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Clinical Trials 2008; 5: 181–193ARTICLE

Bayesian adaptive design for targeted
therapy development in lung cancer – a step
toward personalized medicine

Xian Zhoua,b, Suyu Liua, Edward S Kimc, Roy S. Herbstc and J Jack Leea

Background With the advancement in biomedicine, many biologically targeted
therapies have been developed. These targeted agents, however, may not work for
everyone. Biomarker profiles can be used to identify effective targeted therapies.
Our goals are to characterize the molecular signature of individual tumors, offer the
best-fit targeted therapies to patients in a study, and identify promising agents for
future development.
Methods We propose an outcome-based adaptive randomization trial design
for patients with advanced stage non-small cell lung cancer. All patients have
baseline biopsy samples taken for biomarker assessment prior to randomization
to treatments. The primary endpoint of this study is the disease control rate at
8 weeks after randomization. The Bayesian probit model is used to characterize
the disease control rate. Patients are adaptively randomized to one of four
treatments with the randomization rate based on the updated disease control
rate from the accumulated data in the trial. For each biomarker profile,
high-performing treatments have higher randomization rates, and vice versa.
An early stopping rule is implemented to suspend low-performing treatments from
randomization.
Results Based on extensive simulation studies, with a total of 200 evaluable
patients, our trial has desirable operating characteristics to: (1) identify effective
agents with a high probability; (2) suspend ineffective agents; and (3) treat more
patients with effective agents that correspond to their biomarker profiles. Our trial
design continues to update and refine the estimates as the trial progresses.
Limitations This biomarker-based trial requires biopsible tumors and a two-week
turn around time for biomarker profiling before randomization. Additionally,
in order to learn from the interim data and adjust the randomization rate
accordingly, the outcome-based adaptive randomization design is applicable only
for trials when the endpoint can be assessed in a relative short period of time.
Conclusion Bayesian adaptive randomization trial design is a smart, novel, and
ethical design. In conjunction with an early stopping rule, it can be used to
efficiently identify effective agents, eliminate ineffective ones, and match effective
treatments with patients’ biomarker profiles. The proposed design is suitable for the
development of targeted therapies and provides a rational design for personalized
medicine. Clinical Trials 2008; 5: 181–193. http://ctj.sagepub.com
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Introduction

In recent years, the use of adaptive design methods
based on interim observed data from on-going trials
has become popular in clinical development due to
their flexibility in the trial conduct. The outcome-
based adaptive randomization (AR) design can be
used to adjust the treatment assignment probabil-
ities according to the performance of each treatment
during the trial. As the trial progresses,
more patients can be treated with more promising
regimens based on the updated data. Several AR
designs have been reported under names such as
‘play the winner,’ ‘biased coin,’ and ‘urn design.’ By
incorporating early stopping rules for efficacy and/
or futility, AR designs can be more efficient in
selecting effective treatments or eliminating inef-
fective ones. The resulting designs are also more
ethical because more patients are treated with
effective treatments [1,2]. The use of AR designs in
clinical trials can be found in many articles and
books [3–8].

AR was first developed in the frequentist’s con-
text, but has recently been expanded to the Bayesian
framework. The Bayesian approach provides a
natural way to incorporate prior information to
the available data to form current knowledge.
Furthermore, the Bayesian design allows for
continuous updating and improving of the model
estimates based on cumulative data observed over
time. The Bayesian design is more flexible in trial
conduct because even when the trial deviates
from the original design, the inference remains
unchanged because Bayesian inference is based on
the data likelihood and not constrained to a preset,
fixed design. Excellent introduction to the Bayesian
clinical trial methods including Bayesian AR can be
found in recent literature [9–16].

In this article, we design a clinical trial by using
an AR design with an underlying hierarchical Bayes
model to provide estimations for the treatment
effect and the covariate effect. In many randomized
designs, the baseline covariate is considered as
prognostic (i.e., a covariate can impact the outcome
but the effect is constant across all treatments)
[17–19]. However, our AR design allows the covari-
ate effect to be predictive (i.e., the effect of covariate
on treatment outcome may vary with specific
treatment). It offers an alternative to model all
the treatment by covariate interactions when the
covariate is predictive. The predictive model setting
is consistent with the current knowledge of targeted
agent development [20–22]. Furthermore, the
addition of the hierarchical Bayes structure in the
AR model allows ‘borrowing strength’, or informa-
tion-sharing across patients receiving the same
treatment but with different covariate profiles.

Specifically, the information obtained in one
subset of patients provides indirect information for
patients with similar characteristics. When subsets
of patients behave similarly, more information is
shared. Conversely, when subgroups behave differ-
ently, less information is shared. Major goals for our
trial design are: (1) to characterize the molecular
signature of each tumor, (2) to offer the best-fit
targeted therapy to patients in the trial, and (3) to
identify promising targeted agents and their corre-
sponding predictive signatures for future develop-
ment. An overview of our clinical trial is given
in Section Biomarker-integrated approaches of
targeted therapy of lung cancer elimination
(BATTLE), while the details of the hierarchical
Bayes model are described in Section Hierarchical
probit model. In Section AR and decision results the
AR and decision rules of our trial design are
specified. The operating characteristics of our trial
design, illustrated by different scenarios of simula-
tion studies are presented and compared in Section
Simulation results, with a discussion in Section
Discussion.

Biomarker-integrated approaches
of targeted therapy of lung cancer
elimination (BATTLE)

With the advancement of molecular biology and
genomic research, many target-based agents
that offer mechanism-based therapy have been
developed in the past decade [23–26]. Because
targeted agents are developed to address specific
disease-causing defects, they offer hope for increas-
ing treatment efficacy while reducing toxicity.
Many targeted agents, however, do not work in
all patients. The challenge of trial design is to
screen for effective drugs and identify which
patient groups will or will not benefit from the
drugs. We use the BATTLE project, a phase II design
in patients with advanced non-small cell lung
cancer (NSCLC), to illustrate our trial design
methodology.

The BATTLE project consists of one umbrella
trial and four parallel phase II studies with
biomarker-based targeted therapies in patients
with advanced NSCLC previously treated with
chemotherapy but subsequently failed. The four
targeted therapies are erlotinib (Treatment 1), sor-
afenib (Treatment 2), vandetanib (Treatment 3),
and the combination of erlotinib and bexarotene
(Treatment 4). It is assumed that each treatment
may be more efficacious in patients with a
certain biomarker profile matching the agent’s
mechanism of action. Therefore, the goal of
this project is to establish a clinical trial

182 X Zhou et al.

Clinical Trials 2008; 5: 181–193 http://ctj.sagepub.com

 at WELCH MEDICAL LIBRARY on April 20, 2010 http://ctj.sagepub.comDownloaded from 

http://ctj.sagepub.com


prototype towards the development of targeted
therapy that tests the efficacy of molecular targeted
agents in advanced NSCLC patients by utilizing
their biomarker profiles.

A total of 200 evaluable patients are expected
to be enrolled into the study. All eligible patients
will be required to have baseline core biopsy
samples taken for biomarker profile assessment
before randomization. Four types of biomarker
classes (EGFR mutation/amplification, K-ras and/
or B-raf mutation, VEGF and/or VEGFR expression,
and RXR and/or cyclin D1 expression) will be
assessed. Each patient will be assigned to one of
the five marker groups (MGs) based on his or her
profile. The priority of the marker group assign-
ments and the associated distributions are shown
in Figure 1. For example, if a patient has an EGFR
mutation, he or she will be assigned to MG 1
regardless of the status of other biomarkers.
Otherwise, a patient will be assigned to MG 2 if
there is a K-ras and/or B-raf mutation. Similarly,
MG 3 patients will have a positive VEGF and/or
VEGFR expression, and MG 4 patients will have a
positive RXR and/or cyclin D1 expression. Patients
will be assigned to MG 1 through MG 4 in a

sequential order. If none of the biomarkers are
positive, the patient will be assigned to MG 5. The
formation of the five biomarker groups reduces the
total number of all possible biomarker combina-
tions (24 = 16). Based on our preliminary data, it is
estimated that 15, 20, 30, 25, and 10 percent
patients will belong to MGs 1, 2, 3, 4, and 5,
respectively. The order of the assignment was
derived based on the strength of the predictive
markers evidence with respect to the corresponding
treatments. Given four treatments and five marker
groups, there are 20 treatment by marker subgroups
– a substantial reduction from 64 all possible
combinations.

Prior studies in this advanced, chemotherapy-
treated NSCLC patient population have demon-
strated the median time to progression of 2 to 3
months [27,28]. Hence, we consider a treatment
successful if a patient reaches disease control status
(i.e., progression-free) at 8 weeks. The 8-week
disease control rate has been shown to be a good
predictor for clinical benefit including survival in
patients with advanced NSCLC [29]. The main
objective of this study is to estimate and test the
disease control rate for each treatment given

Enrollment into BATTLE umbrella protocol

Putative
treatment Erlotinib

Biomarker

EGFR

K-ras/B-raf

VEGF/VEGFR

RXR/Cyclin D1

Percentage 15% 20% 30% 25% 10%

1 2 3 4 5

−

−

−

−

+

+

+ −

−

−

−

−−+

×

×

× ×

×

×

Sorafenib

Biomarker group

Vandetanib Erlotinib +
Bexarotene

Blomarker profiling, marker group assignment,
and adaptive randomization

Figure 1 Schematic diagram of the flow of the BATTLE trial. All eligible patients will be enrolled in the Umbrella protocol
first. Tissue biopsy will be taken for biomarker profiling. According to the characteristics of the four biomarker categories, patients

will be assigned to the biomarker group 1 to 5 in a sequential order. The symbols ‘+’, ‘�’, and ‘x’ correspond to the positive,

negative, and either positive or negative biomarker status, respectively. Patients will be adaptively randomized to one of the four

treatments according to their biomarker groups. The dashed arrow indicates the putative effective treatment for each of the
biomarker groups
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patients’ tumor biomarker profiles. The primary
endpoint is the 8-week disease control rate, which
is defined as the fraction of patients who show no
sign of objective disease progression at 8 weeks after
randomization. The null and target disease control
rates are set at 0.3 and 0.5, respectively.

Hierarchical probit model

The Bayesian probit model [30] is used to character-
ize the disease control rate for each treatment by
marker subgroup. A probit model is a popular
specification of a generalized linear model using
the probit link function to model categorical or
ordinal data. A latent continuous variable is intro-
duced to model the relationship between response
data and covariates. Let j and k denote the treatment
and marker group, respectively. There are a total of
four treatments and five marker groups. Let i be the
index for the patient, from 1 to njk, where, njk is the
total number of patients in the combination of
treatment j and marker group k. Let, yijk be the
random variable of disease control (progression-free
at 8 weeks). It takes the value of 0 if patients
experience progression or die within 8 weeks of the
treatment. Otherwise, it equals to 1. A latent
continuous variable zijk is introduced to model the
disease control rate. Let

yijk ¼
0 if zijk � 0

1 if zijk >0

(
ð1Þ

The disease control rate for treatment j, MG k, is
the probability that the latent variable is greater
than 0, defined as �jk ¼ Pðyijk ¼ 1Þ ¼ Pðzijk > 0Þ. For
each subgroup, we assume that zijk follows a normal
distribution with a location parameter �jk. Note that
because only the sign of zijk matters for determining
yijk, the model can be identified up to a multi-
plicative constant on zijk. For the purpose of identi-
fiability, we set the variance of zijk as 1 [31]. For a
given marker group, a normally distributed hyper
prior N(�j, �

2) is imposed on the location parameters
�jk of the latent variable. The parameter �j is also
normally distributed with mean 0 and variance �2,
which allows for the exchange of information across
different treatments. This hierarchicalmodel setting
allows borrowing information across different
marker groups (k) within a treatment ( j).

zijk � Nð�jk, 1Þ, for i ¼ 1, . . . ,njk

�jk � Nð�j, �
2Þ, for k ¼ 1, . . . , 5

�j � Nð0, �2Þ, for j ¼ 1, . . . , 4

ð2Þ

The parameters �2 and �2 control the extent of
the borrowing across marker groups within each
treatment and across all treatments, respectively.
Our default configuration is to use the vague prior
with �2 ¼ 106 and �2 ¼ 106. The details for comput-
ing the posterior distributions via Gibbs sampling
from the full conditional distributions are given in
the Appendix.

AR and decision rules

An outcome-based AR scheme is proposed for the
BATTLE project. Because patients with distinct
biomarker statuses may respond differently to
different treatments, the biomarker status must be
taken into consideration when assigning patients
into various treatments. For example, if patients
with EGFR mutation are more likely to respond
to erlotinib than other treatments, it is desirable to
assign more these types of patients to erlotinib.
Because the true disease control rate for each of the
treatment by marker combinations is unknown
when the trial begins, ER is applied in the first part
of the trial until at least one patient is enrolled in
each subgroup with a known disease control status.
Then, patients are adaptively randomized there-
after. Bayesian adaptive design can help to refine
the estimation and randomize the patients accord-
ingly as the trial progresses. Under the Bayesian
probit model described above, all data are used in
computing the posterior disease control rate and
thus in determining the randomization ratio. The
model gains efficiency by combining the data from
all subgroups.

The randomization rate is computed based on the
estimated posterior mean of the disease control rate
of each treatment in each marker group. To ensure a
certain minimal probability of randomization for
each nonsuspended treatment, if the estimated
disease control rate is <10%, 10% is used in
calculating the randomization ratio. AR will be
carried out until the last patient is enrolled, unless
the trial is stopped early because all four treatments
are suspended due to futility. The randomization
ratio for a patient in MG k to receive treatment j is
proportional to the estimated mean disease control
rate in MG k with treatment j. This is mathemati-
cally defined as:

�̂jk=
X
!2�

�̂!k ; ð3Þ

where �̂ corresponds to the posterior mean of the
disease control rate and � indicates the subset of
all eligible and nonsuspended treatments for
that patient at the time of randomization.
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For example, let us assume that the next patient to
be randomized is in MG 1. If the current estimated
disease control rates of treatments 1, 2, 3, and 4 in
MG 1 are 0.6, 0.3, 0.2, and 0.1, the randomization
rates to treatments 1, 2, 3, and 4 are 0.50, 0.25, 0.17,
and 0.08, respectively.

An early stopping rule can be added to our trial
design. If the current data shows that a treatment is
unlikely to be beneficial to patients with certain
biomarker profiles, randomization to that treat-
ment is suspended. Specifically, denote the target
disease control rate by �1 and the critical probability
for early stopping, i.e., suspension of randomiza-
tion due to futility by �L. Recall that the estimated
disease control rate of the jth treatment for the kth
marker group is Pr ½zijk>0jData�: Therefore, the trial
will be suspended for the jth treatment and kth

marker group if the chance that the estimated
disease control rate greater than �1 is less than or
equal to �L, i.e., :

PrðPr½zijk>0jData� > �1Þ � �L: ð4Þ

We choose 0.5 and 0.1 for �1 and �L, respectively,
so that if given the current data, there is less than a
10% chance that the disease control rate in this
treatment by marker subgroup is greater than 0.5,
the treatment is suspended for this subgroup. The
stopping rule will be applied after AR begins. Note
that the early stopping criterion will be updated
when each new outcome is observed. The suspen-
sion of a treatment in a certain marker group is only
temporary and is reversible. If the updated data
shows that the early stopping (suspension) criterion
no longer holds, the treatment can be reopened to
patients in that marker group.

Let �0 and �U be the disease control rate for
standard treatment and the critical probability for
declaring an effective treatment, respectively. The
treatment will be considered a success at the end of
a trial if the probability that the estimated disease
control rate is equal to or greater than �0 is at least
�U, i.e.,

PrðPr½zijk>0jData�>�0Þ � �U : ð5Þ

In this study, we set �0 and �U at 0.3 and 0.8,
respectively, which means that if the probability of
a disease control rate greater than 0.3 is 80% or
higher, the treatment will be declared effective for
this treatment by marker subgroup. Please note that
our trial design has no early stopping rule for
effective treatments. If a treatment shows early
signs of efficacy, patients will continue to be
enrolled under the AR scheme and the declaration
of efficacy will occur at the end of the trial. The
above design parameters were chosen via extensive

simulation studies to ensure that the design
possessed desirable operating characteristics
(shown in Section Simulation results).

Simulation results

We evaluate the operating characteristics of our trial
design under various scenarios through simulations.
In this phase II trial with five marker groups, four
treatments, and a limited sample size of 200
evaluable patients, our target is to achieve a 20%
false positive rate (i.e., claiming the non-effective
treatment effective, which corresponds to the
frequentist’s type I error rate), and an 80% power
(i.e., claiming the effective treatment effective).
A higher false positive rate is allowed so that we
will not miss any potentially effective treatments.
Once effective treatments are identified, they will be
confirmed by larger studies in the future.

We conducted simulations with 1000 runs for
each scenario. We assumed that for MG 1, the true
DCR for Treatment 1 was 80%, but only 30% for all
other treatments. We assumed that for MG 2, the
true DCR for Treatment 2 was 60%, with 30% for all
other treatments. Similarly, MG 3 and MG 4 had
only one effective treatment, but there was no
effective treatment in MG 5. In Scenario 1, both
equal randomization (ER) and AR were studied
without an early stopping rule. Scenario 2 depicted
the same situation as Scenario 1, but applying an
early stopping rule. Vague priors with �2 ¼ �2 = 106

were used in Scenarios 1 and 2. The effect of prior
specification with varying treatment effect was
examined in Scenario 3. We also studied the null
case when the disease control rate was 0.30 for all
subgroups and verified that the false positive rate
were all under 20% (between 15% and 19%, data
not shown).

Scenario 1: one effective treatment
for MGs 1– 4, no effective treatment
for MG 5; with no early stopping rule;
and with vague priors

Table 1 shows the simulation results for Scenario 1
with both ER and AR. The top section of the table
gives the observed mean and the model-based
posterior mean of disease control rates. Under ER,
the true disease control rates could be estimated
unbiasedly. In this case, the observed rates were
exactly the same as the true rates, i.e., the disease
control rates for Treatments 1–4 were 0.8, 0.3, 0.3,
0.3 in MG 1; 0.3, 0.6, 0.3, 0.3 in MG 2; 0.3, 0.3, 0.6,
0.3 in MG 3; 0.3, 0.3, 0.3, 0.6 in MG 4; and 0.3, 0.3,
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0.3, 0.3 in MG 5, respectively. The model-based
posterior disease control rates also provided accurate
estimates of the true rates. Conversely, with AR, the
observed and the model-based rates were slightly
lower than the corresponding true rates. This
finding agrees with a well known result that AR
causes bias in estimating the true parameters [5,6].
As expected, the average sample sizes for the four
treatments were approximately the same within a
given marker group when ER was applied. ER lacks
the flexibility to allocate more patients into more
effective treatments even when there is clear
evidence that some treatments outperform the
others. Conversely, after the initial ER phase,
AR allocated patients into treatments based on the
model-based disease control rates. As a result, of the
30.6 patients in MG 1, 11.0 (35.9%) were rando-
mized to Treatment 1 but only 6.7 (21.9%), 6.3
(20.6%), and 6.6 (21.6%) were randomized to
Treatments 2 through 4, respectively. The results
showed that larger proportions of patients were
randomized into more effective treatments for MGs
1–4 under AR. For MG 5, there was no allocation
preference because none of the treatments were
effective. The total numbers of patients reaching
disease control status were 76.3 (38.2% of 200
randomized patients) using ER and 80.9 (40.5%)
using AR. The results show that more patients
reached disease control status with the AR design.

The probability of declaring an effective treat-
ment for each biomarker group was also explored.
This probability was at least 85% for effective
treatments but 20% or less for ineffective treat-
ments. The highest probabilities of declaring an
effective treatment were 0.96 for ER and 0.97 for AR
in patients with MG 1 and assigned to Treatment 1.
Higher statistical power could be found in effective
treatment by marker subgroups. The probability of
declaring an effective treatment was about the same
between the ER and AR designs when the treatment
was effective. However, when the treatments were
not efficacious, the probabilities of declaring an
effective treatment were lower for AR (between 15%
to 18%) than those for ER (between 19% to 20%).

Scenario 2: One effective treatment
for MGs 1–4, no effective treatment
for MG 5; with an early stopping rule;
and with vague priors

The operating characteristics for the ER and AR
designs when applying an early stopping rule
(i.e., suspending inefficacious treatments from
randomization) were shown in Table 2. Compared
with the results in Scenario 1, the observed disease
control rates for ER were no longer unbiased when

an early stopping rule was implemented. For both
ER and AR, the observed and model-based disease
control rates under estimated the true rates. The
bias for the model-based posterior mean estimates
were smaller than that of the observed mean
estimates. The standard errors for the posterior
mean estimates ranged from 0.15 to 0.26 for the AR
design.

When an early stopping rule was applied to ER,
the average sample size was larger for effective
treatments and smaller for ineffective treatments.
For example, for patients in MG 1, the average
sample size for Treatment 1 was 11.4 but was only
about 6 for Treatments 2, 3, and 4. Similarly, more
patients were randomized into effective treatments
in MGs 2, 3, and 4. This was a result of suspending
ineffective treatments early. For AR, applying an
early stopping rule provided further improvement
on randomizing more patients into effective treat-
ments. Comparing Scenario 1 versus Scenario 2, the
percentage of patients receiving effective treatments
increased from 35.9% to 43.2% for MG 1, 32.4% to
38.8% for MG 2, 33.2% to 43.0% for MG 3, and
32.8% to 41.6% forMG4. The percentage of patients
receiving effective treatments were also higher in AR
compared to ER when an early stopping rule was
applied. For patients in MG 5, since there were no
effective treatments, percentages of patients rando-
mizing into Treatments 1–4 were about the same for
both ER and AR.

The additional row of ‘None’ indicates the
average number of patients who were not rando-
mized due to lack of efficacy in all treatments.
In MGs 1–4, less than 4% of the patients were in the
‘None’ category because there was one effective
treatment in each MG. However, for MG 5, 9.1%
and 10.9% of the patients using ER and AR were not
randomized due to no effective treatments for this
marker group. These patients might receive other
treatments off protocol.

The probabilities of declaring effective treatments
were comparable between ER and AR. When the
treatment was efficacious, the lowest power was
83% for ER and 82% for AR (in Treatment 2, MG 2).
The probabilities of identifying effective treatments
were slightly lower with an early stopping rule than
without it, but were still above the pre-specified
target of 80%. The false positive rates for declaring
ineffective treatments as effective, were between
0.14 and 0.19 for ER andwere between 0.12 and 0.17
for AR. The probabilities of suspending treatments
were also comparable between ER and AR designs.
When the treatments were effective, the probabil-
ities of suspending were no larger than 0.11 for ER
and 0.12 for AR (in Treatment 2, MG 2). Conversely,
for ineffective treatments, the probabilities of
suspending were at least 0.52 for ER and 0.53 for
AR (in Treatment 4, MG 1). The probabilities of
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reopening the suspended treatments ranged from
0.13 to 0.31 in these cases. (data not shown)

When an early stopping rulewas applied to the ER
design, the operating characteristics were shaped
to be similar to those in the AR design. The AR
design, however, still randomized more patients
into effective treatments compared to the ER design.
Consequently, the total number of patients reach-
ing disease control status was 81.4 (41.9% of an
averaged 194.1 randomized patients) for the ER
design, which was lower than 83.0 (43.0% of an
averaged 192.9 randomized patients) for the AR
design. For the AR design, the median (mean)
number of patients required before starting AR was
85 (92), corresponding to almost half of the patients
were in the ER phase before AR.

Scenario 3: Varying effectiveness
for Treatments 1–4; AR utilized
without an early stopping rule; and
with varying informative priors on r2

Scenario 3 was constructed to assess the impact of
the prior distribution on the operating character-
istics of the AR design. We assumed that the disease

control rates varied from 0.3 to 0.8 for Treatment 1
and from0.3 to 0.6 for Treatment 3 in differentMGs.
On the other hand, the disease control rates for
Treatments 2 and 4 were 0.6 (effective) and 0.3
(ineffective) across all MGs, respectively. From (2),
we let the variance of �jk, �

2, vary at 100;10, and 1
across all MGs. To avoid assuming that treatments
had similar efficacy, the variance of fj, �

2, remained
at 106: In Table 3, the results for �2 ¼ 100 and 10
were closer than that of �2 ¼ 10 and 1, indicating
that there was little borrowing across MGs when
�2 ¼ 100 and 10, andmuch borrowing when �2 ¼ 1.
The amount of borrowing can be easily identified by
examining the model-based posterior mean estima-
tion of the disease control rates. As �2 went from 100
to 1, the model-based disease control rates for
Treatment 1 decreased from 0.77 to 0.74 in MG 1
and from 0.78 to 0.75 in MG 2. In the meantime,
the corresponding disease control rate for
Treatment 1 increased substantially from 0.27 to
0.42 inMG 5.We saw a similar trend in Treatment 3
across different MGs, where estimated disease
control rates for effective treatment by marker
subgroups decreased, but estimated disease
control rates for ineffective subgroups increased.
The amount of borrowing was also reflected from
the probability of declaring an effective treatment.

Table 3 Operating characteristics for Scenario 3: varying effectiveness for treatments 1 and 3. Treatment 2 is equally effective and
Treatment 3 is equally ineffective for marker groups 1–5; adaptive randomization utilized with no early stopping rule; and with varying

informative priors �2=100, 10, 1, and �2=106

Marker group

Treatment 1 2 3 4 5

True disease control rate / Observed disease control rate {1/2/3}
1 0.8/0.78/0.80/0.79 0.8/0.79/0.80/0.79 0.6/0.58/0.58/0.59 0.6/0.58/0.58/0.59 0.3/0.24/0.24/0.29

2 0.6/0.55/0.57/0.58 0.6/0.58/0.57/0.58 0.6/0.59/0.60/0.59 0.6/0.58/0.58/0.59 0.6/0.55/0.54/0.56

3 0.6/0.58/0.55/0.57 0.3/0.27/0.26/0.28 0.6/0.58/0.58/0.60 0.3/0.27/0.28/0.28 0.3/0.24/0.25/0.27

4 0.3/0.26/0.27/0.28 0.3/0.28/0.26/0.27 0.3/0.28/0.28/0.28 0.3/0.27/0.27/0.28 0.3/0.25/0.24/0.26

Model-based posterior mean of the disease control rate {1/2/3}
1 0.77/0.78/0.74 0.78/0.78/0.75 0.58/0.58/0.59 0.58/0.58/0.59 0.27/0.29/0.42

2 0.55/0.57/0.58 0.57/0.57/0.58 0.59/0.59/0.59 0.58/0.59/0.58 0.55/0.55/0.57

3 0.58/0.55/0.53 0.28/0.28/0.32 0.58/0.57/0.57 0.28/0.29/0.32 0.26/0.28/0.34

4 0.27/0.29/0.30 0.29/0.27/0.29 0.29/0.29/0.29 0.28/0.28/0.29 0.27/0.27/0.29

Average sample size {1/2/3}
1 9.3/9.4/9.1 13.4/13.6/12.8 16.5/16.5/16.5 14.9/15.0/14.9 4.6/4.6/5.1

2 7.6/7.7/7.9 11.1/11.0/11.3 16.4/16.5/16.5 14.6/14.9/15.0 6.6/6.8/6.2

3 7.8/7.6/7.4 8.0/7.9/8.5 16.3/16.0/16.1 10.6/10.5/10.8 4.5/4.7/4.7

4 5.7/5.8/5.8 8.2/7.8/7.8 11.8/11.8/12.0 10.5/10.4/10.3 4.5/4.4/4.3
Total 30.5/30.5/30.2 40.7/40.4/40.4 61.0/60.9/61.1 50.5/50.7/50.9 20.2/20.5/20.3

Probability of declaring effective treatment {1/2/3}

1 0.95/0.96/0.97 0.98/0.99/0.99 0.91/0.91/0.93 0.89/0.89/0.92 0.15/0.16/0.33

2 0.71/0.75/0.79 0.83/0.80/0.86 0.91/0.92/0.95 0.89/0.88/0.91 0.68/0.68/0.75

3 0.76/0.71/0.71 0.18/0.15/0.19 0.90/0.89/0.91 0.16/0.18/0.19 0.16/0.17/0.17
4 0.18/0.18/0.17 0.17/0.17/0.14 0.17/0.19/0.18 0.16/0.15/0.16 0.19/0.16/0.11

1The entries {1/2/3} correspond to �2=100(1); �2=10(2); and �2=1(3), respectively.

Bayesian adaptive design for targeted therapy in lung cancer 189

http://ctj.sagepub.com Clinical Trials 2008; 5: 181–193

 at WELCH MEDICAL LIBRARY on April 20, 2010 http://ctj.sagepub.comDownloaded from 

http://ctj.sagepub.com


One prominent finding was that Treatment 1 in
MG 5 had a 15% chance of being declared effective
when �2 ¼ 100 and a 33% chance of being declared
effective when �2 ¼ 1. The increase in the prob-
ability can be attributed to (1) the treatment being
very effective in all other MGs and, (2) a small �2

dictating that the variation of the disease control
rates across all MGs would be small. In this case,
too much borrowing led to a higher chance of the
false conclusion that Treatment 1worked inMG5 in
the situation of heterogeneous disease control rates
across MGs. When the treatment effect was homo-
geneous across MGs, more borrowing yielded better
results with respect to less biased estimates of disease
control rate and more accurate declarations of
effective treatments. For example, when the treat-
ment is working, the probability of declaring it
effective for Treatment 2, MG 5 increased from 68%
for �2 ¼ 100 and 10 to 75% for �2 ¼ 1. On the other
hand, when treatment is not working, the prob-
ability of declaring it effective reduced from 19% for
�2 ¼ 100 to 16% and 11%when �2 ¼ 10 and �2 ¼ 1;
respectively in Treatment 4, MG 5.

Discussion

Randomized clinical trials have become the
gold standard for comparing treatment regimens
in the past 50þ years [32–35]. Randomization is
essential in controlling both known and unknown
biases including patient selection bias, treatment
allocation bias, outcome evaluation bias, etc.
The majority of trials use a fixed randomization
ratio (e.g., 1 : 1 or 1 : 2 between the two treatments).
A design with a fixed randomization ratio is simple
but rigid. It does not allow for changing the
randomization ratio during the trial to favor treat-
ments that aremore likely to be effective. It also does
not take an individual patient’s disease character-
istics into consideration when determining treat-
ment assignments. In this article, we propose an AR
trial design under the framework of a hierarchical
Bayes model. Based on extensive simulation studies,
we have shown that with a total of 200 evaluable
patients, our trial design has desirable operating
characteristics that: (1) select clinically effective
agents with a high probability and ineffective
agents with a low probability; (2) treatmore patients
with effective agents according to their tumor
biomarker profiles; and (3) suspend ineffective
agents from enrollment with a high probability by
applying an early stopping rule. The Bayesian AR
design is a smart, novel, and ethical design.
In conjunction with an early stopping rule, it can
be applied to efficiently identify effective agents and

eliminate ineffective ones. By aligning effective
treatments with patients’ biomarker profiles, more
patients are treated with effective therapies, and
hence, more patients could reach disease control
status. AR design with early stopping is ideally
suitable for the development of targeted therapy.
Our trial design continues to ‘learn’ by updating the
posterior distribution and improves the estimates
as the trial progresses. It is a ‘smart’ design that
matches patients with the drugs best suited for
them. However, there are still important issues that
require further discussion.

Prior specifications

In Bayesian data analysis, it is customary to take
several priors, each reflecting a different degree of
optimism or uncertainty, to assess their effect on
posterior inferences. In our model, �2 controls the
amount of borrowing from across different MGs for
the same treatment. The amount of borrowing is
limited when �2 is 10 or larger. However, when �2

is 1, there may be too much borrowing and thus
result can in wrong conclusion in determining
treatment efficacy. The other parameter �2 governs
the variation of treatment effect across all treat-
ments. A small �2 indicates that the treatment
efficacy is similar while a large �2 allows treatment
efficacy to be different among treatments. In our
simulation studies, we also found that a small �2 is
not desirable. (data not shown) Because little is
known about the treatment effect for patients with
particular biomarker profiles, vague priors such as
�2 ¼ 106 and �2 ¼ 106 are reasonable choices for our
trial design and yield desirable operating
characteristics.

Adaptive randomization versus equal
randomization

Our simulation studies showed that both the
ER and AR designs controlled the type I and
type II error rates but the AR design allocated
more patients into effective treatments, hence,
more patients reached disease control status. This
result held in designs with and without an early
stopping rule. AR is a rational choice for the
development of predictive markers. Bayesian AR
paradigm provides an ideal framework to align
patients with better treatments. The concept of
selecting proper patient groups for evaluating
targeted therapies is consistent with the idea of
enriching the patient population. It has been
shown that choosing patients who are more likely
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to benefit from the targeted therapy can increase
the efficiency of the trial design [36,37]. One
known ramification of the AR design is that it
results in biased estimates due to dependent
samples. The magnitude of such bias can be
quantified and corrected [38,39].

Another important consideration is when to
start AR. If AR starts early, the randomization
ratio is largely determined by the early results
from a few patients and can vary greatly. If AR starts
late, the result is more similar to ER. In our
proposed trial, we start AR after observing at least
one response outcome in all treatment by marker
subgroups. Consequently, approximately 90
patients were enrolled in the ER part of the study
before AR. This contributes to the fact that only a
moderate difference was found in the operating
characteristics between ER and AR designs. When
adequate prior information becomes available, the
AR process can start earlier. The issue of determin-
ing the best time to start the AR process remains an
open question, and is a topic of future research.

Early stopping rules

When evidence accumulates that a treatment does
not work in patients with certain biomarker
profiles, we have devised an early stopping rule
that suspends the randomization of patients with
the same biomarker profiles into that treatment.
The suspension is not permanent, however. Due to
the dynamic nature of our trial design, the model
continues to update when new outcomes are
observed. At any given time, if the treatment
efficacy exceeds the threshold of the stopping
rule, the suspension is lifted. As much as research-
ers like to see success, only a small number of new
treatments are truly effective. Therefore, applying
an early stopping rule can increase the study
efficiency by terminating ineffective treatments
early, saving resources, and enhancing the study
ethics [40]. Applying an early stopping rule
improves the operating characteristics for both ER
and AR designs. When an early stopping rule is
applied to the ER design, ineffective treatments are
suspended early and patients are randomized into
effective treatments. It produces a similar effect as
in the AR design. The percentages of randomized
patients reaching disease control status were 38.2%
in the ER design with no early stopping rule,
40.5% in the AR design with no early stopping
rule, 41.9% in the ER design with an early stopping
rule, and 43.0% in the AR design with an early
stopping rule in scenarios 1 and 2. The AR design
with an early stopping rule has the highest

proportion of patients reaching disease control
status.

Challenges in trial conduct

There are several challenges associated with the
conduct of this biomarker driven, outcome-based
AR trial. First, the time for a patient’s biomarker
assessment needs to be short because the patient’s
treatment assignment depends on the determina-
tion of the marker profile. For the BATTLE project,
we have assembled a designated molecular pathol-
ogy laboratory. The turn around time is usually
within 1 week but cannot be longer than 2 weeks as
stipulated in the protocol. Second, the time for out-
come assessment must be relatively short as well,
so that the decision based on up-to-date data can
provide appropriate guidance for subsequent treat-
ment assignments. If a trial has a fast accrual rate,
many patients may have been enrolled into the
trial before the outcome data becomes available to
provide useful information for the AR. Therefore,
quick and easily assessable endpoints and slow to
moderate accrual rates (relative to the outcome
assessment time) are most suitable for outcome-
based AR designs.

In clinical settings, not every patient has a
biopsiable tumor, nor has the desire to undergo
an additional biopsy procedure. Also, the amount
and quality of tissue samples may vary, leading to
an incomplete biomarker panel for some patients.
Shall patients with no or partial biomarker results
be enrolled in the study? If so, how? Biomarker
diagnostic tools may have varying sensitivity and
specificity. Hence, the assignment of a patient to a
biomarker group may not be 100% accurate. These
practical considerations pose challenges to the trial
design and requires further investigation.

In themidst of many challenges, we have derived
an AR design to achieve our goals. Our trial design
presents a step towards personalizedmedicine.With
the advancement of medical knowledge and mole-
cular, genomic biomarker tools, an efficient and
flexible design such as ours will enable us continue
to learn more about new agents’ clinical activities
and molecular underpinning. Researchers can then
apply this knowledge to better treat patients
enrolled in a trial. The success of such trials require
an integrated multi-disciplinary research team con-
sisting of clinical investigators, who see patients and
perform biopsies, basic scientists, who run the
biomarker analysis, computer programmers, who
build web-based database applications to capture
data in real time, and statisticians who provide the
statistical design and implement AR.
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Abbreviations

AR adaptive randomization
BATTLE biomarker-integrated approaches of

targeted therapy of lung cancer
elimination

EGFR epidermal growth factor receptor
ER equal randomization

MG biomarker group or marker group
in short

NSCLC non-small cell lung cancer
RXR retinoid X receptor

VEGF vascular endothelial growth factor
VEGFR vascular endothelial growth factor

receptor

Appendix: full conditional distributions
for the model

We present the full conditional distributions for
the hierarchical probit model in this section.
Gibbs sampling method is applied to compute the
posterior distributions. Denote Lijk as the likelihood
for the ith patient in kth marker group receiving

jth treatment. Assuming independence across
patients, the overall likelihood is a product,

L¼
Y
j

Y
k

Ynjk

i¼1

Lijk

Lijk ¼ Prðzijk � 0j�jk;�j; �
2; �2Þ

� �Iðyijk¼1Þ

Prðzijk<0j�jk; �j; �
2; �2Þ

� �Iðyijk¼0Þ

¼

Z1
0

f ðzijkj�jk;1Þ

8<
:

9=
;

Iðyijk¼1Þ Z0
�1

f ðzijkj�jk;1Þ

8<
:

9=
;

Iðyijk¼0Þ

The full conditional distributions of the param-
eters are proportional to the product of the like-
lihood of data and the prior distributions. Therefore,
they follow normal distributions given the use of
conjugate priors. The mean of the posterior dis-
tribution is the weighted average of the mean of the
prior distribution and the mean of data. The latent
variable zijk follows a truncated normal distribution.
If yijk ¼ 0, zijk can be sampled from the normal
distribution centering at �jk and the variance of 1
and bounded in the region of less than 0. Otherwise,
zijk can be sampled from the same normal distribu-
tion but bounded in the region of greater than 0.

zijk j yijk; �jk /

Nð�jk;1ÞIð�1;0Þ if yijk=0

Nð�jk;1ÞIð0;1Þ if yijk=1

(

�jk j zijk; �j / N

 Xnjk

i¼1

zijk þ �j=�
2; 1=ðnjk þ 1=�2Þ

!

�j j �jk / N

 X5
k¼1
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!
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