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Abstract
The world is filled with important, but visually subtle signals. 
A person’s pulse, the breathing of an infant, the sag and 
sway of a bridge—these all create visual patterns, which are 
too difficult to see with the naked eye. We present Eulerian 
Video Magnification, a computational technique for visu-
alizing subtle color and motion variations in ordinary vid-
eos by making the variations larger. It is a microscope for 
small changes that are hard or impossible for us to see by 
ourselves. In addition, these small changes can be quantita-
tively analyzed and used to recover sounds from vibrations 
in distant objects, characterize material properties, and 
remotely measure a person’s pulse.

1. INTRODUCTION
A traditional microscope takes a slide with details too small 
to see and optically magnifies it to reveal a rich world of 
bacteria, cells, crystals, and materials. We believe there is 
another invisible world to be visualized: that of tiny motions 
and small color changes. Blood flowing through one’s face 
makes it imperceptibly redder (Figure 1a), the wind can 
cause structures such as cranes to sway a small amount 
(Figure 1b), and the subtle pattern of a baby’s breathing can 
be too small to see. The world is full of such tiny, yet mean-
ingful, temporal variations. We have developed tools to visu-
alize these temporal variations in position or color, resulting 
in what we call a motion, or color, microscope. These new 
microscopes rely on computation, rather than optics, to 
amplify minuscule motions and color variations in ordi-
nary and high-speed videos. The visualization of these tiny 
changes has led to applications in biology, structural analy-
sis, and mechanical engineering, and may lead to applica-
tions in health care and other fields.

We process videos that may look static to the viewer, 
and output modified videos where motion or color changes 
have been magnified to become visible. In the input videos, 
objects may move by only 1/100th of a pixel, while in the 
magnified versions, motions can be amplified to span many 
pixels. We can also quantitatively analyze these subtle signals 
to enable other applications, such as extracting a person’s 
heart rate from video, or reconstructing sound from a dis-
tance by measuring the vibrations of an object in a high-speed 
video (Figure 1c).

The algorithms that make this work possible are sim-
ple, efficient, and robust. Through the processing of local 
color or phase changes, we can isolate and amplify signals 
of interest. This is in contrast with earlier work to amplify 
small motions13 by computing per-pixel motion vectors 
and then displacing pixel values by magnified motion 

This Research Highlight is a high-level overview of three 
papers about tiny changes in videos: Eulerian Video Mag-
nification for Revealing Subtle Changes in the World,24 
Phase-Based Video Motion Processing,22 and The Visual 
Microphone: Passive Recovery of Sound from Video.7

vectors. That technique yielded good results but it was 
computationally expensive, and errors in the motion anal-
ysis would generate artifacts in the motion magnified out-
put. As we will show, the secret to the simpler processing 
described in this article lies in the properties of the small 
motions themselves.

To compare our new work to the previous motion-vec-
tor work, we borrow terminology from fluid mechanics. 
In a Lagrangian perspective, the motion of fluid particles is 
tracked over time from the reference frame of the particles 
themselves, similar to observing a river flow from the mov-
ing perspective of a boat. This is the approach taken by 
the earlier work, tracking points in the scene and advect-
ing pixel colors across the frame. In contrast, an Eulerian 
perspective uses a fixed reference frame and characterizes 
fluid properties over time at each fixed location, akin to an 
observer watching the water from a bridge. The new tech-
niques we describe follow this approach by looking at tem-
poral signals at fixed image locations.

The most basic version of our processing looks at inten-
sity variations over time at each pixel and amplifies them. 
This simple processing reveals both subtle color varia-
tions and small motions because, for small sub-pixel 
motions or large structures, motion is linearly related 
to intensity change through a first-order Taylor series 
expansion (Section 2). This approach to motion magni-
fication breaks down when the amplification factor is 
large and the Taylor approximation is no longer accu-
rate. Thus, for most motion magnification applications 
we develop a different approach, transforming the image 
into a complex steerable pyramid, in which position is 
explicitly represented by the phase of spatially localized 
sinusoids. We exaggerate the phase variations observed 
over time, modifying the coefficients of the pyramid 
representation. Then, the pyramid representation is col-
lapsed to produce the frames of a new video sequence that 
shows amplified versions of the small motions (Section 3). 
Both Eulerian approaches lead to faster processing and 
fewer artifacts than the previous Lagrangian approach. 
However, the Eulerian approaches only work well for small 
motions, not arbitrary ones.

Making small color changes and motions visible adds 
a dimension to the analysis that goes beyond simply 
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measuring color and position changes. The visualization 
lets a viewer interpret the small changes, and find pat-
terns that simply measuring numbers would not reveal. 
It builds intuition and understanding of the motions 
and changes being revealed. We show results of Eulerian 
video magnification in a wide variety of fields, from med-
icine and civil engineering to analyzing subtle vibrations 
due to sound. Videos and all of our results are available 
on our project webpage (http://people.csail.mit.edu/
mrub/vidmag/).

2. LINEAR VIDEO MAGNIFICATION
The core idea of Eulerian video magnification is to inde-
pendently process the time series of color values at each 
pixel. We do this by applying standard 1D temporal sig-
nal processing to each time series to amplify a band of 
interesting temporal frequencies, for example, around 
1 Hz (60 beats per minute) for color changes and motions 
related to heart-rate. The new resulting time series at 
each pixel yield an output video where tiny changes that 
were impossible to see in the input, such as the redden-
ing of a person’s face with each heart beat or the subtle 
breathing motion of a baby, are magnified and become 
clearly visible.

The idea of applying temporal signal processing to 
each pixels’ color values is a straightforward idea, and has 
been explored in the past for regular videos.10, 16 However, 
the results have been limited because such processing 
cannot handle general spatial phenomena such as large 
motions that involve complicated space-time behavior 
across pixels. When a large motion occurs, color informa-
tion travels across many pixels and a Lagrangian perspec-
tive, in which motion vectors are computed, is required. 
One critical contribution of our work is the demonstra-
tion that in the special case of small motions, Eulerian 
processing can faithfully approximate their amplifica-
tion. Because the motions involved are small, we can 

make first-order Taylor arguments to show that linear, 
per-pixel amplification of color variations closely approx-
imates a larger version of the motion. We now formalize 
this for the special case of 1D translational motion of a 
diffuse object under constant lighting, but the argument 
applies to arbitrary phenomena such as 3D motion and 
shiny objects, as we discuss below.

2.1. 1D translation
Consider a translating 1D image with intensity denoted by 
I(x, t) at position x and time t. Because it is translating, we 
can express the image’s intensities with a displacement 
function δ(t), such that I(x, t) = f (x − δ(t) ) and I (x, 0) = f (x). 
Figure 2 shows the image at time 0 in black and at a later 
time translated to the right in blue. The goal of motion mag-
nification is to synthesize the signal

î (x, t) = f (x -(1+ α)δ (t)) (1)

for some amplification factor α.
We are interested in the time series of color changes at 

each pixel:

B(x, t) := I(x, t) -I (x, 0). (2)

Under the assumption that the displacement δ(t) is small, 
we can approximate the first term with a first-order Taylor 
series expansion about x, as

 (3)

Because I(x, 0) = f (x), the color changes at x are

 (4)

This is the first order approximation to the well known 
brightness constancy equation in optical flow12, 14: the 
intensity variation at a pixel x is the negative of the product 
between the displacement and the spatial gradient. This 

Figure 1. Apparently still videos of a face, a construction crane, and a houseplant have subtle changes that can be revealed using Eulerian video 
magnification and analysis. Blood flow in a man’s face is revealed when the color changes are amplified (a). The construction crane’s motions are 
revealed when amplified 75× (b). A houseplant subtly vibrates in tune with a loudspeaker playing “Mary had a little lamb.” The audio is recovered 
from a silent video of the house plant (c).
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That is, each pixel in the video signal is linearly related to the 
deviation of the parameters θ from their initial value. If we 
amplify by α the difference between the image at time t and 
at time 0, we get

 (9)

By the same analysis as before, this is approximately equal to 
a new video in which the variations in θ are larger by a factor 
1 + α. This shows that linear Eulerian video magnification 
can be used to magnify many subtle, temporal phenomena. 
It is agnostic to the underlying imaging model and can even 
work in cases where brightness constancy is not true as long 
as the changes are small.

2.3. Limitations of the linear approach
Linear amplification relies on a first-order Taylor-
expansion, which breaks down when either the amplifica-
tion factor or the input motion is too large. For overly large 
amplification factors, the magnified video overshoots and 
undershoots the video’s white and black levels causing 
clipping artifacts near edges where the second derivative 

 is non-negligible (Figure 6a). When the input motion 
is too large, the initial Taylor expansion is inaccurate (Eq. 
3) and the output contains ghosting artifacts instead of 
magnified motions.

A second limitation is that noise in the video is ampli-
fied. For example, suppose the intensity value I(x, t) has an 
independent white Gaussian noise term n(x, t) of variance σ2 
added to it. The difference between the frame at time t and 
at time 0 then contains the noise term, n(x, t) − n(x, 0), with 
noise variance 2σ2. This noise term gets amplified by a factor 
α and the output video has noise of variance 2α2σ2, a much 
larger amount than in the input video (Figure 7b).

In Wu et al.,24 noise amplification was partially mitigated 
by reducing the amplification of high spatial-frequency tem-
poral variations, assuming that they are mostly noise rather 
than signal. This is done by constructing a Laplacian pyramid 
of the temporal variations and using a lower amplification 
factor for high spatial-frequency levels. Spatially lowpassing 
the temporal variations produces comparable results. A thor-
ough noise analysis of this approach is available in the appen-
dix of Wu et al.24 and more information about signal-to-noise 
ratios is given here in Section 4.

3. PHASE-BASED MAGNIFICATION
The appeal of the Eulerian approach to video magnification 
is that it independently processes the time series of color 
values at each pixel and does not need to explicitly com-
pute motions. However, its reliance on first-order approxi-
mations limits its scope, and its use of linear amplification 
increases noise power. In this section, we seek to continue 
using the Eulerian perspective of motion analysis—process-
ing independent time series at fixed reference locations. 
But, we want to do so in a representation that better handles 
motions and is less prone to noise.

can be seen as a right triangle in Figure 2, whose legs are the 
temporal intensity variation (vertical edge marked B(x, t) ) 
and the displacement (horizontal edge marked δ) and whose 
hypotenuse (blue curve between the legs) has slope equal to 
the image’s spatial derivative .

In our processing, we amplify the color change signal 
B(x, t) by α and add it back to I(x, t), resulting in the processed 
signal (red in Figure 2):

Ĩ (x, t) = I (x, t) + αB (x, t). (5)

Combining equations (3)–(5), we have

 (6)

As long as (1 + α)δ is small enough that a first-order Taylor 
expansion is valid, we can relate the previous equation to 
motion magnification (Eq. 1). It is simply

 (7)

This shows that this processing magnifies motions. The spa-
tial displacement δ(t) between frames of the video at times 0 
and t, has been amplified by a factor of (1 + α).

2.2. General case
Consider a subtle, temporal phenomenon, for example, 
3D translation, rotation, or the motion of light, parame-
terized by a vector θ (perhaps representing the position or 
orientation of objects or lights) that evolves over time as 
θ(t). These parameters can be mapped to image intensi-
ties I(x, t) via a function f (x, θ(t) ) for all spatial locations 
x. If f is a differentiable function of the parameters θ and 
the changes in the parameters are small, then the video 
I can be approximated by its first order Taylor expansion 
around θ(0)
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Figure 2. Amplifying per-pixel intensity variations can approximate 
spatial translation. The input signal is shown at two times: I(x, 0) = f(x) at 
time 0 (black) and I(x, t) = f(x − δ) at time t (blue). The first-order Taylor 
series expansion of I(x, t) around x approximates the translated 
signal (cyan). The pointwise difference between the frames (green) 
is amplified and added to the original signal to generate a larger 
translation (red). Here, the amplification factor α is 1, amplifying 
the motion by 100%.
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a new image sequence in which the translations have been 
exactly magnified.

Phase-based magnification works perfectly in this case 
because the motions are global and because the transform 
breaks the image into a representation consisting of exact 
sinusoids (formally, the Fourier transform diagonalizes the 
translation operator). In most cases, however, the motions 
are not global, but local. This is why we break the image into 
local sinusoids using the complex steerable pyramid.

3.2. Complex steerable pyramid
The complex steerable pyramid19, 20 is a complex, over-
complete linear transform. It decomposes an image into 
a set of coefficients corresponding to basis functions that 
are simultaneously localized in position, spatial scale and 
orientation. The image is reconstructed by multiplying 
the coefficients by the basis functions and summing the 
real parts.

The transform is best-described by its self-similar basis 
functions. Each one is a translation, dilation, or rotation of 
another. So, it is sufficient to look at just one, a 1D version 
of which is shown in Figure 4a. It resembles an oriented 
complex sinusoid windowed by a Gaussian envelope. The 
complex sinusoid provides locality in frequency while the 
windowing provides locality in space. Each basis function is 
complex, consisting of a real, even-symmetric part (cosine) 
and an imaginary, odd-symmetric part (sine). This gives rise 
to a notion of local amplitude and local phase as opposed to 
the global amplitude and phase of Fourier basis functions. 
We use only a half-circle of orientations because basis func-
tions at antipodal orientations (θ, θ + π) yield redundant, 
conjugate coefficients.

In the case of videos that are global translations of a frame 
over time, there is a representation, that is, exactly what we 
want: the Fourier series. Its basis functions are complex-
 valued sinusoids that, by the Fourier shift theorem, can 
be translated exactly by shifting their phase (Figure 3a,c). 
However, using the Fourier basis would limit us to only being 
able to handle the same translation across the entire frame, 
precluding the amplification of complicated spatially-varying 
motions. To handle such motions, we instead use spatially-
local complex sinusoids implemented by a wavelet-like rep-
resentation called the complex steerable pyramid.19, 20 This 
representation decomposes images into a sum of complex 
wavelets corresponding to different scales, orientations, and 
positions. Each wavelet has a notion of local amplitude and 
local phase, similar to the amplitude and phase of a complex 
sinusoid (Figure 4a). The key to our new approach is to perform 
the same 1D temporal signal processing and amplification 
described earlier on the local phase of each wavelet, which 
directly corresponds to local motion as we discuss below.

3.1. Simplified global case
To provide intuition for how phase can be used to magnify 
motion, we work through a simplified example in which a 
global 1D translation of an image is magnified using the phase 
of Fourier basis coefficients (Figure 3).

Let image intensity I(x, t) be given by f (x − δ(t) ) where 
δ(0) = 0. We decompose the profile f (x) into a sum of complex 
coefficients times sinusoids using the Fourier transform

 (10)

Because the frames of I are translations of f, their Fourier 
transform is given by a phase shift by ωδ(t):

 (11)

where the phase of these coefficients becomes φω + ωδ(t). If 
we subtract the phase at time 0 from the phase at time t, we 
get the phase difference

ωδ (t), (12)

which is proportional to the translation. Amplifying this 
phase difference by a factor α and using it to shift the Fourier 
coefficients of I(x, t) yields

 (13)

Figure 3. Phase-based motion magnification is perfect for Fourier 
basis functions (sinusoids). In these plots, the initial displacement is 
δ(t) = 1. (a) True Amplification. (b) Linear. (c) Phase-Based.
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The local phase of each element only depends on the argument 
to the complex exponential, and is −ωx in the first case and 
−ω (x − δ) in the second. The phase difference is then ωδ, which 
is directly proportional to the translation. Local phase shift 
can be used both to analyze tiny translations and synthesize 
larger ones.

3.4. Our method
The observation that local phase differences can be used to 
manipulate local motions motivates our pipeline. We take 
an image sequence, project each frame onto the complex 
steerable pyramid basis and then independently amplify 
the phase differences between all corresponding basis ele-
ments. This is identical to the linear amplification pipeline 
except that we have changed the representation from inten-
sities to local spatial phases.

To illustrate the pipeline, consider again an image sequence 
I(x, t), in which the frame at time 0 is f  (x) and the frames at 
time t are translations f (x − δ(t) ) (Figure 5a). In our first step, 
we project each frame onto the complex steerable pyramid 
basis (Figure 5b), which results in a complex coefficient 
for every scale r, orientation θ and spatial location x, y, and 
time t. Because the coefficients are complex, they can be 
expressed in terms of amplitude Ar, θ and phase φr, θ as

 (17)

In Figure 5c, we show coefficients at a specific location, scale, 
and orientation in the complex plane at times 0 and 1.

3.3. Local phase shift is local translation
The link between local phase shift and local translation has been 
studied before in papers about phase-based optical flow.9, 11 Here, 
we demonstrate how local phase shift approximates local trans-
lation for a single basis function in a manner similar to the global 
phase-shift theorem of Fourier bases. We model a basis function 
as a Gaussian window multiplied by a complex sinusoid

 (14)

where σ is the standard deviation of the Gaussian envelope 
and ω is the frequency of the complex sinusoid. In the com-
plex steerable pyramid, the ratio between σ and ω is fixed 
because the basis functions are self-similar. Low frequency 
wavelets have larger windows.

Changing the phase of the basis element by multiplying it 
by a complex coefficient eiφ results in

 (15)

The complex sinusoid under the window is translated, which 
is approximately a translation of the whole basis function by 

 (Figure 4b).
Conversely, the phase difference between two translated 

basis elements is proportional to translation. Specifically, 
suppose we have a basis element and its translation by δ:

 
(16)

Figure 5. A 1D example illustrating how the local phase of complex steerable pyramid coefficients is used to amplify the motion of a subtly 
translating step edge. Frames (two shown) from the video (a) are transformed to the complex steerable pyramid representation by 
projecting onto its basis functions (b), shown in several spatial scales. The phases of the resulting complex coefficients are computed (c) and 
the phase differences between corresponding coefficients are amplified (d). Only a coefficient corresponding to a single location and scale is 
shown; this processing is done to all coefficients. The new coefficients are used to shift the basis functions (e) and a reconstructed video is 
produced in which the motion of the step edge is magnified (f).
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3.5. Riesz pyramids
Using phase in the complex steerable pyramid to motion 
magnify videos can be slow because the representation is 
much larger than the input. We have developed another method 
that is similar in spirit and produces videos of almost the 
same quality. However, it is much faster and is capable of 
running in real-time on a laptop. More details about this can 
be found in this paper23 on Riesz Pyramids.

4. AMPLIFYING THE RIGHT SIGNAL
Maximizing the signal-to-noise ratio of the temporal variations 
we amplify, whether local phase changes or color changes, is 
the key to good performance. We improve SNR by temporally 
and spatially filtering the variations to remove components 
that correspond to noise and keep those that correspond 
to signal. The temporal filtering also gives a way to isolate 
a signal of interest as different motions often occur at differ-
ent temporal frequencies. A baby’s squirming might be at a 
lower temporal frequency than her breathing.

Temporal narrowband linear filters provide a good way to 
improve signal-to-noise ratios for motions that occur in a nar-
row range of frequencies, such as respiration and vibrations. 
To prevent phase-wrapping issues when using these filters, 
we first unwrap the phases in time. The filters can also be 
used to isolate motions in an object that correspond to dif-
ferent frequencies. For example, a pipe vibrates at a preferred 
set of modal frequencies, each of which has a different spa-
tial pattern of vibration. We can use video magnification to 
reveal these spatial patterns by amplifying the motions only 
corresponding to a range of temporal frequencies. A single 
frame from each motion magnified video is shown in Figure 8, 
along with the theoretically expected shape.21

Spatially smoothing the motion signal often improves 
signal-to-noise ratios. Objects tend to move coherently in 
local image patches and any deviation from this is likely 
noise. Because the phase signal is more reliable when the 
amplitude of the complex steerable pyramid coefficients is 
higher, we perform an amplitude-weighted Gaussian blur:

 (19)

where Kρ is a Gaussian convolution kernel given by exp . 
The indices of A and φ have been suppressed for readability. 

Because the two frames are slight translations of each 
other, each coefficient has a slight phase difference. This is 
illustrated in Figure 5c, in which the coefficients have roughly 
the same amplitude but different phases. The next step of 
our processing is to take the phase differences between the 
coefficients in the video and those of a reference frame, in 
this case the frame at time 0:

 (18)

These phase differences are amplified by a factor α (Figure 5d), 
which yields a new set of coefficients for each frame, in 
which the amplitudes are the same, but the phase differences 
from the reference frame are larger. We reconstruct the new 
frames using these coefficients by multiplying them by the 
basis functions (Figure 5e). Then, we sum the real part to get 
new frames, in which the translations—and therefore the 
motions in the video—are amplified (Figure 5f).

Amplifying phase differences rather than pixel intensity 
differences has two main advantages: (a) it can support larger 
amplification factors, and (b) noise amplitude does not get 
amplified. In Figure 6, we show the two different methods 
being used to amplify the motions of a 1D Gaussian bump. 
Both methods work well for small amplification factors 
(Figure 6a). For larger amplification factors, amplifying raw 
pixel differences results in the signal overshooting the white 
level and undershooting the black level resulting in intensity 
clipping. In contrast, amplifying phase differences allows us 
to push the Gaussian bump much farther (Figure 6b). At very 
high amplification levels, the different spatial scales of the 
bump break apart because the high frequency components 
cannot be pushed as far as the lower frequency components 
(Figure 6c).

In Figure 7, we show the effect of both methods on a video, 
which consists of independent and identically distributed (iid) 
Gaussian noise. Unlike the linear method which increases 
noise power, the phase based method preserves noise power 
preventing objectionable artifacts in the motion magnified 
output. For these reasons, we found that amplifying phase 
differences rather than pixel differences is a better approach 
for magnifying small motions.

Figure 6. For non-periodic structures, both methods work for 
small amplification, α = 1.5 (a). The phase-based method supports 
amplification factors four times as high as the linear method and 
does not suffer from intensity clipping artifacts, α = 6 (b). For large 
amplification, different frequency bands break up because the 
higher frequency bands have smaller windows, α = 14 (c).
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Figure 7. Comparison between linear and phase-based Eulerian 
motion magnification in handling noise. (a) A frame in a sequence of 
iid noise. In both (b) and (c), the motion is amplified by a factor of 
50, where (b) amplifies changes linearly, while (c) uses the phase-
based approach.
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produces a color-amplified video, in which the human pulse 
is visible (Figure 1a). In addition to visualizing the pulse, we 
can plot the filtered color changes at a point on the man’s 
forehead to get a quantitative measurement of pulse (Figure 
3.8 in Ref.17). The beating of the human heart also produces 
subtle motions throughout the body. We were able to visual-
ize the pulsing of the radial and ulnar arteries in a video of 
a wrist (Figure 7 in Ref.24). Amir-Khalili et al. and Mcleod et 
al. have also quantitatively analyzed subtle color and motion 
changes using methods inspired by the ones proposed here 
to identify faintly pulsing blood vessels in surgical videos,1, 15 
which may be clinically useful.

Our methods can also be used to reveal the invisible 
swaying of structures. We demonstrate this in a video of a 
crane taken by an ordinary DSLR camera (Figure 1b). The 
crane looks completely still in the input video. However, 
when the low-frequency (0.2–0.4 Hz) motions are magni-
fied 75×, the swaying of the crane’s mast and hook become 
apparent. In an extension to the work described here, Chen 
et al. quantitatively analyze structural motions in videos to 
non-destructively test their safety.3 They do this by recover-
ing modal shapes and frequencies of structures (similar to 
Figure 8) based on local phase changes in videos and use 
these as markers for structural damage.

Video magnification has also contributed to new scien-
tific discoveries in biology. Sellon et al. magnified the subtle 
motions of an in-vitro mammalian tectorial membrane,18 
a thin structure in the inner ear. This helped explain this 
membrane’s role in frequency selectivity during hearing.

6. THE VISUAL MICROPHONE
One interesting source of small motions is sound. When 
sound hits an object, it causes that object to vibrate. These 
vibrations are normally too subtle and too fast to be seen, 
but we can sometimes reveal them in motion magnified, 
high-speed videos of the object (Figure 9a). This shows that 
sound can produce a visual motion signal. Video magnifica-
tion gives us a way to visualize this signal, but we can also 

We applied this processing to all of our motion magnifica-
tion videos with ρ equal to 2 pixels in each pyramid level.

Because oversmoothing can shape even white noise into 
a plausible motion signal, it becomes important to verify 
whether the motions we are amplifying are indeed real. We 
have done many experiments comparing the visual motion 
signal with the signal recorded by accurate point-measurement 
devices, such as an acclerometer or laser vibrometer and the 
signals are always in agreement, validating that the motions 
are real.2–4, 22 In addition, there are many videos where the 
motion is spatially coherent at a scale beyond that imposed 
by spatial smoothing (e.g., the pipes in Figure 8). This is 
unlikely to happen by chance and provides further evidence 
for the correctness of the amplified videos.

We can only recover motions that occur at frequencies 
less than the temporal Nyquist frequency of the camera. If 
the motions are too fast, only an aliased version of them gets 
amplified. In the special case that the motions occur at a sin-
gle temporal frequency, aliasing can be useful. It makes such 
motions appear slower, which permits the visualization of 
fast vibrations in real-time, for example, the resonance of a 
wine glass.23 However, in general we cannot recover a mean-
ingful signal if the frames are temporally undersampled.

5. A BIG WORLD OF SMALL CHANGES
The world is full of subtle changes that are invisible to the 
naked eye. Video magnification allows us to reveal these 
changes by magnifying them. We present a selection of our 
magnification results and extensions of our techniques by 
us and other authors below.

As the heart beats, blood flows in and out of the face, 
changing its color slightly. This color change is very subtle, 
typically only half a gray-level. However, the human pulse 
occurs in a narrow band of temporal frequencies and is spa-
tially smooth. For the man in Figure 1a, we can isolate signal 
from noise by temporally filtering the color variations in a 
passband of 50–60 beats per minute (0.83–1 Hz) and then 
spatially lowpassing them. Amplifying the result by 100× 

(a) Input (24,100 FPS) (b) ×15 (366–566 Hz) (c) ×80 (1212–1412 Hz) (d) ×500 (2425–2625 Hz) (e) ×1000 (4000–4200 Hz) (f) ×2000 (5945–6115 Hz)

Theoretically-Derived
Modal Shapes

[Wachel et al. 1990]

Figure 8. Isolating different types of spatial motions with temporal filtering. We took a high-speed video of a pipe being struck with a hammer. 
A frame from this video is shown in (a). The motions at several frequencies were magnified to isolate different modal shapes of the pipe. 
In (b)–(f), a frame from each of the motion magnified videos is shown. Below, the theoretically-derived modal shapes are shown in red 
overlayed, for comparison, over a perfect circle in dotted black.
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A challenge is that the vibrations are incredibly small, on 
the order of micrometers for 80 dB sound, and noise in the 
video can easily overwhelm this signal. Narrowband tem-
poral filtering only works for narrowband sounds, not gen-
eral ones that contain all frequencies. However, we want to 
recover a 1D audio signal, not magnify the spatial pattern of 
the motions. This means we can spatially combine informa-
tion across the entire frame to attain intelligible SNR. This 
works because at most audible frequencies, the wavelength 
of the sound (10 cm–1.2 m for telephone-quality audio) is 
much larger than the visible portion of the object in a video. 
For lightweight objects, the motion caused by sound is 
largely coherent across each frame of the video.

Based on this observation, we seek to recover a global 
motion signal R(t) of the object. We measure local motions 
by using local phase variations. We project each frame of the 
input video on to the complex steerable pyramid basis 
and then compute the time series of local phase variations 
∆φr, θ(x, y, t) for all spatial scales r, orientations θ and posi-
tions x, y.

To place higher confidence in local motions that come 
from regions with localizable features, we weigh the local 
phase variations by the square of the amplitudes of the cor-
responding coefficients. We then take the average of these 
weighted local signals over the dimensions of the complex 
steerable pyramid:

 (20)

This signal measures the average motion of the object and 
is related to sound via an object-specific transfer function.7 
This signal can be played as intelligible sound and can be fur-
ther improved with standard audio denoising techniques.

We conducted a variety of experiments to explore when, 
and how well, this method was able to recover sound. In 
each experiment, an object was filmed with a high-speed 
camera while being exposed to sound from either a nearby 
loudspeaker or a person’s voice. Experiments were calibrated 
with a decibel meter and evaluated using perception-based 
metrics from the audio processing literature. We found that 
lightweight objects, which move readily with sound (e.g., a 
bag of chips, the leaves of a plant) yielded the best results. 
Heavier objects (e.g., bricks, an optical bench) produced 
much weaker results, suggesting that unintended motion, 
like camera shake, was not a significant factor. In our most 
ambitious experiment, we were able to recover human speech 
from a bag of chips 3–4 m away (Figure 10). More information 
about our experiments are in Ref.7

In one experiment, we played a pure-tone version (synthe-
sized from MIDI) of “Mary had a Little Lamb” at a chip bag. 
Because the sound contained only pure-tones, we were able 
to motion magnify the chip bag in narrow temporal bands 
corresponding to the tones to produce six processed videos 
that together form a visual spectrogram. We show slices in 
time of the motion magnified videos (Figure 9a) and display 
them next to the recovered sound’s spectrogram (Figure 9b).

Vibrations of an object can also be used to learn about its 
physical properties. In follow-up work, Davis and Bouman 
et al.5 use the same method to analyze small vibrations in 

quantitatively analyze it to recover sound from silent videos 
of the objects (Figure 9b). For example, we can recover intel-
ligible speech and music from high-speed videos of a vibrat-
ing potato chip bag or houseplant (Figures 1 and 10). We call 
this technique The Visual Microphone.

Figure 9. Revealing sound-induced vibrations using motion 
magnification and recovering audio using the visual microphone. 
A pure-tone version of “Mary Had a Little Lamb” is played at a chip 
bag and the motions corresponding to each note are magnified 
separately. Time slices of the resulting videos, in which the vertical 
dimension is space and the horizontal dimension is time, are used 
to produce a visual spectrogram (a), which closely matches the 
spectrogram of the recovered audio (b).
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Figure 10. Speech recovered from a 4 kHz silent video of a bag of 
chips filmed through soundproof glass. The chip bag (on the bottom 
right in (a) ) is lit by natural sunlight. The camera (on the left in (a) ) is 
outside behind sound-proof glass. A frame from the recorded video 
(400 × 480 pixels) is shown in the inset. The speech “Mary had a little 
lamb…Welcome to SIGGRAPH!” was spoken by a person near the 
bag of chips. (b) The spectrogram of the source sound recorded by a 
standard microphone near the chip bag and (c) the spectrogram of our 
recovered sound. The recovered sound is noisy but comprehensible 
(audio clips are available on the visual microphone project webpage).
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objects and discern the material properties (stiffness, area 
weight, and elasticity) of fabrics from videos. Davis et al.6 
also used tiny motions to learn an image-space model of 
how an object vibrates and used that to perform simulations 
of how it would behave if stimulated.

7. LIMITATIONS
The Eulerian approach to motion magnification is robust 
and fast, but works primarily when the motions are small. 
If the motions are large, this processing can introduce 
artifacts. However, one can detect when this happens and 
suppress magnification in this case.22 Elgharib et al.8 also 
demonstrate it is possible to magnify tiny motions in the 
presence of large ones by first stabilizing the video. There 
are limits to how well spatio-temporal filtering can remove 
noise and amplified noise can cause image structures to 
move incoherently.

8. CONCLUSION
Eulerian video magnification is a set of simple and robust 
algorithms that can reveal and analyze tiny motions. It is 
a new type of microscope, not made of optics, but of soft-
ware taking an ordinary video as input and producing one 
in which the temporal changes are larger. It reveals a new 
world of tiny motions and color changes showing us hidden 
vital signs, building movements and vibrations due to sound 
waves. Our visualization may have applications in a variety of 
fields such as healthcare, biology, mechanical engineering, 
and civil engineering.
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