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Lecture 1: Introduction, and 
Skeptics’ Points of View 



Adaptive Clinical Trial Designs 
 FDA is Interested: 

“A large effort has been under way at FDA 
during the past several years to encourage 
the development and use of new trial 
designs, including enrichment designs.” 



Adaptive Clinical Trial Designs 
•  Pharmaceutical Companies are Interested:  

“An adaptive clinical trial conducted by Merck 
saved the company $70.8 million compared 
with what a hypothetical traditionally 
designed study would have cost…” 



Why Use Adaptive Designs? 

Benefits: 
– Can Give More Power to Confirm Effective 

Drugs and Determine Subpopulations who 
Benefit Most 

– Can Reduce Cost, Duration, and Number of 
Subjects of Trials 

Designs Must: 
– Guarantee Correct Probability of False 

Positive Results (e.g. 0.05) 
– Lead to Interpretable Results 



Goals of Course 

•  Give an overview of adaptive randomized 
trial designs.  

•  Discuss the advantages, limitations, and 
open problems for various types of 
adaptation. 



Course Outline 

1.  Introduction: Skeptics’ Perspectives 
2.  FDA Draft Guidance on Adaptive Designs 
3.  Adapting Randomization Probabilities 
4.  Adapting Sample Size (e.g. early stop) 
5.  Seamless Phase II/III Designs 
6.  Adapting Hypothesis Tested 
7.  Bayesian Designs 



Themes 

•  Prespecify Decision Rules for Making 
Adaptations 

•  Tradeoff between Flexibility and Power 
•  Tradeoff between Power, Sample Size, 

Number of Patients in Inferior Arm 
•  Perspective of FDA, pharma company, 

subject in a trial 



Group Sequential Randomized 
Trial Designs 

•  Participants Enrolled over Time 
•  At Interim Points, Can Change Sampling 

in Response to Accrued Data: 
– Can Stop Trial Early (e.g. for Efficacy, Futility, 

or Safety) 
– Can Change Probability of Assignment to 

Different Arms (e.g. to Maximize Number of  
Patients Assigned to Best Arm) 

– Can Recruit from Subpopulation in which 
Treatment Effect is Strongest (“Enrichment”) 



Example 

Population: Lung cancer patients with 
metastasis. Some are eligible for existing 
therapy, some are not. 

Research Questions: Does addition of a new 
therapy improve mean outcome for total 
population? For those who are not eligible 
for existing therapy? 

Prior Data Indicates: Treatment effect 
greatest for those not eligible for existing 
therapy. 



Some Possible Fixed Designs 

•  Enroll from total population (both those 
eligible for existing treatment and those 
not) 

Subpopulation 1 
Subpopulation 2 

Subpopulation 1 

•   Enroll only from those not eligible for  
   existing treatment 



Subpopulation 1 

Stage 1             Decision          Stage 2 

Subpopulation 2 Subpopulation 1 

Subpopulation 2 

Enrichment Design Recruitment 
Procedure 

Recruit Both 
 Populations 

Recruit Only Subpop.1 

Recruit Only Subpop.2 

Recruit Both Pop. 
Subpopulation 1 
Subpopulation 2 

If Treatment 
Effect Strong in 
Total Pop. 

Else, if  
Treatment 
Effect Stronger 
in Subpop. 1 

Else, if  
Treatment 
Effect Stronger 
in Subpop. 2 



FDA Critical Path Opportunities 

“Advancing Innovative Trial Designs” 

34. Design of Active Controlled Trials. 

35. Enrichment Designs. If biomarkers can 
reliably identify individuals with a high 
probability of response to a therapy, trials 
could focus on such patients. 



FDA Critical Path Opportunities 

36. Use of Prior Experience or 
Accumulated Information in Trial 
Design. 

“Consensus and clarification is needed on 
questions such as: 

•  When can extra trial arms be dropped? 
•  When can an early marker be used to 

choose which treatment to carry forward or 
to choose a subset for analysis? 



FDA Critical Path Opportunities 

“Consensus and clarification is needed on 
questions such as: (con’t) 

•  When is it valid to modify randomization 
based on results, for example, in a 
combined phase 2/3 cancer trial? 

•  When is it valid and under what situations 
can one stage or phase of a study be 
combined with the second stage or 
phase? 



A Skeptic 

•  Fleming (2006) Standard versus adaptive 
monitoring procedures: A commentary 

•  Issues:  
– Efficiency 
–  Interpretability 
– Reliability of Interim Results 
– Leaking Information 
– Ethical Concerns 



A Skeptic: Fleming 

Issue of Efficiency: 
Some adaptive sample size adjustment 

methods are inefficient, as they don’t 
use sufficient statistics. 

For example, Cui et al. (1999) method 
allows arbitrary change to sample size 
after interim analysis, but fixed weights 
on each stage’s Z statistics. 

E.g. final Z-statistic = (Z1+Z2)/√2. 



A Skeptic: Fleming 

Issue of Efficiency: 
Some adaptive sample size adjustment 

methods are inefficient, as they don’t 
use sufficient statistics. 

However, some designs, e.g. response 
adaptive randomization that targets 
Neyman allocation, are more efficient 
than non-adaptive design. 



A Skeptic: Fleming 

Issue of Interpretability: 
 Estimates of treatment effect will be 
biased if e.g. stop early.  

Can make correction, by downweighting if 
stop early.   



A Skeptic: Fleming 

Issue of Reliability of Interim Results: 
 May be misled into making a poor 
adaptation decision by highly variable 
early results (due to low sample size at 
interim analysis). 

True, but focus should be overall 
operating characteristics of trial.   



A Skeptic: Fleming 

Issue of Leaking Information: 

 Prejudgment of unreliable results based 
on limited data “could adversely impact 
patient accrual, continued adherence to 
trial regimens, and ability to obtain 
unbiased and complete assessment of trial 
outcome measures.” 

•     



A Skeptic: Fleming 

Ethical Issues: 
   
 Wil l patients understand risks/benefits in 
complex design? 



Semi-skeptics: Wittes and 
Lachenbruch 

Wittes, J., and Lachenbruch, P. (2006) 
Discussion: Opening the Adaptive Toolbox. 
Issues:  

- Adaptive designs may be used as 
excuse to be lazy in planning a trial. 
- Adapting based only on nuisance 
parameters. 
- Internal vs. external information. 



Semi-skeptics: Wittes and 
Lachenbruch 

Wittes, J., and Lachenbruch, P. (2006)
Issue that adaptive designs may be used 
as excuse to be lazy in planning a trial. 

 Companies may want to fund small 
trial, and then extend if it looks promising 
(since can argue for e.g. more venture 
capital money).  

 Could lead to sample size larger than 
a well-planned fixed trial. 



Semi-skeptics: Wittes and 
Lachenbruch 

Wittes, J., and Lachenbruch, P. (2006) 
Issue of adapting based only on 
nuisance parameters. 

Certain nuisance parameters, such as 
the variance for continuous outcomes, 
can be used to calibrate sample size 
without fear of inflated type I error.   



Semi-skeptics: Wittes and 
Lachenbruch 

Wittes, J., and Lachenbruch, P. (2006)  

Issue of internal vs. external information. 

Can make adaptation based on external 
information (e.g. results from a separate 
trial) without fear of increased Type I error. 



Bias Due to Early Stopping 



Lecture 2a: FDA Draft Guidance 
on Adaptive Designs 



FDA Draft Guidance on 
Adaptive Designs 

Focus is AW&C (adequate and well-
controlled) trials. 

Distinguishes well understood vs. less well 
understood adaptations. 

Explains chief concerns: Type I error, bias, 
interpretability. 



FDA Draft Guidance on 
Adaptive Designs 

•  Adapt Study Eligibility Criteria Using 
Only Pre-randomization data. 

•  Adapt to Maintain Study Power Based 
on Blinded Interim Analyses of 
Aggregate Data (or Based on Data 
Unrelated to Outcome). 

•  Adaptations Not Dependent on Within 
Study, Between-Group Outcome 
Differences 

Well Understood Adaptations:  



FDA Draft Guidance on 
Adaptive Designs 

•  Group Sequential Methods (i.e. Early 
Stopping) 

Well Understood Adaptations:  



FDA Draft Guidance on 
Adaptive Designs 

•  Adaptive Dose Selection 
•  Response-Adaptive Randomization 
•  Sample Size Adaptation Based on 

Interim-Effect Size Estimates 
•  Adaptation of Patient Population Based 

on Treatment-Effect Estimates 
•  Adaptive Endpoint Selection 

Less-Well Understood Adaptations:  



FDA Draft Guidance on 
Adaptive Designs 

 Adaptive Dose Selection 

Dropping Doses (Arms). 
Use of biomarker for dose selection. 

[Need statistical adjustment.] 



FDA Draft Guidance on 
Adaptive Designs 

 Response Adaptive Randomization 

Population being enrolled may change 
over time (e.g. more events observed). 

This could cause inflated Type I error and 
bias.  



FDA Draft Guidance on 
Adaptive Designs 

 Adaptation of Patient Population Based 
on Treatment-Effect Estimates 

“These designs are less well understood, 
pose challenges in avoiding introduction of 
bias, and generally call for statistical 
adjustment to avoid increasing the Type I 
error rate.“ 



FDA Draft Guidance on 
Adaptive Designs 

Guide to reporting simulations (pp. 38-39): 

Investigate Type I error, power, bias, under 
variety of data generating distributions. 
 Compare to fixed designs. 

Not sufficient to show Type I error controlled 
via simulations. 

Interesting question: what is best time to do 
adaptations? Early vs. later? 



Lecture 2b: Intro to Group 
Sequential Testing 



Sequential Design, Adaptive 
Sample Size 

Overview 
Advantages: May be able to stop early if 

strong signal of treatment effect.  
 Can ensure adequate power by accruing 
enough data before doing hypothesis test. 
 Interim analysis times can be function of 
“information” accrued. 

Disadvantage: If don’t stop early, need more 
subjects than in equivalent trial with no 
early stopping allowed. Biased estimates. 



Sequential Testing (Early 
Stopping) 

At prespecified interim analyses, do a test, 
and possibly stop the trial for efficacy or 
futility.  

Advantage: May be able to stop early if 
strong signal of treatment effect. Interim 
analysis times can be function of 
“information” accrued. 

Disadvantage: If don’t stop early, need more 
subjects than in equivalent trial with no 
early stopping allowed. Biased estimates. 



Simple Example: Static Design 

[From Jennison and Turnbull (2000), Ch.2] 
Two arm trial, ½, ½  randomization. 
Responses are N(µT,σ2), N(µC,σ2). 
Null Hypothesis:  µT=µC. 
Want Type I Error at most 0.05. 
Want Power = 0.9 at alternative: µT-µC=1. 
Assume σ2=4. Then need in each arm: 

€ 

n ≈ 2 × 4 × [Φ
−1(0.975) +Φ−1(0.9)]2

[1− 0]2
= 84.1



Simple Example: Seq. Design 
using Pocock Boundaries 

At interim analyses, stop and reject null  
 if Z-statistic exceeds Pocock cutoffs. 

Consider 5 equally spaced interim analyses. 
Cutoff is 2.41 at all interim analyses. 
(Had it been 1.96, Type I error would be 

0.14.) 
What is max. sample size needed? 
102 (> 84). 



Pocock Stopping Boundaries 

At alpha = 0.05, 2-sided, Z-statistic cutoffs:  

Number 
Analyses 

Pocock 
Boundary 

1 1.96 
2 2.18 
3 2.29 
5 2.41 
10 2.56 



Simple Example: Seq. Design, 
O’Brien-Fleming Boundaries 

At interim analyses, stop and reject null  
 if Z-statistic exceeds O’Brien-Fl. cutoffs. 

Consider 5 equally spaced interim analyses. 
Cutoffs are 4.56, 3.23, 2.63, 2.28, 2.04. 

What is max. sample size needed? 
86 (> 84). 



O’Brien-Fleming Stopping 
Boundaries 

At alpha = 0.05, 2-sided, Z-statistic cutoffs  

Number 
Analyses 

O’Brien Fleming Boundaries 

1 1.96  
2 2.80, 1.98  
3 3.47, 2.45, 2.00 
5 4.56, 3.23, 2.63, 2.28, 2.04 



Max. Sample Size vs. Static 
Design 

Number 
Interim 
Analyses 

Pocock 
boundar. 

O’Brien-
Fleming 

1 1 1 
2 1.100 1.007 
3 1.151 1.016 
5 1.207 1.026 

How much is max. sample size “inflated” in 
sequential testing vs. fixed design? R: 



Expected Sample Size vs. Static 
Design 

Number 
Interim 
Analyses 

Pocock 
boundar. 

O’Brien-
Fleming 

1 1 1 
2 0.78 0.85 
3 0.72 0.80 
5 0.69 0.75 

How does Expected Sample Size in sequential 
testing compare to fixed design, at alternat.? 



Expected Sample Size vs. Static 
Design 

Number 
Interim 
Analyses 

Pocock 
boundar. 

O’Brien-
Fleming 

1 1 1 
2 1.08 1.01 
3 1.13 1.01 
5 1.18 1.02 

How does Expected Sample Size in sequential 
testing compare to fixed design, at null.? 



Pocock vs. O’Brien-Fleming 
Pocock more aggressive earlier, but larger 

max. sample size, and larger sample size 
variability. Better when true treatment effect 
relatively large, but worse otherwise. 

Consider treatment of rare disease, subjects 
enter study at 40/year. Max duration is: 

4.25 years for static design 
4.5   years for O’Brien-Fleming 
5.25 years for Pocock 



Flexible Single Testing Time 
based on Information Accrued 

Prespecify that trial will continue until a 
certain information level (Imax) is achieved, 
at which time a test will take place.  

Type I error (asymptotically) controlled. 

€ 

Imax =
[Φ−1(1−α) +Φ−1(1− β)]2

[ψalt −ψ0]
2 = n /σ 2 .



Flexible Interim Analysis Times 
based on Information Accrued 

Interim analysis times based on information 
accrued I(n).  

E.g., if outcome binary: 

Interim analysis when information equals: 
e.g. ½ of   

€ 

I(n) =
1

Varn ( ˆ p A − ˆ p B )
≈

n
ˆ p n (1− ˆ p n )

.

€ 

Imax = R [Φ
−1(1−α) +Φ−1(1− β)]2

[ψalt −ψ0]
2 .



Lecture 3: Adapting 
Randomization Probabilities 



Adapting Randomization 
Probabilities 

Q: Why adapt the randomization 
probabilities? 

A: To get more power and precision. 



Adapting Randomization 
Probabilities 

Q: How does adapting rand. Probabilities 
(potentially) give more power and 
precision? 

A:  
1.  Improving balance on prognostic 

covariates  (Covariate-adaptive designs) 
2.  Sampling more from population with 

greater variance in outcome (Response-
adaptive designs) 



Covariate Adaptive Designs 
Methods to improve balance of prognostic 

covariates (compared to simple 
randomization): 

1.  Block randomization 
2.  Block randomization stratified by 

prognostic covariates 
3.  Biased-coin designs (bias randomization 

prob. of future subjects to correct 
observed imbalance) 

4.  Minimization (of a measure of imbalance) 



Adapting Randomization 
Probabilities 

Block randomization:  
 E.g. in blocks of 4 envelopes, with 2 
“treatment” envelopes and 2 “control” 
envelopes. Overall balance can be off by 
at most 2! 

Block randomization stratified by prognostic 
covariates 

 E.g. blocks of 4 envelopes for each 
stratum of prognostic covariates.  

 Balance in each stratum off by ≤ 2. 



Adapting Randomization 
Probabilities 

Biased coin: 
 Idea is to select randomization probability 
for each subject “biasing” toward balance. 

E.g. Efron’s biased coin: if more than ½ of 
subjects so far are in treatment group, 
then next subject gets prob. p > ½ of being 
in control group, and vice versa.  

If p = 1, then this is example of minimization.  



Adapting Randomization 
Probabilities 

Biased coin designs for covariate adaptation: 
1.  Zelen’s model: if imbalance in next 

subject’s covariate stratum > 2, then 
deterministically assign to improve 
balance. Else assign with p = 1/2.   

2.  Pocock-Simon model: based on weighted 
combination of imbalances in each 
covariate stratum (with bigger weight for 
more important covariates), use p-biased 
coin to improve balance. 



Adapting Rand. Probabilities 
Friedman-Wei urn: 

 Wei’s urn model: start with urn having  
 k red (treatment) and k white (control) balls. 
Draw one and assign to that arm, and replace 
it and also add b balls of opposite color. 
Repeat. 

 For covariate adaptation: 
 One urn for each covariate value. Draw from 
most unbalanced urn as above, and now add b 
opposite balls to each urn corresponding to that 
subject’s covariate values. 



Response Adaptive 
Randomization 

Play the winner rules: 
 Deterministic version: if last patient 
outcome is “success,” assign that 
treatment again; else assign other 
treatment. 

 Randomized version: 
  Use an urn of course! Draw from urn for 

treatment assignment. If got treatment A 
and “success,” then add b Type A balls; 
else add b type B balls. 



Response Adaptive 
Randomization 

Play the winner rules: 
 Randomized version: 

  Use an urn of course! Draw from urn for 
treatment assignment. If got treatment A 
and “success,” then add b Type A balls; 
else add b type B balls. 

Properties: ratio of number assigned to  
 A vs. B converges to (1-pB) / (1-pA), for 
  pA, pB the success probabilities.   



Response Adaptive 
Randomization 

Play the winner rules: 
 Randomized version: 

  Use an urn of course! Draw from urn for 
treatment assignment. If got treatment A 
and “success,” then add b Type A balls; 
else add b type B balls. 

Properties: ratio of number assigned to  
 A vs. B converges to (1-pB) / (1-pA), for 
  pA, pB the success probabilities.   



Response Adaptive 
Randomization 

Neyman Allocation: 
 How should allocation be done to get most 
power at a given sample size, when the 
final estimator/test based on estimated 
risk difference? 

 Intuitively, want to sample more from arm 
with larger variance. Neyman allocation: 

€ 

nA /nB =
pAqA
pBqB

.



Response Adaptive 
Randomization 

Where does Neyman allocation come from? 

Asymptotic variance of empirical risk 
difference:  

To minimize it subject to total sample size = 
n: 

 use simple calculus to get: € 

pAqA
nA

+
pBqB
nB

.

€ 

nA + nB = n,

€ 

nA /nB =
pAqA
pBqB

.



Response Adaptive 
Randomization 

“Ethical” allocations: 
 How should allocation be done to 
minimize expected number of failures 
subject to power constraint? 

 Intuitively, want to sample more from arm 
with larger success probability.  

 “Ethical” allocation: 

€ 

nA /nB =
pA
pB
.



Lecture 4: Adapting the 
Hypothesis Tested 



Testing Multiple Hypotheses 
Designs that allow interim treatment 

selection, change of endpoint(s), or 
change of population sampled, all 
implicitly involve multiple testing. 

We want designs to control the familywise 
Type I error, that is, the probability of 
rejecting one or more true null 
hypotheses. 



Testing Multiple Hypotheses 
For example, if two possible endpoints 
(e.g. death, MI or death), then implicitly 

testing null hypotheses corresponding to 
each.  

Another example: in “seamless design,” if 
start with 5 treatments in Phase II and 
select one to continue in Phase III, then 
there are 5 hypotheses being tested (even 
though can reject at most 1). 



Combination Tests 
Given k null hypotheses H01,…, H0k, consider 

all possible intersection null hypotheses: 

For example, if H0i is null that treatment has 
no effect in subpopulation i, then 

 is null that treatment has no effect in either 
of the subpopulations 1 or 2. 

€ 

€ 

∩
i∈J
H0i

€ 

∩
i∈{1,2}

H0i



Combination Tests 
Interpreting rejection of combination tests: 
If intersection null hypothesis                is 

false, this means at least one of null 
hypotheses 1 and 2 is false.  

 Hard to interpret—you really want to test 
each individual null hypothesis. 

 But combination tests important for 
controlling Type I error, as we’ll see. 

Note, intersection null hypothesis is 
“stronger” than the individual hypotheses. 

€ € 

∩
i∈{1,2}

H0i



Examples of Combination Tests 
To test              , can, for example: 

1. Use Bonferroni: reject if min{p1,p2} < α/2. 
2. Focus on just one of the hypotheses: reject 

if p1< α. 
3. If p-values independent, then can use 

weighted inverse normal method: reject if  

Method must be prespecified!! 

€ 

€ 

∩
i∈{1,2}

H0i

€ 

Z1
2

+
Z2
2

>1.645



Closure Principle 
If H01 is null of no mean treatment effect in 

men, and H02 is null of no mean treatment 
effect in women, then 

 is null of no mean treatment effect in either 
of these two groups. 

A “local test” is a level α test of an 
intersection null hypothesis. For example, 
a t-test including all men in the study is a 
local test of H01.   

€ 

€ 

∩
i∈{1,2}

H0i



Closure Principle 
If H01 is null of no mean treatment effect in 

men, and H02 is null of no mean treatment 
effect in women, then 

 is null of no mean treatment effect in either 
of these two groups. 

A “local test” of   could be, for 
example, a weighted combination of t-test 
within men, and t-test within women. 

€ 

€ 

∩
i∈{1,2}

H0i

€ 

∩
i∈{1,2}

H0i



Closure Principle 
Closure principle:  
1.  Run local test for each intersection null 

hypothesis        . 

2.  For each original null hypothesis H0i,  
 reject it if for all sets J containing i,   
 the local test rejected. 

This guarantees familywise Type I error is 
correct (e.g. at most 0.05). 

€ 

€ 

∩
i∈J
H0i



Closure Principle 
Example: H01 is null of no mean treatment 

effect in men, and H02 is null of no mean 
treatment effect in women. 

 We prespecify local tests of H01, H02, and  

 E.g. individual nulls based on within group 
t-statistics; intersection based on weighted 
inverse normal combination test. 

Reject individual null iff BOTH individual local 
test and combination test reject. 

€ 

€ 

∩
i∈{1,2}

H0i



Closure Principle 
Example: Thall, Simon, Ellenberg (1988) 

treatment selection design. 
In Phase IIb, randomize subjects to k 

treatments and placebo. So we have  
 k null hypotheses. 

In Phase III, randomize subjects to treatment 
that did best (largest t-stat.) in Phase IIb. 

Final test-statistic uses all data for the 
chosen treatment, with penalty calculated 
under the global null to control Type Ierror. 

€ 



Closure Principle 
Example: Thall, Simon, Ellenberg (1988) 

treatment selection design. 
Consider 2 treatments in first stage, and pick 

the “winner” treatment for second stage. 
If we simply combine all data and do t-test, 

we would inflate the Type I error. 
Need to penalize with final cutoff that gives  

 P(Reject) = 0.05 under global null that 
both treatments do nothing. 

€ 



Closure Principle 
Example: Thall, Simon, Ellenberg (1988) 

treatment selection design. 
But does this control familywise Type I error? 

 E.g. what if one treatment positive effect, 
and the other is 0 effect—what’s the 
probability that we select the ineffective 
treatment and reject the null? 

Closure principle gives way to formally prove 
control of familywise Type I error. 

€ 



Closure Principle 
Example: Thall, Simon, Ellenberg (1988) 

treatment selection design. 
Define “local test” for any intersection null 

hypothesis             as follows: 

 If i* (selected treatment) not in J, then fail 
to reject. Else, p-value is that 
corresponding to t-test combining all data 
on treatment i*, with cutoff set so that local 
test controls Type I error under global null. 

€ 

€ 

∩
i∈J
H0i



Closure Principle 
Example: Thall, Simon, Ellenberg (1988) 

treatment selection design. 
Define “local test” for any intersection null 

hypothesis             as follows: 

I.e. let test statistic for this intersection null be 

if i* in J. This can be prespecified equivalently 
as         if i* in J.  

€ 

€ 

∩
i∈J
H0i

€ 

(S1,i* + S2,i*) /n

€ 

(maxi∈J S1,i + S2,i*) /n



“Pedagogic” Example 
Two stages, 4 treatments for asthma. In 

Phase IIb, 100 observations per treatment 
(and placebo). Phase IIb results are: 

€ 

Contr
ol  

Tx. 1 Tx. 2 Tx. 3 Tx. 4 

n 100 100 100 100 100 

P-
value 

0.2 0.04 0.05 0.03 

Z-
score 

0.84 1.75 1.64 1.88 



“Pedagogic” Example 
Choose treatment 4 for Phase III trial. 

€ 

Contr
ol  

Tx. 1 Tx. 2 Tx. 3 Tx. 4 

n 100 100 100 100 100 

P-
value 

0.2 0.04 0.05 0.03 

Z-
score 

0.84 1.75 1.64 1.88 



“Pedagogic” Example 
Phase III results:  

Compare 3 approaches at 2-sided α=0.05. 
Conventional approach (ignore Phase IIb 

data in final test), TSE design, Bauer 
Kohne design.  

€ 

Control  Tx. 4 
n 500 500 
P-value 0.04 
Z-score 1.75 



“Pedagogic” Example 
Phase III results:  

Conventional Approach: fails to reject since 
p-value 0.04 more than 0.025.  

€ 

Control  Tx. 4 
n 500 500 
P-value 0.04 
Z-score 1.75 



“Pedagogic” Example 
Phase III results:  

TSE approach: combines data from both 
stages and uses sufficient Z-statistic, 
which equals 2.365. This exceeds 
“penalized” critical value 2.20, so reject.  

€ 

Control  Tx. 4 
n 500 500 
P-value 0.04 
Z-score 1.75 



“Pedagogic” Example 
Bauer and Kohne combination test approach: 
Compute p-value for each intersection null 

hypothesis J by combining both stages’ p-
values:  

Stage 1 p-value: 
Stage 2 p-value: if i* in J, then  
 (else fail to reject). Combine to get local test: 

€ 

€ 

p1,J = J mini∈J p1,i .

€ 

p2,i*

€ 

100
600

Φ−1(1− p1,J ) +
500
600

Φ−1(1− p2,i*) >1.96



“Pedagogic” Example 
Power Curves (almost identical): 

€ 



Example 2: Enrichment Design 
Consider total population treatment effect 

(θ1), and treatment effects in L-1 
subpopulations (θ2,θ3,…,θL).  

At end of stage 1, pick subpopulation with 
large estimated treatment effect: θi* (and 
possibly using other criteria). 

In stage 2, enroll from this subpopulation 
only.  

Want to combine data from both stages to 
test H0i*. 

€ 



Example 2: Enrichment Design 
Example: Subpopulations: 

 1. Entire population 
 2. Men only 
 3. Men over 50 
 4. Men who are smokers 

Each intersection null hyp. tested by 
combination test: 

€ 

€ 

1
2
Φ−1(1− p1,J ) +

1
2
Φ−1(1− p2,J ) >1.96



Example 2: Enrichment Design 
Example: Subpopulations: 

 1. Entire population 
 2. Men only 
 3. Men over 50 
 4. Men who are smokers 

At stage 1, intersection null hypothesis tested 
by 

At stage 2, same but on reduced set J’ for 
which data is collected in stage 2. 

€ 

€ 

p1,J = J mini∈J p1,i .



€ 

To test null 
hypothesis for  
“all men”, we have 
to reject 
intersection nulls: 
J= 

€ 

{2},{1,2},{2,3},
{2,4},{1,2,3},
{1,2,4},{2,3,4},
{1,2,3,4}



€ 

E.g. to test J={2,3}, 
we compute  

€ 

P1,{2,3} = 2min(0.1,0.03)
P2,{2,3} = 2min(0.11,0.08)

€ 

1
2
Φ−1(1− p1,J )

+
1
2
Φ−1(1− p2,J )

=1.15


