Course Syllabus:

Adaptive Randomized Trial Designs
140.850, 4th Quarter, 2010
Johns Hopkins Bloomberg School of Public Health

Instructor: Michael Rosenblum
mrosenbl@jhsph.edu
http://csail.mit.edu/~mrosenblum/Teaching/adaptive_designs_2010.html

Dates: April 9, 12, 19, 23, 26, 30, and May 3.
Time: 1:30-3PM.
Room: W4007.

3 credits
(All are invited to attend, even if not taking for credit.)

Summary:
The course will give an overview of adaptive randomized trial designs. The aim of the course is to familiarize students with the advantages, limitations, and open problems in adaptive randomized trial designs.

Assignment: There will be a single assignment for those taking the course for credit—to complete one of the following:
1) Conduct simulations comparing two or more existing adaptive designs.
2) Propose a novel adaptive design and compare to existing designs, (where comparison is via simulation or asymptotic results, you choose).
3) Use the clinical trials database http://clinicaltrials.gov to investigate how often different adaptive design types are used, and under what settings. E.g. searching under the term “adaptive design” yields 42 clinical trials; you could classify these by type of adaptation, Phase of the trial, and condition type.

The project is not meant to be onerous, just a chance to experiment with the ideas we discuss. It should be written up in at most four pages, single spaced, 12 point font.

Readings (The date below indicates when the papers will be discussed.):

April 9: Overview of Adaptive Randomized Trial Designs: Some Skeptics’ Perspectives

[N.B. There is no expectation that the following two papers will be read before the first class meeting.]

April 12: U.S. FDA Guidances. Adapting Randomization Probabilities

April 19: Adapting Randomization Probabilities

[Here’s the more theoretical version of above paper:]

April 23: Adapting Sample Size

April 26: Seamless Phase II/III Designs

April 30: Adapting Hypothesis Tested

May 3: Bayesian Designs
