that matters to the Bayesian
are the data at hand and not what happened before,
unless earlier analyses somehow alter the likelihood.

Another reason more and more clinical trials are
incorporating Bayesian ideas is the desire in many sit-
uations to include adaptive randomization. Such clin-
ical trials change the randomization probabilities in
light of the accruing data. The study may start ran-
domizing patients to the different treatments with equal
probability. Then, perhaps after enrolling some mini-
mum number of patients, the randomization proba-
bilities adapt to favor the better performing treatments.

Bayesian methodology may enter the study by way of
using posterior probability calculations to influence the
randomization probabilities (7). The ethical idea is to
reduce the number of patients who receive inferior
treatment while still accruing convincing evidence
within the clinical trial. (There have been interesting
discussions of the ethics of randomization and adap-
tive randomization (8—12), but we do not discuss this
aspect of clinical trial design here.) We discuss an exam-
ple of Bayesian adaptive randomization later in this
chapter.

REQUIREMENTS FOR A SUCCESSFUL
BAYESIAN DESIGN

As with all clinical studies, considerable work has to
go into the preparation of the study design. The stat-
istician and the clinical investigators need to discuss the
study’s aims and objectives. Care must go into select-
ing endpoints for the primary and secondary aims of
the study. Much of these considerations are discussed
elsewhere in this volume, so we will focus more on the
aspects that relate to the Bayesian part of the design. In
particular, we will talk about the prior distribution and
stopping rules. Additionally, if one takes a decision-the-
oretic approach, one will have to consider the utility
function that accounts for the study’s aims. If one
wishes to calibrate the design, then one will have to
review with the other investigators the implication of
various decision-rule parameters on the operating char-
acteristics.

Software for Real-Time Updating

Real-time updating is an important aspect of modern
Bayesian trial designs. These designs incorporate early
stopping rules, allowing the investigator to stop early
for lack of efficacy, superiority, or excessive toxicity.
For example, in a single-arm phase II study that will
compare the progression free survival (PFS) associated
with a new treatment to historical information for one
or several standard treatments, an investigator may
desire to stop the study early if there is evidence that
the new treatment results in worse outcomes than the
historical standard. A Bayesian approach to this prob-
lem might assume that PFS follows an exponential dis-
tribution (with rate parameter #) and, with a conjugate
gamma prior, that @follows, a posteriori, a gamma dis-
tribution. A common stopping rule under this setup is
to stop the trial if at any point Pr(8> €*| Data) > C
(where @* usually represents some historical event rate
and Cis some pre-specified threshold value). One com-
putes this probability each time a new patient (or group
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of patients) enters the study or when a patient already
enrolled experiences disease progression.

Typically, calculation of the above probability
requires numerical integration, and one must develop
statistical software to carry out the calculations neces-
sary to monitor the accruing data and determine
whether the interim stopping boundaries have been
crossed. By software, we include R scripts or SAS
macros written solely for use by the collaborating stat-
istician, stand-alone desktop computer programs writ-
ten for use by other statisticians, or even Web-based
applications for use by nonstatistical research staff. The
kind of application one develops is a function of who
the end user will be and how often future studies may
use the same sort of design. For example, it may be suf-
ficient for the collaborating statistician to have a func-
tion that runs within a general purpose statistical or
mathematical package when carrying out a single-
institution study that will evaluate outcomes for a rare
disease with slow accrual in which posterior updating
will be necessary only every 4 to 6 weeks. In contrast,
a rapidly accruing multicenter, multiarm study may
require real-time updating via a Web-based application
or a telephone voice-response system. Part of the work
involved in implementing Bayesian methods is to deter-
mine the exact software needs of the particular study’s
design. Below we describe a set of commonly used tri-
als that require real-time updating.

Types of Studies
Phase I Oncology Dose-finding Study

Many drugs used in oncology are associated with
severe toxicities and have a narrow therapeutic win-
dow, meaning that there is only a small range of doses
that may be efficacious without being overly toxic.
Therefore, the initial step in assessing these compounds
in humans usually focuses on finding a dose that has
an acceptable level of toxicity. Because one of the most
important constraints on the conduct of these initial tri-
als is the desire to limit the number of patients who
experience severe toxicity, these studies are conducted
with dose escalation proceeding in a sequential man-
ner. That is, the study enrolls small cohorts of patients
(e.g., three to six) and does not assign a higher dose
until each patient in a given cohort has been through
at least one cycle of treatment and their outcomes
assessed. The toxicity outcomes observed from these
(and earlier) patients may enter into an algorithm that
the investigators use to select the dose for the next
cohort. The purpose of this sequential approach is to
decrease the chance that large numbers of patients
receive doses that are too toxic.

The assumption underlying this approach in
oncology, at least, is that toxicity and response are cor-
related through dose. That is, higher doses lead to an
increase in the toxicity risk and an increase in the prob-
ability that a patient will respond to treatment. This
assumption was historically reasonable in oncology,
where one defined activity in terms of killing cancer
cells. Thus, phase I oncology studies have tradition-
ally attempted to determine the highest dose that has
an acceptable toxicity level, since by assumption this
dose will also lead to greater efficacy than lower doses.

Bayesian phase I designs treat a patient’s risk of
toxicity at a given dose as a quantity about which the
investigator has some degree of uncertainty. One quan-
tifies this uncertainty via a probability distribution.
Decisions to escalate the dose, continue with the cur-
rent dose, or de-escalate from the current dose incor-
porate the most current data. Given what one has
learned to date, one will treat the next patient with the
dose with an expected risk of toxicity that is closest to
a predefined target toxicity risk. In such a setting,
Bayesian methods offer clear advantages. The Bayesian
framework provides a means by which one can learn
about toxicity risks at the different doses and naturally
make decisions based on the data observed in a sequen-
tial manner. The increase in knowledge is reflected by
a decrease in uncertainty as one moves from prior to
posterior.

Phase II Adaptive Randomization Trials

Bayesian adaptive randomization designs successively (as
patients are evaluated for outcome) modify the ran-
domization probabilities based on either posterior or pre-
dictive probabilities favoring one treatment over another.
In essence, data from patients previously enrolled and
evaluated in a study are used so that patients currently
enrolling onto the trial will have a higher probability of
being randomized to the most efficacious treatments. In
these types of designs, subjects are initially randomized
fairly (i.e., with equal probability) to the various (at least
two) treatment arms. Since many adaptive randomiza-
tion trials usually have a period in which patients are
equally randomized prior to the implementation of adap-
tive randomization, it is important that the statistician
monitor the actual randomization versus expected ran-
domization.

Other Trials

Other interesting and useful examples of successful
Bayesian applications in the design of clinical trials
include single-treatment phase II studies that consider
efficacy and toxicity, with stopping rules based on both
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end points (13-16). Another interesting innovation is
the so-called seamless phase II/III design (17, 18). With
this design, randomization begins within the context of
a small phase II study that collects survival information
but has an intermediate endpoint as the primary out-
come. Based on early results with respect to the inter-
mediate end point, however, the study may expand to
a large randomized phase III study with survival as the
primary outcome. Berry et al. discuss a design that
simultaneously sought the best dose of a drug in an
adaptive way and maintained a randomized compari-
son with placebo (19). Other examples exist in the lit-
erature (20).

As mentioned earlier, the Bayesian inferential
machinery fits well with decision theory. Once one has
determined an appropriate utility function, one can set
up the design to optimize the utility. Furthermore, one
can carry out sequential decision making, either fully
via backward induction (21) or by looking ahead one
or a few steps. In all cases, one maximizes the utility,
taking into account posterior uncertainty. There also
exist more formal Bayesian designs for clinical trials.
Berry argues for the application of decision theory in
clinical trial design (3, 4). Kadane (22) presents an
interesting example of a clinical trial, describing the
background and development of the study. The litera-
ture includes other examples of formal Bayesian
designs (23-26). Rossell et al. (27) and Ding et al. (28)
present decision-theoretic designs for phase II studies
that screen out active therapies from among a sequence
of new treatments.

Realistic Priors
Historical Priors

Often, there have been earlier studies with one or more
of the agents under investigation in the current study.
These data usually inform the study’s design, either
informally (as in determining the null and alternative
hypotheses in frequentist designs) or formally via a
prior distribution. One may find, however, that if one
assumes that the current study’s patients will be
exchangeable with the historical information, the his-
torical information will be extremely informative with
respect to inference during the current study. In fact,
in some cases, it may well be that there is little reason
to embark on the current study, given the evidence in
the historical information. (In many situations, it may
well be appropriate to consider whether there really is
a need for the current study, given the strength of his-
torical evidence. That is a topic for another discussion,
however.) Since the current study will go forward, one
has to find a way to discount the historical information

or choose not to assume that the patients in the current
study are exchangeable with the earlier studies.

If we consider a binary outcome, such as treat-
ment success or failure (however defined), then we
might characterize the historical data by means of a
beta distribution. For example, if an early study
enrolled 50 patients, and 30 patients experienced a
treatment success, we might characterize the uncer-
tainty about the treatment’s underlying success proba-
bility by a beta distribution with parameters equal to
30 and 20. One might think of this prior as the poste-
rior distribution arising from an experiment that gave
rise to these data and a fully noninformative beta[0,0]
prior. (Alternatively, one could consider an initial uni-
form[0,1] prior or a Jeffreys beta[0.5, 0.5] prior and
determine a posterior beta distribution with slightly dif-
ferent parameters[1].)

Now, one might feel that the beta[30,20] prior is
too informative for this study. For example, this dis-
tribution has 95% of the central mass between 0.46
and 0.73. If one wants to entertain the possibility of
smaller success probabilities than 0.4, then one may
want to discount this prior data in some way. A natu-
ral way to keep the prior mean 0.6 but increase the
uncertainty is to decrease the prior sample size. For
example, one might choose to reduce prior information
to the equivalent of a prior sample size of 5 by way of
a beta[3, 2] distribution. Now the central 95% of the
mass lies between 0.19 and 0.93.

A related approach for discounting the historical
information is with a power prior (29, 30). The power
prior extends the notion of discounting to a general
class and allows for inference with respect to the degree
of discounting. Briefly, one considers a parameter in the
probability model that will characterize the level of dis-
counting for the historical information. The basic idea
of the power prior is that the more similar the prior and
current data are, the less discounting that takes places
and vice versa. Let L (8 | D) represent the likelihood
function that will characterize the data at the end of the
current study (i.e., after collecting the data represented
by D). Using the same likelihood function with the his-
torical data D, the power prior is p(6 | D, 8) o< L(6
I D,,)® p(6 | ¢), where the parameter ¢is a hyperpara-
meter for an optional initial prior. The parameter & will
serve to discount or down-weight the information con-
tent of the historical data when one will apply this prior
to carry out posterior inference in the analysis of the
current study.

Another way people have discounted prior infor-
mation is less direct: they have modified parameters in
the stopping rules to make it more difficult to stop
early. In other words, one uses the historical informa-
tion to generate an informative prior but makes the
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cutoff for early stopping more stringent than perhaps
one would normally consider reasonable. For example,
if one is basing the stopping rule on a criterion based
on the posterior probability that some parameter or
function of model parameters exceeds a threshold, one
may require a very high probability (e.g., 99%) of this
event before considering early stopping. Making the
stopping rule more stringent basically provides a way
to keep the prior from dominating early decision
making and allows the current study to continue accu-
mulating data.

The process of determining the boundary criteria
often proceeds iteratively. One determines the criteria
for early stopping by carrying out simulations under
various scenarios and then deciding which stopping
rules lead to satisfactory operating characteristics.
Although such devices tend to make the designs accept-
able to frequentists, because of the calibrated operat-
ing characteristics, they also may tend to undermine the
benefit of the underlying Bayesian model. The histori-
cal information may become almost neglected or, at
most, these data enter into the design as a formality
without giving full consideration of their importance
to the inferential question under investigation.

Elicitation of Experts

Elicitation of priors from experts would seem a rea-
sonable approach, especially in the absence of histori-
cal data. Carlin et al. (31) describe their experience
eliciting prior information for a clinical trial. Problems
may occur in a clinical trial for which the experts may
have provided a prior that subsequently appears to be
at odds with the data. An informative example is dis-
cussed by Carlin et al. in the context of a randomized
clinical trial evaluating the benefit of prophylaxis
against possible infection with toxoplasmic encephali-
tis (TE) (32). In this study, the five experts whose opin-
ions went into the prior distribution turned out to have
been overly optimistic. Each expert anticipated a treat-
ment benefit. Although there was widespread dis-
agreement among these five individuals, none
considered the possibility that the treatment would be
no better than placebo, let alone worse.

The key points resulting from these investigators’
experience with this study are instructive. In particu-
lar, the experts may provide point estimates, but there
is underlying uncertainty in each expert’s opinion. Per-
haps a mixture of these separate prior distributions will
be more robust to the analysis than combining the
experts’ point estimates into a single prior. Another
point brought out in this study was that different
experts might find it easier to specify priors for the
effect of the treatment on different end points. For

example, one expert was not able to provide a prior
estimate of the effect of the treatment on the risk of
death or TE, whereas the other four could and did.

In our experience, it is also important that those
whose opinions one seeks see the consequences of their
a priori estimates. Graphical displays of uncertainty
distributions or of observable quantities, given prior
specification, allow the experts to gain insight into the
implications of their stated beliefs (16, 33). Quite often,
this feedback reveals inconsistencies and leads to
revisions.

Thus, one has to be careful about incorporating
expert opinion into a prior distribution for a clinical
trial’s design.

Operating Characteristics

One of the biggest challenges to utilizing Bayesian meth-
ods when designing studies is having software available
to assess the operating characteristics of a design. For
any Bayesian design used in practice, the collaborating
statistician must provide operating characteristics that
summarize the behavior of the proposed method under
a wide variety of situations (called scenarios). Because
these designs typically involve complex models and
decision rules, one has to carry out simulations to eval-
uate the operating characteristics of the proposed
design. Some of the characteristics that one typically
summarizes are the number of patients assigned to each
treatment, the probability of selecting each dose as most
efficacious, the probability of stopping a trial if all treat-
ments are too toxic, etc. The statistician typically con-
siders a wide variety of possible scenarios ranging from
very pessimistic, such as the case when no treatment
provides any benefit, to optimistic cases in which sev-
eral of the treatments are effective.

Purpose of Checking Operating
Characteristics (Calibration)

Controversy Surrounding Evaluation of
Frequentist Properties

If one has chosen to demonstrate the frequentist char-
acteristics of the Bayesian design, then one will have to
simulate the design under different scenarios. It may
seem odd to want to evaluate the frequentist charac-
teristics of a proposed Bayesian design, but some rea-
sons are as follows. First, one may want to convince the
non-Bayesian audience that the proposed design offers
benefits over standard frequentist designs without incur-
ring a loss in terms of the frequentist characteristics. For
example, some sequential designs base their stopping
rules on posterior probability calculations, such as
Prob(treatment difference > delta | Data) > cutoff. One
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can certainly view these posterior probabilities as test
statistics, being functions of the data, even though they
differ from more common test statistics. Thus, one can
evaluate the operating characteristics. Another reason
one might want to estimate the operating characteris-
tics of the proposed design is to evaluate how robust the
design is under different scenarios. If one feels that the
prior distribution is based on rather limited historical
information, for example, then one might want to
ensure that the prior does not overly dominate inference
in certain situations.

Potential Pitfalls

Potential pitfalls include not stopping when one should,
stopping a study and later regretting it, and the often
perceived possibility that the study’s Bayesian analysis
will not receive widespread acceptance. The surest way
to avoid these problems is to carry out simulations
under many, many different scenarios.

EXAMPLES OF BAYESIAN DESIGNS

What Worked and Why

We have seen dozens of successful Bayesian clinical tri-
als at the M. D. Anderson Cancer Center. One charac-
teristic that has contributed to successful implementation
is a schedule of regular meetings between the statisticians
and the clinical research staff during the trial’s design
stage. The meetings serve to educate both groups to the
other’s needs and perspectives. After initiation of patient
enrollment, meetings between the research staff and the
statistician continue for the purpose of interim review
of the trial’s progress. Also, the statistician should pro-
vide some data management oversight to ensure that the
database accurately reflects the trial data.

Clear communication between the clinical inves-
tigators and statisticians with respect to what a design
can and cannot do is essential. It is also vitally impor-
tant for the statistician to test the computer code and
interface to ensure everything is working properly. Is
the program computing the posterior probabilities cor-
rectly? Do the results and recommendations in differ-
ent hypothetical situations make sense mathematically
and clinically? Is the user interface (for example, a
stand-alone graphical user interface or a Web-based
application) intuitive and easily navigated by the indi-
viduals who will be using it? Does the interface perform
appropriately? These are important questions to
address while preparing the protocol and well before
the study enrolls the first patient if one wants to real-
ize the full potential of the Bayesian design. When clin-
ical studies with Bayesian designs work well, the

benefits of these designs are very much appreciated by
the collaborating investigators. Below we give three
examples of clinical studies from our institution (from
a potential list of dozens).

Correlated Ordinal Toxicity
Monitoring in Phase I

In this example, investigators used a Bayesian design
within a new statistical framework for dose-finding
based on a set of qualitatively different, ordinal-valued
toxicities (34). The objective of this trial was to assess
the toxicity profile associated with the anticancer drug
gemcitabine when combined with external beam radi-
ation to treat patients with soft-tissue sarcoma. The
study’s design allowed for possible evaluation of a total
of 10 gemcitabine doses, combined with a fixed dose
of radiation. Traditionally, phase I studies in oncology
consider a binary end point as the primary outcome.
This binary end point is an indicator of whether or not
each patient experienced a dose-limiting toxicity, as
defined in the protocol. This single end point reduces
all toxicity information across grade or severity of the
toxicity and across organ systems into a single yes-or-
no outcome. (Berry et al. discuss the use of a hierar-
chical model to borrow strength across types of
toxicities within organ systems in the context of drug
safety monitoring [35]). In most phase I oncology set-
tings, however, the patient is at risk of several qualita-
tively different toxicities, each occurring at several
possible levels of severity. Moreover, the different tox-
icities often are not of equal clinical importance.

The design of this soft-tissue sarcoma phase I
study represented a radical departure from conven-
tional phase I study design in oncology. It was based
on an underlying probability model that characterized
the relationship between dose and the severity of each
type of toxicity. The model included a set of correlated
normally distributed latent variables to induce associ-
ations among the risks associated with the different
toxicities. Additionally, there were weights or numeri-
cal scores to characterize the importance of each level
of each type of toxicity. The statistician met with the
physicians prior to initiation of the trial to elicit from
them these scores. An algorithm combined the scores
associated with each type and level of toxicity with the
probability of observing each particular type and level
of toxicity. This algorithm produced a weighted aver-
age toxicity score. This weighted average toxicity score
informed decisions about doses for successive cohorts
of patients in this phase I study.

Concerns expressed by the oncologists motivated
the development of this design. The clinicians wanted
a dose-finding method that would account for the fact
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that, clinically, the toxicities that they had identified
are not equally important. Additionally, the different
toxicities do not occur independently. The investiga-
tors also requested that the dose-finding method uti-
lize the information contained in the grade or severity
of an observed toxicity. That is, if patients experience
a low-grade toxicity at a given dose, while not dose
limiting, this event suggests that higher doses may be
more likely to lead to a higher grade of that toxicity.
The Bayesian framework of this study’s design was
capable of addressing all of the investigators’ concerns
regarding characterization of toxicity while also incor-
porating key design aspects required for institutional
approval of the protocol, such as early trial termina-
tion for excessive toxicity at the lowest dose. At the
end of the study, the model recommended a dose to
take forward into phase II, and the investigators were
in complete agreement with this choice as the appro-
priate dose.

Joint Modeling Toxicity and Biomarker
Expression in a Phasel/II Dose-Finding Trial

In this example, the investigators used a Bayesian
framework to model jointly a binary toxicity out-
come and a continuous biomarker expression
outcome in a phase I/Il dose-finding study of an
intravesical gene therapy for treating superficial blad-
der cancer (36). Since the toxicity and efficacy profiles
of the gene therapy were unknown, the investigators
proposed a phase I/II dose-finding study with four
possible doses.

This trial’s motivation was partially attributable
to the increasing use of biomarkers as indicators of risk
or as surrogate outcomes for activity and efficacy. In
many contexts, the biomarker is observable immedi-
ately after treatment, allowing the investigators to
learn about the therapeutic potential of the compound
without having to wait months or even years as sur-
vival data mature. Unlike conventional phase I stud-
ies, this study’s objective was to determine the best
dose based on both biomarker expression and toxic-
ity. This dual outcome required a joint model for the
two end points. For ethical reasons, the study escalated
doses between patients sequentially. An algorithm
based on the joint model chose the dose for each suc-
cessive patient using both toxicity and activity data
from patients previously treated in the trial. The mod-
eling framework incorporated a correlation between
the binary toxicity end point and the continuous activ-
ity outcome via a latent Gaussian random variable.
The dose-escalation/de-escalation decision rules were
based on the posterior distributions of model param-
eters relating to toxicity and to activity. The study’s

stopping rule called for it to stop if the estimated risk
of toxicity appeared excessive or if there was clear evi-
dence that the treatment was not modulating the bio-
logic marker.

The Bayesian framework used in this study
allowed for flexible modeling of some rather compli-
cated outcomes. In addition, this framework provided
a coherent mechanism for incorporating prior infor-
mation into the modeling process. The study ended, in
fact, when it became evident that the drug was not
modulating the biologic marker.

Adaptive Randomization

Investigators wished to evaluate the effectiveness of
combinations of three drugs (an immunosuppressive
agent, a purine analog anti-metabolite, and an anti-
folate) to prevent graft-versus-host disease (GVHD)
after transplantation (37). The study used adaptive
randomization and was to enroll a maximum of 150
patients. A success was defined in this study as “alive
with successful engraftment, without relapse, and
without a GVHD 100 days after the transplant.” The
design called for comparing each treatment to the con-
trol arm (i.e., the combination treatment with the
immunosuppressive agent and anti-folate) in terms of
the probability of success in the following manner. Let
p, be the success probability in the control arm. Sim-
ilarly, let p,, p,, p;, and p, be the success rates in the
4 other treatment arms (three-arm combination treat-
ments with varying doses of the purine analog anti-
metabolite). As information accrued about the
treatments, the investigators altered the randomization
probabilities from equal randomization to biased ran-
domization based on the posterior probability that
each treatment-specific success probability exceeded
that of the control arm. That is, the randomization
would adapt to favor treatments associated with suc-
cess probabilities that were greater than that of the
control via P(p, > p, | data) (for k = 1, 2, 3, 4) after
appropriate scaling.

In addition, the study’s design allowed for early
stopping based on predictive probabilities. Specifically,
the investigators dropped a treatment arm if the pre-
dictive probability that its success probability will be
greater than p was less than 0.05, given the data at
hand and the data yet to accrue. The design was suc-
cessful in that it limited the number of patients who
received the inferior treatments to 18.2% of all of the
110 patients randomized to one of the four experi-
mental arms. By contrast, a design that randomized
patients equally to the treatments and did not allow for
early stopping would have exposed 50% of patients
to these ineffective therapies.
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What Did Not Work and Why

When designing clinical studies, the collaborating stat-
istician should be aware of potential pitfalls associated
with the design or designs of choice. This is true of
Bayesian designs, which may have some unique issues
to consider. The most common difficulties include
problems with the computer code, such as bugs that
lead to incorrect posterior probability calculations;
human error in data entry and management; and rec-
onciling differences in how statisticians (or statistical
models) define adequate evidence of treatment effects
and how physicians define these effects. Below we give
examples of three of these potential problems and dis-
cuss steps one can take to avoid them.

Over time, Bayesian designs have found more
application and become more complicated. While most
of the designs developed in the early 1990s focused on
binary end points, current implementations include
models for time-to-event end points that include
parameter effects for treatment, patient-specific covari-
ates (e.g., patient’s risk of death) and covariate-by-
treatment interactions (e.g., Xian et al. [38]). For very
simple designs based on a binary end point, the data
management requirements for posterior updating were
relatively straightforward. These types of models only
require keeping track of the number of patients in the
trial and the total number of patients who have expe-
rienced the event of interest. In contrast, as the mod-
els have become increasingly complex, more data (and
more data management) are required for calculation of
posterior probabilities. As a consequence, an increase
in data management can lead to data entry errors.

For example, Maki et al. (39) describe a two-arm
open-label phase II clinical study in sarcoma with
tumor response as the primary end point. The study
employed a Bayesian adaptive randomization procedure
that accounted for treatment-by-sarcoma-subgroup
interactions. Specifically, the adaptive randomization
scheme incorporated information on the type of
sarcoma. After randomizing the first 30 patients
equally to the two treatment regimens, the design called
for adapting the randomization probabilities for sub-
sequent patients to favor the better performing treat-
ment, according to the accrued data. The investigators
subsequently found that the initial recorded sarcoma
subtypes for some patients were incorrect. The conse-
quence of this incorrect labeling was that, for one sar-
coma subtype, the probability of randomization to the
top performing arm was less than it should have been,
relative to the other treatment arms. While in this
example all patients continued to have higher proba-
bility of randomization to the better performing treat-
ment arm, it is conceivable that if such an error were

not discovered early, patients could have been ran-
domized to inferior treatments. Therefore, it is
extremely important that the statistician be involved
with data-management oversight to ensure that such
errors do not occur.

One of the key considerations in designing
Bayesian clinical trials involves navigating the rela-
tionship between the proposed Bayesian model and the
realities of medical research. A model may indicate that
one treatment confers benefit over another (calculated
via posterior probabilities), but if one is claiming this
benefit on a very small number of patients, one is going
to have a hard time convincing a medical audience that
the results are robust (robust in an English and not sta-
tistical sense). For example, Giles et al. (40) reported
a phase I trial that randomized patients to receive one
of three treatment regimens: idarubicin and ara-C (IA);
troxacitabine and ara-C (TA); and troxacitabine and
idarubicin (TI). The study’s Bayesian design adaptively
randomized patients to the treatments. Initially, there
was an equal chance for randomization to IA, TA, or
TIL, but treatment arms with higher success proportions
progressively received a larger fraction of patients. The
adaptive randomization led to a total of 18 patients
randomized to the IA arm; 11 patients randomized to
the TA arm; and just 5 patients randomized to the TI
arm. The small sample size associated with the TT arm
left this trial open to concerns that the results were not
conclusive.

This story is reminiscent of the controversy sur-
rounding the early randomized trials of extracorpo-
real membrane oxygenation (ECMO) for neonates in
respiratory failure. Two early ECMO trials (41, 42)
included adaptive randomization algorithms that led
to very few babies receiving the non-ECMO treat-
ment. In the end, a vocal part of the medical com-
munity seemed to think that these trials included too
few patients treated conventionally (i.e., without
ECMO) to justify making ECMO the standard treat-
ment for neonates in respiratory distress. (See Ware
and related discussion for more information about the
ECMO trials [43].) Eventually, a randomized clinical
trial without adaptive randomization in the United
Kingdom demonstrated the benefit of ECMO (44).
The lesson to learn is that one should ensure that the
trial will include some minimum number of patients
in all treatments (subject to safety assurances) before
it begins to adapt the randomization in light of the
accruing evidence.

A common criticism voiced by some investiga-
tors with whom we have collaborated relates to
recommendations based on Bayesian models that do
not match the investigators’ expectations based on
experiences with other designs. This tension is
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exemplified in the context of dose escalation decisions
in phase I studies in oncology. Although we described
and illustrated Bayesian phase I oncology studies ear-
lier in this chapter, most of these phase I studies use
non-Bayesian algorithms for dose-finding, such as the
3 + 3 design (45). Their popularity is driven by the
fact that clinicians can easily understand these trial
designs, and the decision rules employed make intu-
itive sense. Yet, much is left unspecified in the imple-
mentation of these methods. For example, algorithmic
designs implicitly target toxicity risks smaller than
33% (1 in 3) as being acceptable. In contrast, while
Bayesian phase I designs may seem (to some clini-
cians) to be black boxes, these models make explicit
the outcomes being targeted. In particular, all
Bayesian designs explicitly specify a target probabil-
ity of toxicity (usually between 25% and 33%). We
believe that one of the main reasons this criticism
occurs is a lack of communication between the stat-
istician and the clinical investigator. This lack of com-
munication may result, in part, from difficulty
explaining these methods to non-statisticians (46).
One way to overcome these difficulties is by making
the underlying assumptions of the Bayesian model
clear to the investigator. One can illustrate these
assumptions by providing the investigator with sam-
ple trajectories of virtual trials simulated under
different scenarios, in addition to providing the
operating characteristics of the trial’s average behav-
ior (as discussed earlier in this chapter). While poten-
tially time consuming, this type of upfront
examination and assessment before the study begins
will help the clinician understand both the merits and
limitations of the design and underlying model
contained in the protocol.

SUMMARY OF RECOMMENDATIONS

In this chapter, we have illustrated the use of Bayesian
methods in the design of clinical studies. Although we
work with investigators interested in treating cancer,
the examples illustrate ideas that are applicable in all
disease areas. The main advantages of Bayesian ideas
in the design of clinical trials are the inherent flexibil-
ity of Bayesian inference; the ease with which one can
incorporate information from outside of the study,
including measured outcomes of mixed types (e.g.,
continuous and discrete); the natural notion of evolv-
ing knowledge evinced by the transformation from
prior uncertainty to posterior uncertainty based on
observations; and the way the Bayesian methodology
allows one to make decisions and maximize utility,
taking into account all uncertainty captured in the

basic probability model. Although our examples con-
cerned novel designs and new methodology, Bayesian
ideas are applicable when designing any clinical study.
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