

Thesis Defense:

Analysis and Visualization of Temporal Variations in Video

Nov 25 2013

Michael Rubinstein

Seeing the Unseen in Images/Videos

[Velten et al., Femto-Photography, 2011]

Input

[Torralba and Freeman, Accidental Images, 2012]

[Velten et al., CORNAR, 2012]

[Shih et al., Laser Speckle Photography, 2012]

Timescales in Imagery

Timescale

Distracting Temporal Variation

- Too many confounding changes
 - Mixed changes at different timescales
 - Lighting changes, objects appearing/disappearing, ...

Source

Short-term changes attenuated

© Extreme Ice Survey

Remove changes to make long-term variation more visible!

Imperceptible Temporal Variation

<u>Magnify</u> the variation to make it visible!

• Changes are too small

[Liu et al. 2005]

This Thesis

- Assist the analysis of **temporal phenomena** captured by imagery
- <u>**Reveal interesting temporal signals**</u> that may not be easily visible in the original data

- Leverage available imagery
 - Regular video, natural setting

<u>**Our approach</u>**: analyzing images/videos and **re-rendering** changes in them such that the interesting temporal signals are more apparent</u>

Talk Outline

- Removing distracting variations
 - Motion Denoising

- Magnifying imperceptible variations
 - Eulerian Video Magnification
 - Phase-based Video Motion Processing

• Ongoing research and future work

Time-lapse Videos

For Personal Use Too

9 months

16 years

Stylized Jerkiness

Timescale Separation

• Decompose the video into long-term and short-term changes

Motion Denoising with Application to Time-lapse Photography, CVPR 2011 With Ce Liu, Peter Sand, Fredo Durand, William T. Freeman

Related Work

- Video stabilization [Matsushita et al. 2006], [Liu et al. 2011], [Grundmann et al. 2011]
 - Can denoise camera motions, but we need pixel-wise stabilization

• Selectively De-Animating Video [Bai et al. 2012]

How to Denoise Motion?

- Pixel-wise temporal low-pass filtering
 - Pixels of different objects are averaged

- Smoothing motion trajectories
 - Motion estimation in time-lapse videos is challenging:
 - Brightness *in*consistencies
 - Motion *dis*continuities

KLT tracks

Basic Idea

• <u>Assumption</u>: scene is changing slowly and perturbed by random motions (and color changes)

- <u>Approach</u>: reshuffle the pixels in space and time to reconstruct the smooth scene
 - Allow the filter to "look around" within local spatiotemporal windows

Formulation

• Solve for a spatiotemporal displacement (offset) field, w:

$$E(w) = \sum_{p} |I(p + w(p)) - I(p)| +$$

$$\alpha \sum_{p,r \in N_t(p)} ||I(p + w(p)) - I(r + w(r))||^2 +$$

$$\gamma \sum_{p,q \in N(p)} \lambda_{pq} |w(p) - w(q)|$$

Regularization
(of the warp)

$$I(p)$$
 - the input video
 $I(p + w(p))$ - the output video

Optimization

- Optimized discretely on a 3D MRF
 - Nodes represent pixels
 - state space of each pixel = volume of possible spatiotemporal offsets

Results

Comparison with Other Optimization Techniques

Iterated conditional modes

© Michael Rubinstein, MIT (mrub@mit.edu)

Graph Cut (α -expansion) [Boykov et al. 2002] **Belief Propagation**

Comparison with Pixel-wise Temporal Filtering

Source

Sliding mean

Sliding median

Motion denoising

Results

Support Size

Figure 7. Zoom-in on the rightmost plant in the sprouts sequence in four consecutive frames shows that enlarging the search volume used by the algorithm can greatly improve the results. "Large support" corresponds to a $31 \times 31 \times 5$ search volume, while "small support" is the $7 \times 7 \times 5$ volume we used in our experiments.

Comparison with Pixel-wise Temporal Filtering

Timescale Decomposition

Result (long-term)

Source

Result (long-term)

Short-term

Result (long-term)

Short-term

Spatial Displacement

Talk Outline

- Removing distracting variations
 - Motion Denoising

- Magnifying imperceptible variations
 - Eulerian Video Magnification
 - Phase-based Video Motion Processing

• Ongoing research and future work

Imperceptible Changes in the World

Imperceptible Changes in the World

Lagrangian and Eulerian Perspectives (Fluid Dynamics)

• Specifications of physical measurements through space and time:

Lagrangian

Eulerian

Track particles

Measure changes within fixed voxels in space

Basic Idea

- Amplify temporal pixel color variations
 - Each pixel processed <u>independently</u>
 - Treat each pixel as a time series
 - Apply standard 1D signal processing to it
 - Amplify particular <u>temporal</u> frequencies

Eulerian Video Magnification (SIGGRAPH 2012)

With Hao-Yu Wu, Eugene Shih, John Guttag, Fredo Durand, Bill Freeman

Subtle Color Variations

- The face gets slightly redder when blood flows
 - Very low amplitude: 0.5 intensity level in an 8-bit scale (0-255)

Input frame

Subtle Color Variations

1. Average spatially to overcome sensor and quantization noise

Input frame

Spatially averaged luminance trace

Amplifying Subtle Color Variations

2. Filter temporally to extract the signal of interest

Input frame

Temporally bandpassed trace

Color Amplification Results

Source

Color-amplified (x100) 0.83-1 Hz (50-60 bpm)

Bruce Wayne's Pulse

Christian Bale, Batman Begins (2005)

Courtesy of Warner Bros. Pictures

Heart Rate Extraction

Extracting Heart Rate

Source (Courtesy of Winchester Hospital. Do not copy)

Hospital monitor

Bandpass signal + peaks (pulse) Estimated heart rate 146 bpm With Dr. Donna Brezinski and the Winchester Hospital staff

© Michael Rubinstein, MIT (mrub@mit.edu)

Color-amplified (x150) 2.33-2.67 Hz (140-160 bpm)
Related Work: Pulse Detection from Video

"Cardiocam" [Pho, Picard, McDuff 2010]

"Vital Signs Camera" – Philips proprietary

Kinect (Xbox One) proprietary

Why Does it Amplify Motion?

• By increasing temporal variation – we can increase spatial motion!

Differential Brightness Constancy

• Scenario: a 1D translating image profile

Differential Brightness Constancy

• Measure temporal variation $\partial I/\partial t$ (at each pixel)

Eulerian Motion Magnification

• Amplify temporal variation $\partial I/\partial t$ (at each pixel)

First-order (linear) approximation to the true magnified motion (derivation in the thesis)

Space (x)

Relating Temporal and Spatial Changes

Synthetic 2D Example

Source

© Michael Rubinstein, MIT (mrub@mit.edu)

Method Pipeline

Motion Magnification Results

Source

© Michael Rubinstein, MIT (mrub@mit.edu)

Selective Motion Magnification

100-120 Hz Amplified

Related Work: Motion Magnification [Liu 2005]

Source

Motion-magnified Liu et al. *Motion Magnification*, SIGGRAPH 2005

Related Work: Motion Magnification [Liu 2005]

- Better for large motions, point features, occlusions, but...
- Requires motion analysis, motion segmentation, inpainting
 - Nontrivial to do artifact-free
 - Computationally intensive

(a) Registered input frame

(d) Motion magnified, showing holes

(b) Clustered trajectories of tracked features

(e) After texture in-painting to fill holes

(c) Layers of related motion and appearance

(f) After user's modifications to segmentation map in (c)

Lagrangian vs. Eulerian

• See my thesis for more details!

© Michael Rubinstein, MIT (mrub@mit.edu)

Limitations

Amplified noise

Source

Motion-magnified

© Michael Rubinstein, MIT (mrub@mit.edu)

Limitations of Linear Motion Processing

• Assumes image intensity is locally linear

Limitations of Linear Motion Processing

• Breaks at high spatial frequencies and large motions

Limitations of Linear Motion Processing

• Noise amplified with signal

Linear vs. Phase-Based Motion Processing

- Linear motion processing
 - Assumes images are <u>locally linear</u>
 - Translate by changing intensities

- <u>NEW</u> phase-based motion processing
 - Represents images as collection of <u>local sinusoids</u>
 - Translate by shifting phase

x (space)

Phase-Based Video Motion Processing (SIGGRAPH 2013) With Neal Wadhwa, Fredo Durand, Bill Freeman

© Michael Rubinstein, MIT (mrub@mit.edu)

Fourier Decomposition

Fourier Shift Theorem

Phase shift ⇔ Translation

Local Motions

- Fourier shift theorem only lets us handle global motion
- But, videos have many local motions...

→ Need a localized Fourier Series for **local** motion

© Michael Rubinstein, MIT (mrub@mit.edu)

Complex Steerable Pyramid [Simoncelli, Freeman, Adelson, Heeger 1992]

• Localized Fourier transform that breaks the image into spatial structures at different scales and orientations

Complex Steerable Pyramid [Simoncelli, Freeman, Adelson, Heeger 1992]

• Basis functions are wavelets with even (cosine) and odd (sine) components which give local amplitude and phase

Local Phase

• In a single subband, image is coefficients times translated copies of basis functions

Linear Pipeline (SIGGRAPH'12)

Phase-based Pipeline (SIGGRAPH'13)

Improvement #1: More Amplification

Improvement #2: Better Noise Performance

Example of motion-magnifying Gaussian white noise

Source (IID noise, std=0.1)

Noise **amplified**

Noise translated

© Michael Rubinstein, MIT (mrub@mit.edu)

Results: Phase-based vs. Linear

Linear (SIGGRAPH'12) Motions amplified x10 Phase-based (SIGGRAPH'13) Motions amplified x10

Results: Phase-based vs. Linear

Phase-based (SIGGRAPH'13)

© Michael Rubil Linear(n(SIGGRAPH'12)

Vibration Modes

Sequence courtesy of Justin Chen

"Piping Vibration Analysis" [Wachel et al. 1990]

Ground Truth Validation

- Induce motion (with hammer)
- Record true motion with accelerometer

Ground Truth Validation

Qualitative Comparison

Input (motion of 0.1 px)

Revealing Invisible Changes in the World

- NSF International Science and Engineering Visualization Challenge (SciVis), 2012
- Science Vol. 339 No. 6119 Feb 1 2013

Massachusetts Institute of Technology	
Revealing Invisible Changes In The World	
Created for the NSF International Science & Engineering Visualization Challenge 2012	

Talk Outline

- Removing distracting variations
 - Motion Denoising

- Magnifying imperceptible variations
 - Eulerian Video Magnification
 - Phase-based Video Motion Processing

• Ongoing research and future work

Code Available

• Matlab code + executables

http://people.csail.mit.edu/mrub/vidmag/

© Michael Rubinstein, MIT (mrub@mit.edurge result

source result

source result source result (color)

olor) source result (low E) result (A)

"VideoScope" by Quanta Research Cambridge

http://videoscope.grclab.com/

Quanta Research		
Home Quanta Projects	MIT CSAIL People Jobs Press Fun Cont	act Videoscope
lser ID: 0b7f2be4-b8b6-464c-9ead-d68	110999661 Current video: baby2	Return to chooser Help
Set frame rate (fps) [?]	30	
Select magnification type [?]	O Color Motion	
Set frequency range (Hz) [?]	0.5	2
Set amplification [?]	10	
Select filter type [?]	🔵 Ideal 💿 Butterworth 🔿 IIR	
Description (optional) [?]		
Show additional options		
Terms of Service [?]	I agree to the Terms of Service.	
Process the video [?]	Go! Status: Not running.	

Original Video

EVM in the Wild: Pregnancy

Original

Processed

"Tomez85" https://www.youtube.com/watch?v=J1wvFmWv7zY

© Michael Rubinstein, MIT (mrub@mit.edu)

EVM in the Wild: Blood flow Visualization

Red = high blood volume Blue = low blood volume

Institute for Biomedical Engineering, Dresden Germany https://www.youtube.com/watch?v=Nb18CRVmXGY

EVM in the Wild: Guinea Pig

Source

Motion-magnified

"SuperCreaturefan": "Guinea pig Tiffany is the first rodent on Earth to undergo Eulerian Video Magnification."

http://www.youtube.com/watch?v=uXOSJvNwtIk

EVM in the Wild: "Eulerian Profiles"

By Erin Knutson (Graphic Design student at Yale)

People Interested in...

- Health care
 - Contactless monitoring
 - Blood vessel identification
 - Tissue perfusion in plastic surgery

- Scientific analysis
 - Changes in the earth's surface from satellite imagery
 - Seismic data
 - ..
- Engineering
 - Structural integrity of bridges, buildings

— ...

Identifying Temporal Signals Automatically

Dominant frequency

Seeing and Measuring Refractive Flow (hot air, gas)

• Small motions due to changes in refraction index (change in density, temp.)

Unpublished

Seeing and Measuring Sound

- Sound is fluctuations in air pressure traveling through space
- These pressure waves hit objects and make them vibrate
 - This is how we hear; this is how we record sound

"water sound waves" xsgianni, <u>http://www.youtube.com/watch?v=xPW3gihYnZE</u>

Neck Skin Vibrations

Unpublished

Neck Skin Vibrations

Unpublished

Can We Recover Sound From Video?

Unpublished

Recovering Sound from Video

 Assuming scene is static, motions should be well correlated with sound pressure waves

Recorded video (4 KHz)

Dental rubber dam

© Michael Rubinstein, MIT (mrub@mit.edu)

Unpublished

Recovering Sound from Video

Time

Source @mit.edu) Reconstructed

Time

© Michael Rubinstein, MIT (mrub@mit.edu)

Natural Microphones

Reconstruction from:

Latex membrane

Cardboard

Brick

Conclusions

- We decompose temporal signals in videos into different components and re-render the video to analyze and visualize them separately
- Removing distracting temporal variation
 - Motion denoising decomposition into long-term and shortterm changes
 - No explicit motion analysis
- Amplifying imperceptible temporal variation
 - Eulerian approaches for representing, analyzing and visualizing small-amplitude temporal signals
 - No explicit motion analysis
 - The world is full of small, informative motions and changes we cannot normally see, and we can reveal them using regular video

Motion Denoising (CVPR 2011)

Eulerian Video Magnification (SIGGRAPH 2012)

Phase-based Motion Processing (SIGGRAPH 2013)

Refractive Flow

Visual Microphone

© Michael Rubinstein, MIT (mrub@mit.edu)

NSF CGV-1111415 "Images Through Time"

Thank you!

Michael Rubinstein MIT CSAIL