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Here is brief overview of targeted maximum likelihood for estimating the causal effect of a
single time point treatment and of a two time point treatment. We include R code for the single time
point case. We present simple examples demonstrating how to apply the methodology developed
in (van der Laan and Rubin, 2006; Moore and van der Laan, 2007; van der Laan, 2010a,b).

1 Single Time Point Treatment
We present a brief example, in the context of an observational study of HIV positive individuals on
antiretroviral therapy. Assume we have a binary exposure A0, such as medication adherence being
above 90% or not, and a binary outcome Y , such as virologic failure. Assume we have baseline
variables L0 that should include all important confounders of the effect of A0 on Y .

Say we want to estimate the causal effect of A0 on the mean of Y , that is, we’d like to estimate
what the population mean of Y would be were everyone to have had exposure A0 = 0, and also
what the population mean of Y would be were everyone to have had exposure A0 = 1. (Below, we
use both the terms “exposure” and “treatment” to refer to A0.) Below, for simplicity, we just show
how to estimate the effect of setting A0 = 1.

Let p denote the density of the true (unknown) data generating distribution. Under certain
assumptions, this causal effect equals the mean over the baseline variables L0 of p(Y = 1|A0 =
1, L0), that is, ∑

l0

p(Y = 1|A0 = 1, L0 = l0)p(L0 = l0). (1)

If the distribution of L0 is continuous, the above sum would be replaced by an integral. The
parameter we will estimate in this section is (1). We will estimate it by first getting a suitable
estimate for p(Y = 1|A0 = 1, L0), and then averaging it over the marginal distribution of L0 that
we have in the data (the empirical mean). Targeted maximum likelihood gives a way to estimate
p(Y = 1|A0 = 1, L0) that is targeted at minimizing the mean squared error of the parameter (1)
we’re interested in.

Assume that for each subject i we get a vector of data (L(i)
0 , A

(i)
0 , Y

(i)), where each such vector
is an independent draw from an unknown density (or frequency function) p(L0, A0, Y ). Assume
we have n subjects.
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We now present one possible targeted maximum likelihood estimator. First, we fit an initial
logistic regression of Y on A0 and L0, such as

p(Y = 1|A0, L0) = expit(α0 + α1A0 + α2L0). (2)

Any terms that are functions of A0 and/or L0 can be included in the model. Next, we fit an initial
logistic regression of A0 on L0, such as

p(A0 = 1|L0) = expit(β0 + β1L0 + β1L
2
0). (3)

Any terms that are functions L0 can be included in the model.
Denote the estimated coefficients from fitting the above logistic regression models by α̂ and β̂.

We denote the model fit for p(A0 = 1|L0) by

p̂(A0 = 1|L0) := expit(β̂0 + β̂1L0 + β̂1L
2
0),

and analogously define p̂(Y = 1|A0, L0).
We then compute, for each subject, the value of a “clever covariate,” which we will use to

update the above initial logistic regression estimate p̂(Y = 1|A0, L0). That is, we will define a
clever covariate C(A0, L0), and update our estimate of p(Y = 1|A0, L0), by fitting the logistic
regression:

p(Y = 1|A0, L0) = expit(εC(A0, L0) + α̂0 + α̂1A0 + α̂2L0). (4)

The clever covariate is chosen so that the score (derivative of the log-likelihood) of the above
logistic regression model at ε = 0 equals the efficient influence function for the parameter (1)
we are estimating. This is a “least-favorable” model, that is, a model that allows improvement in
the direction in which the parameter we are estimating is most sensitive. Methods for obtaining
clever covariates for a variety of parameters and models are given in (van der Laan and Rubin,
2006; Moore and van der Laan, 2007; Polley and van der Laan, 2009; van der Laan et al., 2009;
Rosenblum and van der Laan, 2010).

The key step in targeted maximum likelihood estimation is updating a density estimate, such
as the initial estimate described by the above logistic regression fits. A parametric model, with
parameter ε, is constructed that (i) equals the current density estimate at ε = 0, and (ii) has score at
ε = 0 equal to the efficient influence function. This parametric model is fit by maximum likelihood
estimation, to obtain an updated density estimate. This process is repeated until convergence, that
is, until the resulting estimate of ε is sufficiently close to 0. At that point, by properties (i) and (ii),
the substitution estimator of the parameter at the current density estimate must (approximately)
solve the efficient influence function estimating equation, with nuisance parameter evaluated at the
current density estimate; this then can be used to prove double robustness and local efficiency of
the estimator.

Here, we define the clever covariate to be C(A0, L0) := A0/p̂(A0 = 1|L0), as derived in
(Moore and van der Laan, 2007). We now update our estimate of p(Y = 1|A0, L0), by fitting the
logistic regression:

p(Y = 1|A0, L0) = expit(εC(A0, L0) + α̂0 + α̂1A0 + α̂2L0), (5)
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where the α̂ are considered fixed (they were computed above in (2)) and the only variable is ε.
This can be done by entering α̂0 + α̂1A0 + α̂2L0 as an offset in the logistic regression. Fitting this
logistic regression model gives an estimate ε̂ for ε. Our final estimate for p(Y = 1|A0, L0) is then

expit(ε̂C(A0, L0) + α̂0 + α̂1A0 + α̂2L0),

and from this we get that our final estimate for p(Y = 1|A0 = 1, L0) is

expit(ε̂C(1, L0) + α̂0 + α̂1 + α̂2L0). (6)

Our estimate for the parameter (1) is the average over the distribution of L0 in the data of our
final estimate for p(Y = 1|A0 = 1, L0) given in (6). Our estimate for this causal effect is:

1

n

n∑
i=1

expit(ε̂C(1, L(i)
0 ) + α̂0 + α̂1 + α̂2L

(i)
0 ).

where L(i)
0 is the value of L0 from the ith subject. This estimator is doubly robust, locally efficient,

which means that if at least one of the models (2) or (3) is correctly specified, then the above
estimator is consistent and asymptotically normal; if both models are correctly specified it is also
efficient.

For an extension of the above construction to outcomes that are not binary, e.g. for Y contin-
uous or a nonnegative integer, see examples in e.g. (Rosenblum and van der Laan, 2010). There,
the same methods as above are given, but replacing logistic regression by e.g. Poisson regression
for count data.

Here is R code to compute the above estimator:

# Given outcomes Y, treatment A, baseline variables L,
# all of length n:

# 1. Fit initial models (2) and (3) from text:
initial_model_for_Y <- glm(Y ˜ 1 + A + L, family=binomial)
initial_model_for_A <- glm(A ˜ 1 +L + Lˆ2, family=binomial)

# 2. Compute clever covariate:
clever_covariate <-

A/predict.glm(initial_model_for_A,type="response")
# Create offset:
offset_vals <- predict.glm(initial_model_for_Y)

# 3. Refit model for Y given A, L, with clever cov. and offset:
updated_model_for_Y <-

glm(Y ˜ clever_covariate-1, family=binomial,offset=offset_vals)

# 4. Compute final estimate (6) from text:
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clever_covariate_setting_A_to_1 <-
1/predict.glm(initial_model_for_A,type="response")

final_estimate<- mean(expit(
updated_model_for_Y$coefficients*clever_covariate_setting_A_to_1
+ initial_model_for_Y$coefficients %*% rbind(1,rep(1,n),L)))

2 Time Dependent Treatments
We now consider a case where we have two time points of treatment, and we want to estimate the
causal effect of setting the treatment at both time points. It is straightforward to generalize the be-
low discussion to dynamic treatments (that is, where treatment is a function of prior measurements
and/or treatments). It is also straightforward to extend this to deal with missing data.

Ai are the treatments, e.g. type of antiretroviral regimen. Li are measurements such as CD4
count, viral load, etc. We let Y be the final outcome (death or not). So the variables we measure
on each subject are: L0, A0, L1, A1, Y , where L0 are baseline variables; A0 is regimen just after
resistance testing; L1 is a set of measurements made after A0 such as viral load, death or not, CD4,
etc.; A1 is regimen at next time point.;Y is death or not at the following time point.

Consider estimating the effect of setting treatment A0 = a0 and A1 = a1 on the mean of Y .
That is, we want to know what the probability of death would be, had everyone been assigned
to antiretroviral therapy a0 at time 0 and therapy a1 at time 1. We could then compare, say, the
effect of setting a0 = a1 = PI therapy vs. a0 = a1 = NNRTI therapy. (The same methods can
be generalized to estimate the effect of dynamic treatments, of the form: if L0 is larger than some
threshold c, then assign treatment a0, else assign a different treatment.)

We assume here that all variables except L0 are binary, for simplicity. Under certain assump-
tions, the causal effect of setting A0 = a0 and A1 = a1 on the mean of Y is equal to the g-
computation formula of Robins:

∑
l0

∑
l1

p(Y = 1 | A1 = a1, L1 = l1, A0 = a0, L0 = l0)×

p(L1 = l1 | A0 = a0, L0 = l0)p(L0 = l0), (7)

where p is the true (unknown) density of the variables. This is the two time point analog to the
formula (1) above for a single time point treatment.

In what follows, we estimate the value of the above display at a0 = a1 = 1, that is, the
causal effect of setting treatments A0, A1 to 1. Estimating the causal effect at other values of
a0, a1 is similar. Targeted maximum likelihood estimation finds model fits for each of the con-
ditional probabilities in the above formula, in a way targeted at estimating the overall parameter
(7).

For each subject i, assume we have a vector of data (L
(i)
0 , A

(i)
0 , L

(i)
1 , A

(i)
1 , Y

(i)). Assume each
such vector is an independent draw from an unknown density (or frequency function)
p(L0, A0, L1, A1, Y ).
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Here is one example of a targeted maximum likelihood estimator for our problem. First, fit the
following logistic regression models:

p(Y = 1 | A1, L1, A0, L0) = logit−1(β0 + β1L0 + β2A0 + β3L1 + β4A1), (8)
p(A1 = 1|L1, A0, L0) = logit−1(α0 + α1L0 + α2A0 + α3L1), (9)
p(L1 = 1 | A0, L0) = logit−1(γ0 + γ1L0 + γ2A0 + γ3L0A0), (10)

p(A0 = 1 | L0) = logit−1(τ0 + τ1L0), (11)

We denote the model fits by p̂, e.g. p̂(A0 = 1 | L0 = l0) = logit−1(τ̂0 + τ̂1l0). Next, define
the following “clever covariate,” where 1[S] is the indicator variable that S is true (so is equal to 1
when S is true, and 0 when it is false):

C1(l
′
0, a
′
0, l
′
1, a
′
1) :=

1[a′1 = 1]1[a′0 = 1]

p̂(A1 = 1|L1 = l′1, A0 = 1, L0 = l′0)p̂(A0 = 1 | L0 = l′0)
.

For each subject i, (with data (L(i)
0 , A

(i)
0 , L

(i)
1 , A

(i)
1 , Y

(i))), compute the value of the clever covariate
C

(i)
1 := C1(L

(i)
0 , A

(i)
0 , L

(i)
1 , A

(i)
1 ). Now do a logistic regression of Y on the clever covariate C1,

using the previous fit β̂0+ β̂1L0+ β̂2A0+ β̂3L1+ β̂4A1 as offset. That is, fit the logistic regression
model

p(Y = 1 | A1, L1, A0, L0) =

logit−1(ε1C1(L0, A0, L1, A1) + β̂0 + β̂1L0 + β̂2A0 + β̂3L1 + β̂4A1),

where the β̂ are considered fixed numbers, and the only variable is ε1. Let ε̂1 denote the maximum
likelihood estimate of ε1. We now define

p̂ε̂1(Y = 1 | A1, L1, A0, L0) :=

logit−1(ε̂1C1(L0, A0, L1, A1) + β̂0 + β̂1L0 + β̂2A0 + β̂3L1 + β̂4A1). (12)

Next, define another clever covariate,

C2(l
′
0, a
′
0) :=

1[a′0 = 1]

p̂(A0 = 1 | L0 = l′0)
×

{p̂ε̂(Y = 1 | A1 = 1, L1 = 1, A0 = 1, L0 = l′0)

−p̂ε̂(Y = 1 | A1 = 1, L1 = 0, A0 = 1, L0 = l′0)}.

For each subject i, compute the value of the clever covariate C(i)
2 := C2(L

(i)
0 , A

(i)
0 ). Now do a

logistic regression ofL1 on the clever covariateC2, using the previous fit γ̂0+γ̂1L0+γ̂2A0+γ̂3L0A0

as offset. That is, fit the logistic regression model

p(L1 = 1 | A0, L0) = logit−1(ε2C2(L0, A0) + γ̂0 + γ̂1L0 + γ̂2A0 + γ̂3L0A0),

where the γ̂ are considered fixed numbers, and the only variable is ε2. Let ε̂2 denote the maximum
likelihood estimate of ε2. We now define

p̂ε̂2(L1 = 1 | A0, L0) := logit−1(ε̂2C2(L0, A0) + γ̂0 + γ̂1L0 + γ̂2A0 + γ̂3L0A0). (13)
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Lastly, we compute the substitution estimator for (7) at the above model fits. That is, we
evaluate (7) at a0 = a1 = 1 by substituting estimated densities (12) and (13) for the true densities,
and using the empirical distribution for L0 (which assigns mass 1/n to each observation). That is,
our final estimate of the mean of Y setting A0, A1 both equal to 1, is

1

n

n∑
i=1

∑
l1∈{0,1}

p̂ε̂1(Y = 1 | A1 = 1, L1 = l1, A0 = 1, L0 = L
(i)
0 )×

p̂ε̂2(L1 = l1 | A0 = 1, L0 = L
(i)
0 ).

This estimator is doubly robust, locally efficient; this means that if the models (8) and (10) are
correctly specified, or if the models (9) and (11) are correctly specified, then the above estimator is
consistent and asymptotically normal; if all four models are correctly specified it is also efficient.
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