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Overview

Adapting media to different display devices is an important problem in image analysis. In this
process, commonly termed retargeting, the input image or video is adapted to accommodate
arbitrary displays, varying across resolutions and aspect ratios. The media might be shrunk
to create smaller summarizations, or expanded to generate larger syntheses. This problem
gained attention in the graphics and vision research communities during recent years due
to the increase in variety of commonly used display devices, and the prevalent use of mobile
devices as an available mean for media intake. With the explosion of image and video content
on the web, we would like to be able to present a feature film on a small iPod, cell-phone,
or pocket computer, and show our photographs on projected presentation systems. Indeed,
in many of these conversions the media must undergo extensive deformation, often resulting
in an unappealing display. Current industrial video scalers are quite primitive in nature, and
distorted or “stretched” objects are commonly witnessed in many wide-screen TV sets.

Simple methods for fitting media to display apply standard uniform (per direction) scaling
to the image or video. However, this can cause main objects to shrink or expand and gives the
scene an unnatural appearance, especially when the media’s original aspect-ratio is altered.
A commonly used method for retaining the aspect-ratio, known as letterboxing, pads the
content by constant-color margins after adapting one of its dimensions to the required size.
This might also create distortions in cases of large difference between the source and target
sizes, and moreover, does not utilize the entire display space. Simple non-uniform scaling
techniques that are used by some TV manufacturers apply an inverse Gaussian scaling kernel
over the media, such that its borders are scaled more extensively than the middle, under the
assumption that main objects tend to appear in the center of frames. The common property
to all these methods is that they are oblivious to the actual media content.

An efficient retargeting operator, however, is one that not only considers the geometric
constraints of the output display, but also utilizes the structural and semantical information in

i



the input media. Several such content-aware operators have been proposed by the academia
over the recent years. Their intent is to create a retargeted version of an image or video
that captures its most important features on the account of less important ones, such that the
required changes in size are gracefully propagated to areas which are less noticeable. This
approach hopes to retain, as much as possible, the viewer’s experience of the original media.
Such operators are in the main focus of this thesis.

Content-aware retargeting is an ill-posed problem, as it relies closely on the definition of
content, and within content, on the decision of which is more important than another. Clearly,
these objectives might be perceived differently by different viewers. Thus, existing operators
all rely on some models describing the importance, or saliency, throughout the media. Such
methods range from gradient magnitudes and color entropy, through higher-level cues such
as motion and object detection, to more sophisticated psychologically-based measures that
are based on human perception and eye-gazing studies. Essentially, content-aware operators
work in a two-phase approach where first the media is analyzed to understand its important
regions using some saliency model, and then apply some operator based on this measure to
achieve the retargeted result.

On top of these challenges, the retargeting problem is much more difficult for videos than
for images. The reason for this is twofold. First, video presents another dimension, time, to
the problem. The retargeting operator cannot simply be applied independently to each video
frame, as temporal coherency must be maintained. This is because the human perception was
shown to be highly sensitive to motion irregularities. Second, a video sequence is composed
of frames, typically 15-30 frames per second ranging from surveillance captures to standard
recordings. As such, even relatively short videos already involve massive amounts of data
that have to be processed.

Earlier methods for performing content aware retargeting concentrate on adapting the
media to smaller displays, and are based on finding an optimal cropping window. This rect-
angular window is constructed such that the most important information is captured, under
the constraints of the target display dimensions. For videos, window trajectories were de-
vised, essentially inserting virtual camera motions like panning and zooming to the result.
These methods aim to imitate and automate the pan-and-scan process which is still being
done manually for adapting wide screen feature films to smaller TV displays. In many cases,
however, the media essence cannot be efficiently captured using a rigid fixed size window,
as considerable amount of the scene information might be lost. Further, if several important
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objects appear on the frame peripheries, the result is clearly suboptimal.
More recent methods propose to deform the media in a content aware manner. These

methods can be divided into two categories: continuous and discrete. In the continuous
warping formulation, the image is represented using a grid mesh, which is deformed into
the required target size by resolving the tension between different requirements of the result.
A discrete approach recently proposed for content aware image deformation is the “Seam-
Carving“ operator, which is based on finding low-energy connected paths of pixels in the
image, removing them for image size reduction, and duplicating them for expansion. It was
shown to produce very nice results on images.

In this work we have chosen to take the discrete approach to media retargeting. There
are certainly advantages to warping methods, as their solution tends to be more global and
smooth. However, the energy functionals that are used in the formulations are usually non-
quadratic and as such have to be solved iteratively to achieve some local minima. The discrete
approach on the other hand, is more local and greedy in nature, but has several advantages: 1.
its simplicity and elegance, 2. its speed, and 3. once the problem is formulated in a discrete
manner, an optimal closed form solution can be obtained. For these reasons we believe that
investigating such approaches is interesting and important.

A discrete approach for video retargeting was not yet devised. Therefore, we first work to
extend the Seam-Carving operator to video. This extension is not straightforward as the orig-
inal algorithm relies on dynamic programming, which is not naturally extended to the three
dimensions of videos. In order to extend the operator to 3D, we present an exact reduction of
the seam carving problem to a minimal cut problem on graphs, that later enables a relatively
simple extension to videos. Instead of removing 1D seam paths from an image, we remove
2D seam manifolds from a 3D volume representation of a video, generated by stacking its
frames. The 3D seams we find are the optimal manifolds under the seam constraints. How-
ever, we show that this extension alone is not sufficient for producing good quality retargeting
due to issues inherent in the operator. Thus, we suggest a novel energy criterion, which we
term Forward Energy that is integrated into the original operator, can be encoded both in the
dynamic programming and graph-cut formulations, and achieves significant improvement in
the results. Although we use quite simple saliency measures and temporal models, we are
able to show visually appealing results for video size reduction and expansion, as well as
other editing operations.

Unfortunately however, each content-aware operator has its strengths and weaknesses,
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and will not work in all cases and for all target sizes. Our second observation is that retarget-
ing media using a combination of multiple operators might achieve better results than using
any single one alone. We model retargeting operations in a multi-dimensional resizing space,
and investigate the geometric properties of this space. Under some assumptions, we design
an algorithm that is able to combine multiple operators in an optimal manner. Here too we
take a discrete approach in the sense that the search through different paths of operators is
conducted by advancing in the resizing lattice in discrete steps. We also devise a novel mea-
sure for assessing the quality of a retargeted result that is independent of the operator used to
achieve it. We term our similarity measure Bidirectional Warping. We base our models on
a user study, showing that users tend to prefer a combination of multiple operators for retar-
geting, and compare our automatic results with the collected ground truth. We later extend
this approach to video and present several interfaces that enable users to efficiently explore
tradeoffs between resizing operators, and achieve different retargeting results.
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seams scale seams scale

Figure 1.1: Improved seam carving for video sequences combines the frames of the video to form a
3D cube and finds 2D monotonic and connected manifold seams using graph cuts. The intersection of
the manifolds with each frame defines the seams on the frame. The manifolds are found using a new
forward-energy criterion that reduces both spatial and temporal artifacts considerably.

Abstract

Video, like images, should support content aware resizing. We present video retargeting
using an improved seam carving operator. Instead of removing 1D seams from 2D images
we remove 2D seam manifolds from 3D space-time volumes. To achieve this we replace
the dynamic programming method of seam carving with graph cuts that are suitable for 3D
volumes. In the new formulation, a seam is given by a minimal cut in the graph and we show
how to construct a graph such that the resulting cut is a valid seam. That is, the cut is mono-
tonic and connected. In addition, we present a novel energy criterion that improves the visual
quality of the retargeted images and videos. The original seam carving operator is focused on
removing seams with the least amount of energy, ignoring energy that is introduced into the
images and video by applying the operator. To counter this, the new criterion is looking for-
ward in time - removing seams that introduce the least amount of energy into the retargeted
result. We show how to encode the improved criterion into graph cuts (for images and video)
as well as dynamic programming (for images). We apply our technique to images and videos
and present results of various applications.
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1.1 Introduction

Seam carving is an effective technique for content aware image retargeting. In a similar
manner, video should support retargeting capabilities as it is displayed on TVs, computers,
cellular phones and numerous other devices. A naive extension of seam carving to video is to
treat each video frame as an image and resize it independently. This creates jittery artifacts
due to the lack of temporal coherency, and a global approach is required. The approach we
take is to treat video as a 3D cube and extend seam carving from 1D paths on 2D images,
to 2D manifolds in a 3D volume (Figure 1.1). Nevertheless, because we need to build a
2D connected manifold through space-time volume, the dynamic programming approach
used for image resizing is no longer applicable. In this paper we define a new formulation
of seam carving using graph cuts. However, a simple cut cannot define a valid seam. A
seam must be monotonic, including one and only one pixel in each row (or column), and
connected. We show how to define a graph whose cut creates a monotonic and connected
seam, which is equivalent to the one created by dynamic programming on images. Using
this formulation, we extend seam carving to video and define a monotonic and connected 2D
manifold seam inside the video cube. We also discuss a multiresolution approach to speed up
the computation time of seams for video.

Seam carving also has other limitations. On images, where salient spatial structures ap-
pear, seam carving can create serious artifacts. This is magnified in video, where spatial
artifacts can be amplified, and augmented by temporal ones. In fact, because of human per-
ception, the latter may even be more disturbing in video, as the human eye is highly sensitive
to movement. To address this problem, we define a novel seam carving criterion that better
protects salient spatial, as well as temporal content. This improves the visual quality of the
retargeted images and videos considerably. The new criterion takes into account the energy
inserted into the image or video during retargeting, not just the energy removed from it. We
show how to encode the new criterion into both the dynamic programming and the graph cut
solutions.

The difficulties imposed by video resizing using seam carving can therefore be charac-
terized as algorithmic, dimensional and cardinal. The algorithmic difficulty follows from the
fact that we cannot extend the original dynamic programming method to a 3D video cube.
Dimensional difficulties originate from the additional, temporal, dimension of a video, which
enhances spatial artifacts and introduces new ones involving motion. Cardinal difficulties
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stem from the fact that a video is a sequence of frames, and hence any processing of a video
sequence involves larger amounts of data. This paper addresses these difficulties and presents
results for video resizing applications such as size reduction and expansion, multi-size videos
for interactive size manipulation and object removal.

1.2 Background

The increasing need to adapt content to various displays caused a surge in the number of
publications dealing with image, as well as video, retargeting.

Attention models, based on human spatiotemporal perception have been used to detect
Regions Of Interest (ROIs) in image and video. The ROIs are then used to define ”display
paths” ([45]) to be used on devices in which the display size is smaller than the video (or
image) size. The least important content of the video is cropped, leaving the important fea-
tures in larger scale, essentially creating a zoom-in-like effect ([9]). Virtual camera motions
or pseudo zoom-in/out effects are used to present the content in a visually pleasing manner.

A similar system was proposed by [18], where both cropping and scaling are used to-
gether with virtual camera motion to mimic the process of adapting wide screen feature films
and DVDs to standard TV resolution. Their system minimizes information loss based on im-
age saliency, object saliency and detected objects (e.g. faces). Cropping, however, discards
considerable amounts of information and might be problematic, for instance, if important
features are located at distant parts of the image or frame, which is common in wide or over-
the-shoulder shots in videos.

An alternative approach is to segment the image into background and foreground layers,
scale each one of them independently and then recombine them to produce the retargeted
image. This was first proposed by [31] for non-photorealistic retargeting of images and later
extended to video by [37]. While this is an appealing approach, it relies crucially on the
quality of segmentation - a difficult and complicated task in itself. For video, [22] propose
an “object-based” approach to webcam synopsis, where they segment the input video into
objects and activities, rather than frames. Then they compose a short video synopsis, in
response to user query. Their work only deals with retiming the video, not changing its
spatial extent.

Recently, [48] presented a system to retarget video that uses non-uniform global warping.
They concentrate on defining an effective saliency map for videos that comprises of spatial
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edges, face detection and motion detection. Results are shown mainly for reducing video
size. Our work differs since we take a discrete approach and we also show results for video
expansion, object removal, and introduce multisize videos, which are not supported by their
system. We mostly use image edge energies but also show results using their saliency map.

We build on and extend the work of [3]. They proposed seam carving for image retarget-
ing and used dynamic programming to find the optimal seam iteratively. We propose a graph
based approach to seam carving, allowing us to handle video retargeting. This extension de-
fines 2D surfaces to be removed from the 3D video cube. An alternative approach is to map
these 2D manifolds to frames in a new video sequence [23]. This approach, termed Evolving
Time Fronts, gives users the ability to manipulate time in dynamic video scenes.

Note that both [18] and [48] incorporate previously devised methods for identifying shot
or scene boundaries, within which the camera motion is continuous. Each shot is then pro-
cessed by their systems independently. In this work, we assume the input video is comprised
of a single shot, and refer to existing scene detection solutions (see [18] and [48], and in
addition [49]) in case a multi-shot video is given.

Graph partitioning and graph-based energy minimization techniques are widely used in
image and video processing applications such as image restoration, image segmentation, ob-
ject recognition and shape reconstruction. A graph representing an image, together with some
constraints, is partitioned into disjoint subsets by connecting pixels or voxels based on their
similarity. Traditionally, similarity is defined by some variation of intensity change or gradi-
ents. For videos, it is often convenient to consider the sequence of frames as a 3D space-time
volume [15, 30, 44, 43]. In such cases, the extension of energy minimization from 2D images
to 3D space-time video is usually straightforward. We are influenced by [15], that use graph
cuts to seamlessly patch two 2D or 3D textures. However, there are differences in the way we
construct the graph, and the terminal nodes in our method are placed differently than in theirs.
The challenge we face is in designing a graph that produces only admissible cuts, that is, cuts
that are monotonic so that only one pixel is removed from every row, and are connected. As
we will show, standard graph cut based constructions do not satisfy these constraints and new
ones must be defined.
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Figure 1.2: Seam carving on each video frame independently creates locally optimal seams that can
be totally different over time. This creates a jittery resized video. In this example we show the first
ten seams removed. A similar illustration is shown in the supplemental video and project website.

1.3 Preliminaries

A seam is a monotonic and connected path of pixels going from the top of the image to
the bottom, or from left to right. By removing one seam from an image, the image size is
reduced by one either in the horizontal or the vertical dimension. Seam carving uses an energy
function defined on the pixels and successively removes minimum energy paths from the
image. In video, we search for a resizing operator in the granularity of shots (i.e. a sequence
of frames where the camera shoots continuously). Simply applying the seam carving operator
separately to each frame of the video introduces serious artifacts (Figure 1.2).

Alternatively, one can search for regions in the image plane that are of low importance
in all video frames. This is done by computing the energy function on every image inde-
pendently and then taking the maximum energy value at each pixel location, thus reducing
the problem back to image retargeting. We call the seams computed this way static seams,
because they do not change along frames. Specifically, given a video sequence {It}Nt=1 we
extend the spatial L1-norm to a spatiotemporal L1-norm:

Espatial(i, j) =
N

max
t=1
{| ∂
∂x
It(i, j)|+ |

∂

∂y
It(i, j)|}

Etemporal(i, j) =
N

max
t=1
{| ∂
∂t
It(i, j)|}

Eglobal(i, j) = α · Espatial + (1− α)Etemporal (1.3.1)

Essentially, this measure can be seen as a (maximum) projection of the spatial L1-norm
to 2D, where α ∈ [0, 1] serves as a parameter that balances spatial and temporal contribution.
In practice, since motion artifacts are more noticeable, it is good to bias the energy toward
temporal importance, taking α = 0.3. We use a maximum projection and not average to be
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Figure 1.3: Static seams for the golf video and ape animation. The global energy function is shown
using color mapping from violet (low) to red (high). The actual static seams are shown for the golf
sequence at the top. Some representative resized frames are also shown for both videos (example
results can be seen in the project website).

conservative in the cost calculation. Figure 1.3 shows examples for the global energy map
and static seams removal from videos.

The main appeal of such a static method is its simplicity and speed. It gives good results
when the video is created by a stationary camera, and the foreground and background are
separated (Figure 1.3). However, in more complex video scenes where the camera is moving
or when multiple motions are present, seams must be allowed to adapt over time.

Towards this end, we define a video seam as a connected 2D manifold “surface” in space-
time that cuts through the video 3D cube. The intersection of the surface with each frame
defines one seam in this frame. Hence, removing this manifold removes, in effect, one seam
from each video frame. On the one hand, because the surface is flexible, the seams can
change adaptively over time in each frame (Figure 1.1). On the other hand, because the
surface is connected, the seams preserve temporal coherency. Unfortunately, there is no
simple extension of the dynamic programming algorithm of 2D images to a 3D space-time
volume, and we must employ another algorithm, namely graph cut.

1.4 Seam Carving using Graph Cuts

We first discuss a formulation of the seam carving operator as a minimum cost graph cut
problem on images and then extend the discussion to video. We will further assume that
we are searching for vertical seams in the image. For horizontal seams all constructions are
the same with the appropriate rotation. We refer to graph edges as arcs to distinguish them
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from edges in the image. We construct a grid-like graph from the image in which every node
represents a pixel, and connects to its neighboring pixels. Virtual terminal nodes, S (source)
and T (sink) are created and connected with infinite weight arcs to all pixels of the leftmost
and rightmost columns of the image respectively.

An S/T cut (or simply a cut) C on such a graph is defined as a partitioning of the nodes
in the graph into two disjoint subsets S and T such that s ∈ S and t ∈ T . The cost of a cut
C = {S, T} is defined as the sum of the cost of the ‘boundary’ arcs (p, q) where p ∈ S and
q ∈ T . Note that a cut cost is directed as it sums up the weights of directed arcs specifically
from S to T . That is, arcs in the opposite direction do not affect the cost. To define a seam
from a cut, we consistently choose the pixels to the left of the cut arcs. The optimal seam is
defined by the minimum cut which is the cut that has the minimum cost among all valid cuts.

Converting dynamic programming to graph cuts was already done in the past for the
purpose of texture synthesis [15]. However, there is a crucial difference between our work
and theirs. The reason is that a general cut does not define a valid seam for seam-carving, as
it must satisfy two constraints:

Monotonicity the seam must include one and only one pixel in each row (or column for
horizontal seams).

Connectivity the pixels of the seams must be connected.

More formally, a vertical seam can be thought of as a (discrete) mapping S : Y × T →
X (where T = {0} for images) from (row, time) to column. The monotonicity constraint
requires this mapping to be a function, while the connectivity constraint forces this function
to be continuous. Hence, the challenge is to construct a graph that guarantees the resulting
cut will be a continuous function over the relevant domain.

1.4.1 Graph Cuts for Images

In a standard grid graph construction, every internal node pi,j is connected to its four neigh-
bors Nbr(pi,j) = {pi−1,j, pi+1,j, pi,j−1, pi,j+1}. Following the L1-norm gradient magnitude
E1 energy that was used in [3], we define the weight of arcs as the forward difference be-
tween the corresponding pixels in the image either in the horizontal direction: ∂x(i, j) =

|I(i, j + 1) − I(i, j)| or in the vertical: ∂y(i, j) = |I(i + 1, j) − I(i, j)|. Under this formu-
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(a) Non-monotonic (b) Unconnected (c) Original (backward) (d) Forward

Figure 1.4: Minimum cut on the waterfall image (top left) for various graph constructions. The seam
is composed of the pixels to the left of the cut. The different graph constructions are illustrated by four
nodes representing four pixels in the image. The actual image graph is created by tiling these sub-
graphs across the image (see text for details). Graph (a) creates a general path and not a valid seam,
while (b) creates a monotonic but piecewise-connected seam. The construction at (c) is equivalent to
the original seam carving algorithm (with E1). The construction at (d) represents the new forward
energy we present in Section 1.5.

lation, Figure 1.4(a) shows an optimal partition of the waterfall image into source and target
parts. This cut does not satisfy the seam carving constraints.

To impose the monotonicity constraint on a cut, we use different weights for the different
directions of the horizontal arcs. For forward arcs (in the direction from S to T ), we use
the weight as defined above, but for backward arcs we use infinite weight. Appendix 1.A
gives the proof why the monotonicity constraint is maintained under this construction (Fig-
ure 1.4(b)).

The main difference between this graph cut construction and the original dynamic pro-
gramming approach is that there is no explicit constraint on the cut to create a connected path.
The cut can pass through several consecutive vertical arcs, in effect creating a piecewise-
connected seam. Although this behavior is penalized as more vertical arcs are cut, it does
happen in practice. Our empirical results show that connected seams are important to pre-
serve both spatial and temporal continuity and to minimize visual artifacts. To constrain
cuts to be connected, we use infinite weight diagonal arcs going “backwards”. Using similar
arguments, Appendix 1.A shows why this construction imposes the connectivity constraint.

In fact, by combining the weights of the vertical and horizontal arcs together, we can
create a graph whose cut will define a seam that is equivalent to the one found by the original
dynamic programming algorithm. For example, we assign the weight E1(i, j) = ∂x(i, j) +
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Source
DP result GCUT result

DP seams GCUT seams

Figure 1.5: Comparison between Dynamic programming (DP) and graph-cut (GCUT) results. The
results are equivalent theoretically, and nearly identical practically. On the bottom left, the plot shows
the seams costs using DP (dashed blue) and GCUT (red) for the first 100 seams that were applied to
generate the results. On the bottom right, the complete seam maps are shown for the two methods,
colored by the seam costs from low (blue) to high (red).

∂y(i, j) to the horizontal forward arc and remove the vertical arcs altogether (Figure 1.4(c)).
A cut in this graph is monotonic and connected. It consists of only horizontal forward arcs
(the rest are infinite weight arcs that pose the constraints and cannot be cut), hence its cost is
the sum of E1(i, j) for all seam pixels, which is exactly the cost of the seam in the original
seam carving operator. Because both algorithms guarantee optimality, they must have the
same cost, and (assuming all seams have different costs) the seams must be the same.

This suggests we can use any energy function defined on the pixels as the weight of the
forward horizontal arcs and achieve the same results as the original dynamic programming
based seam carving. Moreover, high level functions such as a face detector [41], or a weight
mask scribbled by the user, can be used in any of the graph constructions we present. We
simply add the pixel’s energy to the horizontal arc going out of the pixel.

We use the implementation by [5] to solve for the minimal cut. In practice, when com-
paring between the dynamic programming and graph-cut methods, we noticed that small
differences exist in the results. we have traced these differences both to numerical precisions,
but mostly to the non-uniqueness of the solution. Due to the natural smoothness of images,
there are many cases in which several seams of minimal cost exist. Since the decision taken
by the two solvers in such cases is not synchronized, different seams of minimal cost might
be removed. Due to the greedy nature of the seam-carving algorithm, this might also affect
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seams at later iterations. However, the effect of these anomalies on the resulting seams, the
seams costs and the final results are minimal (Figure 1.5).

The running time of the graph cut algorithm is O(mn2) for m arcs and n vertices, but in
practice was observed to have linear running time on average [5]. Given an N -pixel image,
our construction requires m ' 4N arcs (two horizontal arcs and two backward diagonal arcs
per vertex). It is not hard to further prove that (using 4 or less pixel neighborhood) the diag-
onal arcs are sufficient to impose both constraints, resulting in a small factor improvement in
running time (m ' 3N ). However, we continue to use them in an additive manner for clarity.
Note moreover that piecewise connectivity can be obtained to some extent in this setting by
spreading backward diagonal arcs “blocks“ (Figure 1.19(b-c)) in larger intervals in the graph.

1.4.2 Graph Cuts for Video

The extension to video is straightforward. Assuming we are searching for a vertical seam,
we consider the X × T planes in the video cube and use the same graph construction as in
X × Y including backward diagonal infinity arcs for connectivity. We connect the source
and sink nodes to all left and right (top/bottom in the horizontal case) columns of all frames
respectively. A partitioning of the 3D video volume to source and sink using graph cut will
define a manifold inside the 3D domain (Figure 1.6). Such a cut will also be monotonic in
time because of the horizontal constraints in each frame that are already in place. This cut is
globally optimal in the cube both in space and time. Restricted to each frame, the cut defines
a 1D connected seam.

For the full video volume, the computation time of our algorithm depends on the number
of nodes times the number of arcs in the graph, which is quadratic in the number of voxels.

Figure 1.6: The intersection of every X × T plane with the seam surface defines a spatiotemporal
seam.
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(a) (b)

Figure 1.7: The artifacts seen in video retargeting (top) can also be seen on a static vase image
(bottom). We show an example of the change in energy after a specific seam is removed (a). In some
pixels (blue) energy is reduced and in others (yellow) increased. This seam inserts more energy to the
image than removes, creating a step artifact in the stem of the flower. The actual change in energy ∆E
after each seam removal is shown in (b).

Solving minimal cut on a graph in which every voxel is represented by a node is simply not
feasible. In fact, performance issues are encountered already for high resolution images. To
improve efficiency, we employ a banded multiresolution method, similar to the one described
in [20]. An approximate minimal cut is first computed on the coarsest graph, and then iter-
atively refined at higher resolutions. Coarsening is performed by sampling the graph both
spatially and temporally, while refinement is done by computing graph cut on a narrow band
induced by the cut that was computed at the coarser level. The band in our case takes the
form of a “sleeve” cutting through the spatiotemporal volume.

The graph cut approach to seam carving allows us to extend the benefits of content-aware
resizing to video. Still, the method is not perfect and no single energy function was shown to
perform properly in all cases [3]. Therefore, we introduce a new energy function that better
protects media content, and improves image and video results.

1.5 Forward Energy

The artifacts created in video frames can actually be seen on static images as well (Fig-
ure 1.7). They are created because the original algorithm chooses to remove the seam with
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(a) (b) (c)

Figure 1.8: Calculating the three possible vertical seam step costs for pixel pi,j using forward energy.
After removing the seam, new neighbors (in gray) and new pixel edges (in red) are created. In each
case the cost is defined by the forward difference in the newly created pixel edges. Note that the new
edges created in row i− 1 were accounted for in the cost of the previous row pixel.

the least amount of energy from the image, ignoring energy that is inserted into the retargeted
result. The inserted energy is due to new edges created by previously non adjacent pixels that
become neighbors once the seam is removed (see e.g. the steps artifacts in Figure 1.7(a)).
Assume we resize an image I = It=1 using k seam removals (t = 1 . . . k). To measure the
real change in energy after a removal of a seam, we measure the difference in the energy of
the image after the removal (It=i+1) and the energy of only those parts that were not removed
in the previous image It=i (i.e. the image energy E(It=i) minus the seam energy). In our
new graph cut formulation, the energy of the image is no longer an attribute of the pixels, but
rather an attribute of the arcs in the graph. Hence, the energy of an image E(I) is given by
the sum of all finite arcs of its induced graph, and the energy of a seam E(C) is simply the
cost of the cut C. The energy difference after the ith seam carving operation is:

∆Et=i+1 = E(It=i+1)− [E(It=i)− E(Ci)] (1.5.1)

As can be seen in Figure 1.7(b), ∆Et can actually increase as well as decrease for different
seam removals using the original seam carving approach (the energy measured in this case
is E1). The figure also shows a specific example of a seam that inserts more energy to the
image than it removes.

Following these observations, we propose a new criterion for choosing the optimal seam.
The new criterion looks forward at the resulting image instead of backward at the image
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before removing the seam. At each step, we search for the seam whose removal inserts the
minimal amount of energy into the image. These are seams that are not necessarily minimal in
their energy, but will leave less artifacts in the resulting image, after removal. This coincides
with the assumption that natural images are piece-wise smooth intensity surfaces, which is a
popular assumption in the literature. We will show how to define forward energy on images
and then discuss the extension to video.

As the removal of a connected seam affects the image, and its energy, only at a local
neighborhood, it suffices to examine a small local region near the removed pixel. We consider
the energy introduced by removing a certain pixel to be the new “pixel-edges” created in the
image. The cost of these pixel edges is measured as the forward differences between the
pixels that become new neighbors, after the seam is removed. Depending on the direction of
the seam, three such cases are possible (see Figure 1.8).

1.5.1 Forward Energy in Dynamic Programming

For each of the three possible cases, we define a cost respectively:

(a) CL(i, j) = |I(i, j + 1)− I(i, j − 1)|+ |I(i− 1, j)− I(i, j − 1)|
(b) CU (i, j) = |I(i, j + 1)− I(i, j − 1)|
(c) CR(i, j) = |I(i, j + 1)− I(i, j − 1)|+ |I(i− 1, j)− I(i, j + 1)|

(1.5.2)

We use these costs in a new accumulative cost matrixM to calculate the seams using dynamic
programming. For vertical seams, each cost M(i, j) is updated using the following rule:

M(i, j) = P (i, j) + min


M(i− 1, j − 1) + CL(i, j)

M(i− 1, j) + CU(i, j)

M(i− 1, j + 1) + CR(i, j)

(1.5.3)

where P (i, j) is an additional pixel based energy measure, such as the result of high level
tasks (e.g. face detector) or user supplied weight, that can be used on top of the forward
energy cost.

The first row of M is initialized using the vertical seam case (Figure 1.8(b)), taking pre-
vious weights to be zero. A nuance to note is the cost to remove the upper leftmost and right-
most pixels. Theoretically, the cost for removing these pixels is zero according to the above
scheme, as no energy is introduced by removing them (no new edges are created). However,
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following this logic, the zero cost will be diffused throughout the leftmost and rightmost
columns which will in turn cause the algorithm to always choose to remove a boundary col-
umn, essentially creating a cropping effect. To counter this, we set CU for border pixels to
the forward difference with their respective neighbor.

1.5.2 Forward Energy in Graph Cut

Note that in order to define the forward energy cost in graph cut, we cannot use the same
construction as for the backward energy (Section 1.4.1), since the energy is not defined per
pixel. Instead, we need to create a graph whose arc weights will reflect the cost of the pixel
removal according to the three possible seam directions, such that the cost of inserted edges
will be properly integrated by the cut. Figure 1.4(d) illustrates this construction. A new
horizontal pixel-edge pi,j−1pi,j+1 is created in all three cases because pi,j is removed. Hence,
we assign the difference between the Left and Right neighbors +LR = |I(i, j+1)−I(i, j−
1)| to the graph arc between the nodes representing pi,j and pi,j+1. To maintain the seam
monotonicity constraint as before, we connect pi,j+1 and pi,j with a (backward) infinite weight
arc. We also add diagonal backward infinite arcs to preserve connectivity.

Next, we need to account for the energy inserted by the new vertical pixel-edges. In the
case of a vertical seam step (Figure 1.8(b)), there are no new vertical edges so no energy is
inserted. From the corollary in appendix 1.A we have that all nodes to the left of the cut must
be labeled S and all nodes to the right of the cut must be labeled T . By definition, the cost of
a cut will only consider arcs directed from nodes labeled S to nodes labeled T . It therefore
follows that only upward vertical arcs will be counted in right-oriented cuts (Figure 1.8(a)),
and only downward vertical arcs will be counted in left-oriented cuts (Figure 1.8(c)). Hence,
we assign the difference between the Left and Up neighbors +LU = |I(i−1, j)−I(i, j−1)|
to the upward vertical arc between pi,j and pi−1,j , and the weight−LU = |I(i+1, j)−I(i, j−
1)| to the downward vertical arc between pi,j and pi+1,j (−LU means the difference between
the Left and Up neighbors with respect to the end point of the arrow).

Figure 1.9 illustrates the difference between removing seams using the original algorithm
with E1, and removing seams using the new forward energy we propose. In the original cost
map the cost is increased with every crossing of a bar in the bench, as it defines an edge in
the image. This drives the seams to the image sides while creating disturbing artifacts. In the
improved criterion, vertical seams can intersect the bars without inserting energy to the im-
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Figure 1.9: Comparison between the original seam carving backward energy (left) and the new for-
ward energy (right) for resizing an image (original shown in small at the top). At the bottom are the
respective cost maps M of both techniques and the seams removed from the image. The new results
suffer much less from the artifacts generated using backward energy such as the difference in water
color and the distortions of the bench bars and skeleton.

age, resulting in almost no increase in the cost map in these areas and a more plausible result.
More examples are given in Figure 1.11 and in the supplemental material. Figures 1.12 and
1.13 show some frames from video sequences retargeted with graph cuts using the improved
forward energy.

For video, we examine slices in the 3D video-cube depending on the seam direction. For
vertical seams (Y -direction), the intersection of every slice on the (X × T ) dimension with
the seam manifold creates a seam on that plane (Figure 1.6). We use the same formulation in
(X × T ) as we did in (X × Y ). Hence, we define the cost of every pixel removal as the new
temporal pixel-edges created between frames in the temporal direction, that are introduced
to the video when this pixel is removed. We then create arcs between nodes in the graph
between time-steps with the appropriate costs exactly as in the spatial X × Y domain.

1.5.3 Minimizing Energy Change

Taking the forward energy approach one step further, we might wish to minimize the change

in energy as opposed to just the inserted one. That is, we can search for seams such that their
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removal will not only discourage the insertion of new edges to the image, but also prevent the
removal of existing edges from it. Continuing to use the E1 energy, this can be formulated
as follows. We define the change in energy as the change in edges (gradients) between pixels
as a result of removing a certain pixel, and we consider again the different cases of inserted
edges (Figure 1.8). Note that in either case, and for both the horizontal and vertical directions,
we have to calculate the change in energy between two edges that exist before the relevant
pixel is removed, and a single edge that remains between the two new neighbors after its
removal. That is, we can write the change in energy as a function of the new edge, enew, and
the two old edges, e1old and e2old. One possibility is:

∆e(enew, e
1
old, e

2
old) = enew − (e1old + e2old) (1.5.4)

For convenience, denote ei,j
k,l = |I(i, j) − I(k, l)|. Note that this cost is always non-

negative, while ∆e can be either positive or negative (or zero), as energy can be inserted or
removed from the image. For example, if the new edge is stronger than the previous edges
then we have ∆e > 0 by Equation 1.5.4, which indicates that energy was inserted to the
image.

Given a delta function ∆e, we can then rewrite Equations 1.5.2 in terms of the change in
energy:

(a) CL(i, j) = |∆e(ei,j−1
i,j+1, e

i,j−1
i,j , ei,j

i,j+1)|+ |∆e(ei,j−1
i−1,j , e

i,j−1
i−1,j−1, e

i,j
i−1,j)|

(b) CU (i, j) = |∆e(ei,j−1
i,j+1, e

i,j−1
i,j , ei,j

i,j+1)|
(c) CR(i, j) = |∆e(ei,j−1

i,j+1, e
i,j−1
i,j , ei,j

i,j+1)|+ |∆e(ei,j+1
i−1,j , e

i,j+1
i−1,j+1, e

i,j
i−1,j)|

(1.5.5)

and use these equations in the calculation of the energy map M as before (Equation 1.5.3).
Our treatment of boundary pixels is also similar, but here it also correctly models the change
in energy, as removing a boundary pixel removes from the image the edge between that pixel
and its neighbor. Moreover, consider the case of an edge occurring between
pi,j−1 and pi,j at the point of examining pixel pi,j . Using the formulation
from Section 1.5.1, the horizontal cost of removing pixel pi,j would be
high, due to the edge created between pi,j−1 and pi,j+1. However, this
edge is clearly not the result of removing that pixel. Examining the change in energy instead,
will result in zero change in this case. In fact, this formulation generalizes the previous, as
the forward minimally inserted energy can be achieved by taking ∆e(enew, e

1
old, e

2
old) = enew.
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(a) Minimal insert (b) Minimal change

(c) Minimal insert

(d) Minimal change

Figure 1.10: Comparison between minimal inserted energy and minimal change in energy on the
car and Ratatouille figures. It can be seen that minimizing against the change in energy attempts to
maintain information (e.g. the white fence in the car image) and protect edges (e.g. the sink rim in the
Ratatouille image), but on the account of occasionally inserting artifacts. On the right, the top graph
shows the change in energy (Equation 1.5.1) in the car image throughout the seam removal process
for minimal energy seams (original algorithm, blue), MIE seams (red) and MCE seams (green). At
the bottom, a trend graph is shown using 5-point moving average.

Our results were inconclusive. There are cases in which minimizing inserted energy
(MIE) produces better results, and there are other cases in which minimizing change in energy
(MCE) produces more satisfactory solution. Figure 1.10 shows some comparisons between
the two methods. By tracking the change in energy (Equation 1.5.1) during seam calculation,
we note that indeed when using MCE, the change in energy curve oscillates around zero.
Thus, less energy is removed from the image in comparison to MIE, though at the cost of
inserting energy to the result. The results generated by MIE usually appear smoother.

We have experimented with several permutations of delta functions and ways to incorpo-
rate them into the energy map. However, due to the discrete and local nature of the operator,
all formulations are very similar, and achieve more or less the same results.

1.6 Results

In the supplemental video and project website, we present results for aspect ratio changes of
videos by removing, as well as inserting seams (see also Figure 1.12 and Figure 1.13). We
also support multisize videos for interactive resizing (Figure 1.15, top, and the supplemental



CHAPTER 1. VIDEO RETARGETING USING SEAM-CARVING 19

Figure 1.11: Several comparisons between the original seam carving algorithm (left/top image of
pairs) and forward energy (right/bottom image of pairs). The reader is encouraged to zoom-in for
better view. At the top, the car image (first on the left) was first condensed and then extended. In
the middle, one frame from the Ratatouille video is given for comparison. The complete sequence
in shown in the supplemental video. It can be seen that our forward energy approach yields more
visually-plausible results than backward energy, while artifacts generated by seam removal are greatly
reduced. Further results can be found on the project website.



CHAPTER 1. VIDEO RETARGETING USING SEAM-CARVING 20

Figure 1.12: Examples of video retargeting. Top row, an original frame. In the following rows we
show a rescaled frame on the left and a retargeted one on the right.

Figure 1.13: Each row shows a different frame from a 100 frames long video sequence. From left to
right, the original image, a scaled down image, a targeted down image, a scaled up image and targeted
up image.
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Figure 1.14: Retargeting using external energy (saliency) functions. On the left, from left to right and
top to bottom: a frame from the football video; saliency map used by [48]; the rescaled frame; the
retargeted frame. On the right, in the same order: a frame from the interview video, with the detected
face regions; the calculated seams for this frame, accounting for the faces constraints; the rescaled
frame; the retargeted result.

Figure 1.15: A snapshot of the multisize video interface is shown on the left. After pre-computation,
the user is able to resize the video interactively while it plays. On the right, a frame from the dancers
video is shown (left), with its corresponding frame from the video in which the left dancer was re-
moved using user markings. Actual results can be viewed in the supplemental video.

video). We extend the method suggested by [3] of precomputing seam index maps for images,
to each frame in the video. As we cannot hold the entire index structure in memory, these
maps are stored on disk, and are loaded on demand before the frame is displayed.

As discussed, we also support other energy functions for retargeting. For example, Fig-
ure 1.14 shows the results of our method on the football video using the saliency map of [48].
Our system also supports other energy functions such as object detectors and manually in-
serted weights. As our approach is global, the algorithm is relatively robust to cases in which
the energy function is not given for every frame, and to occasional false positive or false neg-
ative detections. An example using face detector is shown in Figure 1.14. Both sequences
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are also shown in the supplemental video.
By marking pixels with positive weights, the user can protect certain parts of a video

during the retargeting process. For similar reasoning as above, the user need not mark every
frame, but only once every k frames (in practice we used k ' 10). Since we achieve a
temporally smooth solution, the markings’ coherency is maintained. By supplying negative
weights, the user can also attract seams to desired parts of the video, for example, for object
removal (Figure 1.15).

Using our multiresolution graph cut technique, computation times for retargeting videos
are still significant. Precalculating multisize videos that enable between 50 to 150 percent
change in aspect ratio take 10 to 20 minutes on average. Typical videos have a resolution of
400× 300 and 400 frames. We used a 1.8 GHz dual core laptop with 2GB memory in all our
experiments. The memory consumption for such videos averages 300MB, which is reason-
able for this kind of processing. The running time of forward energy dynamic programming
on images is compatible to backward energy.

Our technique does allow however to achieve speed gains for processing high definition
images. For instance, the three mega-pixel lake image (Figure 1.16) was resized to 60%
its width (using forward energy) in approximately 12 minutes using dynamic programming,
and less than 5 minutes using multiresolution graph cut on our computer configuration. As
discussed in Section 1.4.1, the graph cut result is equivalent to the dynamic programming
result due to our reduction. Although the multiresolution solution only approximates the
optimal cut, it can be seen that the result is visually in par with the optimal.

1.7 Limitations

The forward energy criteria we propose is designed to protect the structure of media. How-
ever, maintaining the structure can sometime come at the expense of content. For example,
important objects that can be resized without noticeable artifacts (i.e. inserted energy) may
be jeopardized during resizing (Figure 1.17). In such cases, a combination of the forward
criteria with E1 energy can help to achieve better results. This is because E1 can better pro-
tect content. There are other situations on video and images where forward energy fails to
achieve plausible results. Some are illustrated in Figure 1.18. In general, due to motion and
camera movement, the problem of video resizing is more challenging than image resizing. To
solve some of those challenges, it may be better to revert to other methods of resizing such as
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DP (Optimal) Multiresolution GCUT

Figure 1.16: Example result of the multiresolution graph-cut on a 3-gigapixel image (left). The
multiresolution result (right), though only an approximation to the optimal result (middle), is equally
appealing and much more efficient to compute.

Figure 1.17: Structure vs. content. From left to right: a zoom-in on the Kinkaku temple (Kyoto,
Japan) using backward energy, forward energy and combination of the forward and E1 energies re-
spectively. There were no significant differences between the results in other image regions.

scaling or cropping or combine them together with seam carving. Lastly, our current method
runs on the video in batch mode. In contrast, online techniques could also support resizing
while streaming the video.

1.8 Conclusions and Future Work

We propose an improved seam carving operator for image and video retargeting. Video
retargeting is achieved using graph cuts and we have shown a construction that is consistent
with the dynamic programming approach. Furthermore, we offered new insight into the
original seam carving operator and proposed a forward-looking energy function that measures
the effect of seam carving on the retargeted image, not the original one. We have shown how
the new measure can be used in either graph cut or dynamic programming and demonstrated
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Figure 1.18: Cases where forward energy can fail. On the left, a frame from a bicycle video sequence
(left) is shown with its retargeted result. The bicycles are shrunk as the algorithm abstains from
cutting the textured rocks. On the upper right, although the forward energy result (right) shows some
improvement over the backward energy result (middle), it still suffers from side-effects due to its
local nature. A grainy background texture is considered as important content, while the matchbox is
distorted by both methods. On the bottom row, a frame from the highway video (left) is shown with
its corresponding frame from the retargeted video. Forward energy fails to achieve plausible result in
this case due to rapid camera and object motions.

the effectiveness of our contributions on several images and video sequences.
We have outlined some future extensions in the Limitation section. Also, by switching to

graph cut based representation we could rely on some advances to speed up computations.
For example, [14] proposed a method for computing minimum cuts on an updated graph,
which can hopefully yield speed gains of up to two orders of magnitude. Moreover, recent
methods allow for efficient graph cut calculation on the GPU ([12, 40]), with similar reported
running time improvements over CPU implementations. Using such methods would sig-
nificantly decrease the computational time of the multiresolution algorithm, and might also
enable calculation at the pixel level, thus resulting in an optimal solution.

Our methods can also be adapted to resize videos temporally. By rotating the video cube
to Y × T view, we can find seam manifolds that cut through the temporal domain. Each
manifold, when removed, will decrease the length of the video by one, thus resulting in a
shorter video. A similar method was recently proposed also by [7]. They too use graph
cuts for finding low gradient sheets to remove. A basic difference between their method and
ours is that they remove an approximation to the minimal energy surface, while our method
guarantees optimality under the seam constraints (Section 1.4.2). Their graph construction is
similar to the one described in Figure 1.4(a), which yields non-monotonic and unconnected
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cuts. Moreover, they counter the cardinality problem by splitting the input video into smaller
pieces and removing one frame at a time from each piece. By using a multiresolution scheme,
we target a more global solution. Enforcing seam temporal connectivity using our approach
might also help avoiding cases of event reordering that they refer to in their work, as seams
will not be able to stretch too far in time.

Finally, another future issue we plan to investigate is the relationship between seam carv-
ing, scaling and cropping. These all address the problem of fitting content to display, but take
different approaches to solve it. It would be interesting to try and combine all three into a
single framework.
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Appendix 1.A Seam Constraints Proof

We show that the graph construction introduced in section 1.4 using horizontal backward
infinite arcs induces a minimal cut which necessarily maintains monotonicity.

The optimal cut must pass all rows: This follows directly from the definition of a cut and
from the construction. As S is connected to all pixels in the leftmost column, and every pixel
in the rightmost column is connected to T , every row has to be cut in some place in order to
create disjoint subsets.

The optimal cut passes each row only once: W.l.g. assume that there exists a row j in the
grid in which the cut passes twice (in fact it must then cut the row an odd number of times).
Let us examine two consecutive cuts in row j. Let node pi,j be labeled S, the nodes pi+1,j to
pk−1,j will be labeled T and the nodes pk,j will be labeled S again. However, this also means
that the arc pk,j → pk−1,j , which is an infinite weight arc, must be included in the cut (figure
1.19(a)). This makes it an infinite cost cut, which contradicts optimality since it is always
possible to cut only horizontal arcs at some column of the grid and achieve a finite cost cut.

Corollary: if the source node is connected to the left column of the image and the target
node to the right column, then all nodes on the left of the minimal cut must be labeled S, and
all nodes on the right of the cut must be labeled T .

If we want the cut to be connected as well (as shown in Figure 1.4(c-d)), we use backward-
going diagonal arcs. The same argument as above can prove connectivity as illustrated in
Figure 1.19(b-c).
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(a)

(b) (c)

Figure 1.19: Using infinity weight edges (red) in the graph construction maintains the seam con-
straints. Horizontal infinity arcs maintain monotonicity (a) - see details in text. Diagonal infinity arcs
maintain connectivity. If the cut skips more than one pixel to the left (b) or right (c) - a diagonal
infinity arc from a source node (white) to a target node (black) must be cut.
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Original Cropping Scaling Seam carving Warping Multi-operator

Figure 2.1: The multi operator algorithm uses dynamic programming to find the optimal combination
of retargeting operators. Here we show a comparison of several methods. The original image (left)
is retargeted using: simple cropping, uniform scaling, seam carving [Rubinstein et al. 2008], non-
uniform warping [Wang et al. 2008] and our multi-operator algorithm. In this example, the multi-
operator algorithm combines cropping, scaling and seam carving to optimize our new image-to-image
similarity measure, termed Bidirectional Warping (BDW). The algorithm can use other retargeting
operators and similarity measures.

Abstract

Content aware resizing gained popularity lately and users can now choose from a battery
of methods to retarget their media. However, no single retargeting operator performs well on
all images and all target sizes. In a user study we conducted, we found that users prefer to
combine seam carving with cropping and scaling to produce results they are satisfied with.
This inspires us to propose an algorithm that combines different operators in an optimal
manner. We define a resizing space as a conceptual multi-dimensional space combining
several resizing operators, and show how a path in this space defines a sequence of operations
to retarget media. We define a new image similarity measure, which we term Bi-Directional
Warping (BDW), and use it with a dynamic programming algorithm to find an optimal path
in the resizing space. In addition, we show a simple and intuitive user interface allowing
users to explore the resizing space of various image sizes interactively. Using key-frames and
interpolation we also extend our technique to retarget video, providing the flexibility to use
the best combination of operators at different times in the sequence.
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2.1 Introduction

Media retargeting has become an important problem due to the diversity of display devices
and versatility of media sources for both images and video. Recently, content aware meth-
ods such as seam carving and non-uniform warping were proposed to supplement content
oblivious methods such as scaling or cropping. A content aware retargeting operator relies
on an importance map to preserve the important parts of the media at the expense of the less-
important ones. Importance measures include image gradients, saliency and entropy, as well
as high level cues such as face detectors, motion detectors and more.

However, content aware methods do not succeed in all cases and for all sizes. For exam-
ple, in case the important object occupies large portions of the image or video frame, content
aware resizing might distort it. Often, the best resizing method depends on the image itself:
one method might work best on one image, while another on a different image. In such cases
using a combination of several methods (operators) might achieve better results than any spe-
cific one alone (Figure 2.1). In this paper we propose to combine several operators together,
instead of searching for the best operator that will work on all images. Our approach is sup-
ported by a user study we conducted that clearly shows that users prefer to use more than one
operator to achieve better results.

We first define the resizing space as a conceptual multi-dimensional space combining
several retargeting operators. Each axis in this space corresponds to a particular type of
operator, and a point in this space corresponds to a particular target image size. A path
in this space defines a sequence of operations that retargets an image to a particular size
(Figure 2.5). Many paths arrive at the same point, meaning that there are many ways to
retarget an image to a particular size. But not all paths are created equal because resizing
operators are not commutative (e.g. scaling followed by cropping is different from cropping
followed by scaling).

To combine several operators there is a need to compare and evaluate different retargeting
results. Hence, we need some global similarity measure between the source and target im-
ages. And given the similarity measure, we need an algorithm that maximizes this measure
by finding the best path (i.e. sequence of operators) to the respective point in resizing space.

In this paper we propose a novel similarity measure between images that we term Bi-
Directional Warping (BDW). This measure is based on a non-symmetric variant of Dynamic
Time Warping (DTW) [27]. DTW takes two 1D signals (e.g. rows or columns of pixels)
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and finds the best non-uniform alignment between them, subject to order constraints. To
measure the similarity between two images, BDW measures the similarity between every
row (or column) and then takes the maximum alignment error as the distance. We also extend
the measure to work on a row (or column) of patches instead of pixels, as patches can better
capture spatial information.

There are infinitely many paths that can be used to retarget an image. Unless mentioned
otherwise, we focus on monotonic paths, i.e. paths where all operators either increase the
size of the image, or decrease it, but not both. Of all the monotonic paths, we consider two
types of paths that we term regular and mixed. A regular path is composed of consecutive
single operator sequences, one per operator (e.g. first apply seam carving, then cropping
and finally scaling). In this case, the only question left is how many times to apply each
operator in the retargeting process? The search space is polynomial in the image size and
can be enumerated to find the optimal regular path. However, in a mixed path, the order of
the operations, as well as the number of times each operator is used is not fixed. Hence,
the search space is exponential in the image size. However, using a simple assumption we
show a polynomial algorithm that automatically determines the optimal mixed multi-operator
path. In both cases the search space is exponential in the number of retargeting operators.
Nevertheless, the number of operators is typically very small (say four operators), making
the solutions tractable.

It is worth noting that the multi-operator algorithm can work with various image similarity
measures as well as different retargeting operators. Regular paths can also be controlled by
the user and we show a simple user interface for image retargeting. Finally, we extend the
regular path approach to video retargeting by interpolating paths between key-frames. This
approach provides the flexibility to use the best combination of operators at different times in
the video. We demonstrate our approach for high quality reduction and expansion of images
and videos.

Our main contributions are as follows, 1. We show that using several operators can poten-
tially give better results for retargeting than using a single operator, 2. We present a new global
measure, Bi-Directional Warping, to assess the retargeting results, 3. We give an algorithm
for finding an optimal multi-operator retargeting sequence under some assumptions, 4. We
describe an intuitive user interface that helps users combine multiple operators interactively,
and 5. We show how our method is extended to support multi-operator video retargeting.
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2.2 Background

Content-aware retargeting has drawn a lot of attention in recent years. Most methods pro-
posed use a two-step approach where first some saliency or importance map is created from
the media and then a resizing operator is applied based on this map. As our work concen-
trates on combining multiple operators and not on saliency, we focus on the different types
of operators for resizing media.

Cropping was used by Suh et al. [35] for automatic thumbnail creation, based on either
a saliency map or the output of a face detector. Similarly, Chen et al. [8] considered the
problem of adapting images to mobile devices, by automatically detecting the most important
connected region in the image and transmitting it to the mobile device. Liu et al. [19] also
addressed image retargeting to mobile devices, suggesting to trade time for space. Given a
collection of Regions Of Interest (ROI), they construct an optimal path through these regions
and display them in a consecutive manner. Santella et al. [29] use eye tracking, in addition
to composition rules to crop images intelligently. Setlur et al. [31] use segmentation and
re-composition for non-photorealistic retargeting.

Several different methods could be characterized as non-homogeneous scaling. Liu and
Gleicher [17, 18] find the ROI and construct a novel Fisheye-View warp that essentially
applies a piecewise linear scaling function in each dimension to the image. This way the
ROI is maintained while the rest of the image is warped. In their video retargeting work
they use a combination of cropping, virtual pan and shot cuts to retarget the video frames.
Gal et al. [10] solve the general problem of warping an image into an arbitrary shape while
preserving user-specified features. The feature-aware warping is achieved by a particular
formulation of the Laplacian editing technique, suited to accommodate similarity constraints
on parts of the domain. Wolf et al. [48] extend this approach to video using non-homogenous
mapping of the source video frames to the target resized frames. They use a combination
of motion detectors and face detectors to define the saliency map. A different approach
presented by [46] partitions the image into a grid mesh and deforms it to fit the new desired
dimensions. Important image regions are optimized to scale uniformly while regions with
homogeneous content are allowed to distort.

Recently, several works used the seam carving operator originally proposed by Avidan
and Shamir [3] to resize images in a content aware fashion. They use dynamic programming
to find the optimal seam in an image according to some image energy map (usually based
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on the gradient field of the image). The seams can be removed for shrinking images, or
duplicated for expanding them. Later, this work was extended by Rubinstein et al. [25] for
video retargeting. The dynamic programming was replaced by a graph cut approach and a
new image energy was proposed that creates less artifacts in the resulting media. Graph cuts
were also used by Chen and Sen [7] for temporally resizing video.

In cases where one of these operators does not perform well, it might be better to use
another or revert to simpler resizing methods such as cropping and scaling. On the one hand
the latter methods are not content aware, but on the other, they can be considered less harmful
as they do not distort the media. The key question is how to decide when one operator fails,
and which operator to use instead?

Some measures were suggested, for example, by Avidan and Shamir [3] to indicate the
order of seam carving by their cost. However, we have not found this cost to be indicative
for measuring retargeting quality. Moreover, similar measures are not easy to find for other
operators. We follow more global measures such as the bi-directional similarity [33] and in-
verse texture synthesis [47] that define image similarity. Two images S and T are considered
visually similar if all patches of S (at multiple scales) are contained in T , and vice versa.
Although this approach is effective on several applications for summarization and synthesis,
it does not preserve the order of elements inside the image. Trying to match two images while
preserving full order is a difficult problem [13]. Still, using some constraints we present a
variant of Dynamic Time Warping [27, 39] that can be utilized to measure retargeting quality.

2.3 The User Study

Our basic hypothesis in this work is that using multiple operators for resizing images is often
better than using a single one. To assess this hypothesis we conducted an experiment where
users are given the option to use a combination of three operators: seam carving, cropping
and scaling, including also the option of using just a single one. We present users with an
original image in one window, and in another window, a resized image that is either reduced
or enlarged in one dimension to a fixed size (the change in size was between 30% to 60% of
the original size). We specifically chose images that contain either structure or content that
presents difficulties for existing methods. The resized image is retargeted using a combination
of the above three operators using regular sequences. For example, to reduce the width of an
image by n pixels, first n1 seams are removed, then n2 columns are cropped from the left and
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(a) The mean of the ratio of operators used for
retargeting each image using multiple operators.
Although the ratio depends on the image, in all
cases, when given the option, users combine sev-
eral operators to achieve better results. Users were
asked to rate the results between 1−10. As can be
seen most users were satisfied with the retargeting
results (average 7.7). For image enlargement (the
first three results) only seam carving and scaling
were allowed. The images themselves are shown
below.

(b) Comparing the maximum number of adequate
seam removals (or insertions) to the actual num-
ber when using multiple operator retargeting. The
mean values of the overlapping participants and
images in both experiments are shown. In most
cases, users prefer switching to other operators for
retargeting even though the seam carving results
were rated as adequate. Note that when images
are enlarged, i.e. seams are inserted (first three
results), the numbers are much closer, and in one
case the number is even slightly larger.

Figure 2.2: A user study of 50 participants clearly indicates that combining multiple operators can be
beneficial for retargeting.

right sides of the image and lastly the image is scaled by n3 pixels, where n1 + n2 + n3 = n.
Users were asked to change the ratio between n1, n2, and n3 interactively using a scroll bar
while examining the resulting image, until they reach the best results for the given fixed size.
Note that for image enlargement only seam carving and scaling were used while the ratio
between them could be changed. Figure 2.3 shows a snapshot of the user study application.
The user interface itself is described later in Section 2.7.

Figure 2.2(a) summarizes the results of this experiment for 50 participants. Most partic-
ipants were computer-science students or graphic designers. They were asked to rate their
graphical background level from novice to expert: 28 rated themselves as novices, 15 as
intermediates, and 7 as graphic experts. 22 images of different nature were used in the exper-
iment (Figure 2.2 bottom). As can be seen from the combined mean results (no significant
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Figure 2.3: Data gathered in our user study. On the left is a snapshot of the user study application. For
each image and target size, the users were asked to find the best-looking balance of three retargeting
operators: seam-carving, cropping and scaling, and rate their result on a scale of 0 (bad) to 10 (good).
In the middle and right, users results are shown for two images that were used in the study. The data
points are plotted in the three-dimensional operator space, all reside on a plane induced by the resizing
interface (see Section 2.7). The size of the data points indicate their relative weights in the statistics.
The (weighted) center-of-mass appear as red points in both plots, and their corresponding retargeted
results are shown. The mean user results were 〈−58 · SC,−60 · CR,−62 · SL〉, and 〈−90 · SC,−9 ·
CR,−102 · SL〉 for the mnm and islands images respectively.

differences were found between the groups) we have ni > 0 for all i = 1, 2, 3. Moreover, for
almost all images and all participants we had ni > 0 for all i. In general, this suggests that
better results are achieved using a combination of more than one operator.

To generate the aforementioned statistics, the data points were weighted as function of
both a normalized measure of the user rating, and the user expertise in graphics, such that
larger influence was given to expert users who were satisfied with their result. Additionally,
we employed basic outlier removal by percentile thresholding. Figure 2.3 shows the result-
ing user data in the induced three-dimensional resizing space (Section 2.4). As expected,
we noticed that more abstract images exhibit larger variance in the user results in compari-
son to more structured images, for which the results were more concentrated. However, in
general we found that the variance was relatively large, indicating that different users find
different results attractive. As approximately 45 data points remained for each dataset, we
did not identify specific clustering of the data, and took the (weighted) center-of-mass as the
representative result.

In a different experiment, users were given the option to change the size of an image
using seam-carving alone and were asked to minimize (or maximize) the width (or height) of
the image as long as the resulting image appears visually adequate. Figure 2.2(b) compares
the mean of the number of seams removed (or inserted) in this experiment to the number
of seams actually removed (or inserted) while using multiple operator resizing on the same
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images in the first experiment. Results clearly show that although users were satisfied with
the quality of removing (or inserting) more seams from an image, they still preferred using
other operators while retargeting the image to achieve better visual results.

2.4 The Resizing Space

2.4.1 Multi-Operator Sequences

We define a retargeting operator O as a procedure that reduces or enlarges an image either
in its width or its height, while preserving its rectangular shape. We concentrate on retar-
geting operations that are discrete and separable (in dimension). This means that the atomic
operation in our setting is adding or removing one pixel to the width or the height of the
image. Two dimensional resizing can be treated as a sequence of width and height resizing,
which means that different operators can be used for different dimensions (e.g. use scaling
for height change and seam carving for width change). In this paper we use bi-cubic scaling
(SL), cropping (CR) and seam carving (SC). This particular combination seems promising,
as these operators take somewhat complementary approaches to resize media. Using other
operator combinations is left for future work.

Not all retargeting operators can actually support enlarging. For instance, cropping is
usually used only for reducing image size. However, for the sake of completeness we define
crop-enlarging as adding a black frame to an image (letter-boxing). Similarly, to make crop-
ping separable, we remove rows or columns from the image borders independently. We also
choose the sides separately, for instance, either the left or the right column is removed de-
pending on which has the lower cost according to E1(I) = | ∂

∂x
I|+ | ∂

∂y
I|. Scaling can support

separable and discrete resizing, but scaling an image by one pixel k-times is inferior to scal-
ing by-k at once. Hence, whenever applicable we perform a scale by-k instead of applying k
1-pixel scalings.

Combining several operators together in an ordered sequence is a multi-operator se-

quence. Note that a certain type of operator can appear multiple times in different places
in the sequence; in some it can be used to enlarge the image and in others to reduce it, and
also in different directions (width and height). Figure 2.4 shows examples of different multi-
operator sequences that create different valid variations for retargeting an image.
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(a) (b) (c) (d) (e) (f)

Figure 2.4: Different multi-operator sequences create a variety of results for retargeting the width of
an image: (a) original image, (b-f) results using the following sequences respectively: 〈0 · SC,−178 ·
CR, 0 ·SL〉, 〈0 ·SC, 0 ·CR,−178 ·SL〉, 〈+48 ·SC,−149 ·CR,−77 ·SL〉, 〈−30 ·SC,−148 ·CR, 0 ·SL〉,
〈−32 · SC, 0 · CR,−146 · SL〉.

Figure 2.5: On the left, an example of a resizing space of an image using only changes in width
by scaling, cropping and seam carving. Different retargeting results can be achieved using different
multi-operator sequences represented by paths in the space. On the right, content enhancement of the
upper image can be achieved using multi-operator paths in both width and height. Different results
can be achieved using different paths: either scaling up and removing seams (bottom left) or scaling
up and cropping (bottom right).

2.4.2 The Resizing Space

For a given image I of size (w, h) we define the resizing space Φ as the space spanned
by any subset of n types of retargeting operators, each one in two directions - width and
height. Hence, the dimension of this space is at most 2n. A multi-operator sequence defines a
directed path in this space beginning at the origin and following the path’s operator sequence
using integer steps. One step in the operator sequence is equivalent to a step either in the
positive or negative direction of the respective operator axis, which can change either the
width or the height of the image. Since only integer steps are used, we treat the resizing
space as a lattice rather than a continuous space (Figure 2.5).
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For a k-dimensional resizing space, k ≤ 2n, a point on this lattice p ∈ Φ, p = (p1, . . . , pk),
pi ∈ Z, represents the set of images {I ′} whose dimensions are (w′, h′) where w′ = w +∑

i p
w
i and h′ = h+

∑
j p

h
j , and pw

i , p
h
j are the coordinates in (p1, . . . , pk) representing oper-

ators that change the width or height respectively. These coordinates can be positive as well
as negative to signify enlargement or reduction of size. There is an infinite number of such
images for each point p in the resizing space since there is an infinite number of paths start-
ing at the origin and ending at p. All such paths define multi-operator sequences where the
change of width or height by each specific operator i is fixed and amounts to the coordinate
pi. However, the order of applying the operators can be different. To complicate things fur-
ther, there is an infinite number of points q ∈ Φ that represent images of dimensions (w′, h′).
For r horizontal operators and t vertical operators (r + t = k), these are points for which∑r

i=1 p
w
i + w − w′ = 0 and

∑t
j=1 p

h
j + h − h′ = 0. Each of these equations represent a

r + t − 1 = k − 1 dimension hyperplane in the k-dimensional resizing space, the intersec-
tion of which is a hyperplane of dimension k − 2 (for r, t > 0). All points in this subspace
represent images of the required size, where the difference between them is in the amount of
applying specific operators (i.e. the ratio between them). Our main goal therefore, is to find
the best path from the origin to one of these points, subject to some global image similarity
measure.

2.5 Bi-Directional Warping

2.5.1 Motivation

As a motivating example, consider the task of combining seam carving and scaling. One
way to combine the two is to start with seam carving and then switch to scaling when the
cost of a seam goes above a certain threshold, as this might indicate that seam carving starts
introducing visual artifacts. In fact, Avidan and Shamir [3] used the seam cost to find the
optimal “multi-operator” sequence using just seam-carving to change both the width and the
height of an image. Unfortunately, in our experiments we found that the seam cost is not
very indicative of the quality of retargeting. It is a monotonically increasing function (with
some local fluctuations), and usually does not contain steps that indicate when “bad” seams
are removed. Figure 2.6 illustrates this with specific examples.
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(a) (b) (c) (d)
(e)

(f) (g) (h) (i) (j) (k)

(l) (m)

Figure 2.6: Retargeting using seam carving can destroy image content (a-b,f-k). Examining the seam
cost function (e) as in [Avidan and Shamir 2007] one cannot anticipate when foreground objects are
distorted. If we track not only the actual cost, but also the difference in the cost of removing seams,
we can find seams that pass through the main object (c) but have smaller cost and smaller difference
in cost than seams that pass only through the background (d). In the middle row, the seam results
(g-k) are shown for every 50th seam-carving iteration while vertically resizing an image (f). The cost
function (l) in this case is nearly linear. Examining the maximal energy for each seam instead of the
average (m) reveals more useful information, but exhibits fuzzy transition between low energy and
high energy, and is very oscillatory in nature. Hence, seam cost cannot be used as a measure for
retargeting quality.

Generally, the seam energy functions retain these shapes due to 1. the inherent locality of
the seams, and 2. since the energy averages over all seam pixels. Considering the maximal
pixel energy at each seam instead, shows unstable results and also exhibits general monotonic
trend with no specific points of singularities (Figure 2.6(m)). Hence, to combine seam carving
with scaling the seam cost should not be used. In the case of other operators, such as cropping
and scaling that operate on an image as a whole, even the definition of an effective cost for
the operator is not immediately clear. So instead of dealing with each potential operator
independently, we need a global objective function that will allow us to combine operators in
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a principled manner.
We propose Bi-Directional Warping (BDW) as the image similarity measure. BDW uses

a variant of Dynamic Time Warping (DTW) that is geared specifically to the problem of
media retargeting.

2.5.2 Image Similarity

We define the cost of applying an operator as the difference between the retargeted image and
the original image. Although the definition of a distance function between a pair of images
is an ongoing research problem for many years, in our setting there are several simplifying
factors. First, we do not search for a general distance measure between two images, as we
know that the target image is a resized version of the source image and is aimed, by definition,
to preserve its content as much as possible. Second, each application of an operator changes
the image size only in one direction. We take a similar approach to the recently proposed
bidirectional similarity measure [33], in which a bidirectional mapping between patches in a
source and resized image testify for the coherency and completeness of the result. And we
show that enforcing ordering of such mapping is important for assessing retargeting results.

Stated more formally, in a given image representation S and T , we define a mapping
MS→T (i, j) 7→ (i′, j′) that maps every element of S (either a pixel or a patch) to an element
of T . Also let M i,M j denote the i-component (row) and j-component (column) of the map
respectively over the image. We define the cost of this mapping as

γ(M) =
∑
i,j

d(Si,j, TM(i,j)) (2.5.1)

where d() is a function for measuring the distance between the elements (typically based on
intensity differences). We can then define our objective distance measure as

D(S, T ) =
1

NS

min
MS→T

γ(MS→T ) +
1

NT

min
MT→S

γ(MT→S) (2.5.2)

Subject to, for all i, j:
M i

S→T (i, j) = M i
T→S(i, j) = i

M j
S→T (i, j) ≤M j

S→T (i, j + 1)

M j
T→S(i, j) ≤M j

T→S(i, j + 1)

(2.5.3)
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where the first equation in 2.5.3 poses the dimensionality constraint, and the second and third
inequalities force the mappings to be monotonic. NS andNT are the total number of elements
in S and T respectively. Note that the above constraints correspond to change in width, and
can be adapted to change in height by appropriately substituting M i and M j .

2.5.3 Dynamic Time Warp

Dynamic Time Warping (DTW) [27], is an algorithm for measuring similarity between two
one-dimensional signals or time-series. It has been previously applied to various applica-
tions in video and images, and is extensively used with audio signals for speech recognition.
The DTW algorithm finds the optimal matching between two 1D sequences t and s by non-
linearly warping the one to the other, under several constraints: (1) boundary constraints: the
first and last elements of tmust be matched to the first and last elements of s, respectively, (2)
all elements of t and s must be used in the warp path, and (3) the warp must be monotonic,
meaning that matching cannot go backward, thus preserving the sequence order. It is easy to
see that the warp is symmetric, that is, DTW(s,t)=DTW(t,s), and can contain both one-to-
many and many-to-one matchings. This algorithm can be solved efficiently using dynamic
programming, in O(|s||t|) time and space.

2.5.4 Bi-Directional Warping

We relax the first two constraints of DTW. First, we allow the algorithm to insert gaps in
the warp, which also removes the boundary constraints. Second, for each element in the
source we want a single match that minimizes the warping cost under the ordering constraint.
Therefore, one-to-many matchings from the source to target image are disallowed. We do
allow many-to-one matchings from the source to target image as it assists better matches
and does not violate the ordering constraint. This creates an Asymmetric-DTW measure (A-
DTW) detailed in Algorithm 1. The signals s and t can be either 1D arrays of pixels, or 1D

arrays of patches, and the distance d(s[i], t[j]) between an element of s and element of t is
taken to be the sum-of-square-differences of pixel values1.

Given images S and T of height h, let Si, Ti denote row i in images S and T , respectively.

1We have experimented with numerous measures, such as the L1 and L2 norms of the intensity differences in
both grayscale, RGB and L*a*b colorspaces. For other applications, the normalized cross correlation between
the patches can be used in order to account for lighting changes.
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The BDW distance is given by:

BDW(S, T ) =
1

NS

h∑
i=1

A-DTW(Si, Ti) +
1

NT

h∑
i=1

A-DTW(Ti, Si) (2.5.4)

and it is easy to verify that BDW solves for the optimal mappings as defined by our objective
distance function (Equation 2.5.2).

Algorithm 1 Asymmetric-DTW(s[1..|s|], t[1..|t|])
1: allocate M [|s|+ 1][|t|+ 1]
2: M [0, 0] := 0
3: for i = 1 to |s| do
4: M [i, 0] :=∞
5: end for
6: for j := 1 to |t| do
7: M [0, j] := 0
8: end for
9: for i := 1 to |s| do

10: for j := 1 to |t| do
11: M [i, j] := min(M [i− 1, j − 1] + d(s[i], t[j]),

M [i, j − 1],
M [i− 1, j] + d(s[i], t[j]))

12: end for
13: end for
14: return M [|s|, |t|]

We found that using the max operator works better than the mean in equation 2.5.4, be-
cause in retargeting most elements are usually well aligned, yet a small number of deformed
elements are enough to cause a visual artifact. To find the maximum distance between ele-
ments from S and T , we need to recover the elements’ alignment created by the asymmetric-
DTW. To do this, we keep track of our path while filling the table M , and backtrack from
M [|s|, |t|] to M [1, 1] according to the optimal decisions made along the path. Figure 2.8 il-
lustrates the results of aligning an image with its retargeted version (by seam carving) using
A-DTW and several patch sizes. In practice, to calculate the BDW we combine the scores
of four scales of patch size (Figure 2.9). For images S of size h × w and T of size h × w′,
w′ < w, BDW is O(hw2) in time, and O(w2) in space.

Practically, the BDW between two 640×480 images and using 8×8 patches takes about 3
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Seams Scale Crop

Figure 2.7: A-DTW results for retargeting an image. For each operator, the result is shown on the
left and the optimal alignment with the original image on the right. In this case, the alignment was
calculated at pixel level, using the L1-norm of RGB differences. Black pixels represent gaps in the
alignment. On the bottom is a visualization of the resulting warp for a specific scanline (shown in
red on the seams alignment) as a white path superimposed on the pairwise pixel distance maps. Right
orientation of the warp introduces gaps in the alignment; Down orientation represents many-to-one
matching; Diagonal orientation indicates matched pixels.

seconds to compute. For further speed-up, we can limit the search space to a narrow window,
or band, within the dynamic programming table [27]. As the retargeted image and its source
should be relatively similar, it is unlikely that a good warp path will wander far from the
diagonal (Figure 2.7). In fact, apart for the speed-up, this can also show useful in preventing
pathological warps. For example, we might want to prevent cases where many patches of
one image are mapped to the same patch in the other, or cases where the warp contains too
many gaps. Other optimization techniques exist in the literature. In particular, [28] use an
approximate multilevel approach and report linear time and space complexity.

Both BDW and bidirectional similarity (BDS) explain patches in one signal using patches
from the other. However, there are two main differences between these measures. First, BDW
searches for matches along a single direction (column or row) as opposed to the entire image
in BDS. This is sufficient in our settings for assessing results created by operators which are
separable in dimension. It is also more efficient to compute as we replace the computation-
ally intensive nearest-neighbor search in BDS with an efficient matching algorithm. Second,
BDW achieves optimal alignment that is order preserving. Order is important when assessing
retargeting results, because we prefer as few as possible structural modifications of the me-
dia. The many-to-one alignment also supports repetitive content, albeit in an order-preserving
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(a) Source (b) SC (c) Actual Seams (d) Optimal matching, pixels

(e) 8× 8 matching patches (f) 16× 16 matching patches (g) 32× 32 matching patches (h) Distance map of 8 × 8

patches

Figure 2.8: Finding the optimal match using Asymmetric-DTW of image (b) to image (a) using
different patch sizes (d)-(g). Note that black pixels represent gaps in the matching. The distance itself
is defined as the average or maximum of the cost of matching each patch (h).

manner. Figure 2.10 highlights the difference between BDW and BDS in the context of image
retargeting.

2.6 The Optimization

Suppose we want to reduce the width w of input image S by m pixels, using a collection of
n operators {O1, . . . , On}, and given some similarity measure D() (e.g. BDW), indicating
the distance between two images, where larger distance score means lower similarity and
vice versa. This means that we seek a target image T of width w′ = w −m that minimizes
D(S, T ). Even if we use monotonic sequences (e.g. do not reduce, then extend, then reduce
back again), there are still O(nm) different multi-operator sequences that retarget S to width
w′. This means the search space is exponential in the size change m.

To solve this problem we need to limit our search space and we consider two types of
paths: mixed and regular. We will focus on mixed paths here and defer discussion on regular

paths to section 2.7. Recall that we define a mixed path to be a path where we don’t know,
ahead of time, the order of the operators, nor the number of times each operator is to be used.
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(a) S (original) (b) T (retar-
get)

(c) T→S (d) S→T

Figure 2.9: BDW uses two alignments of the source image to the retargeted image and vice versa.
The distance would be the maximal matching cost of elements in the two. Note how the alignment
reveals that the retargeting used a combination of cropping (gaps on the sides of the alignment), scaling
(uniform spacing between patches in the middle) and seam carving (large gaps in the middle).

We could use a full greedy approach, and build the multi-operator sequence incrementally
by choosing the best of n operators in each step locally. This would work if we assume that
any subsequence in an optimal sequence is also optimal. This is obviously not the case. We
could use known approximation methods such as beam search to explore a specific sub-space
for a local optimal solution. However, by using a specific assumption we can formulate the
search as to achieve a closed-form solution.

The basic assumption we use is that the ratio of operators in a sequence (i.e. the total
amount each one is used) is more important than their order in the sequence. This leads to
a dynamic programming formulation of the problem. In our search we always keep just one
representative for each sequence with a given ratio of operators. We represent it by the point
(p1, . . . , pn) in resizing space where pi, the coordinate for operator i, denotes the total number
of times of applying operator i. In a dynamic programming table we store the optimal cost
and optimal sequence σ(p1, . . . , pn) including the order of applying all the operators for this
representative point.

We begin with an empty sequence denoted by the point (0, . . . , 0) and cost 0. Next, we ap-
ply each operator once and create n sequences denoted by the points (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

with costs {D(S, 〈Oi〉(S))}ni=1 of applying operators Oi, 0 ≤ i ≤ n respectively on the orig-
inal image S. Next, we store the cost of sequences σ(2, 0, . . . , 0), . . . , σ(0, . . . , 0, 2), but for
each sequence containing the application of two distinct operators Oi, Oj, i 6= j we have 2

possible sequences: σ = 〈Oi, Oj〉 or σ = 〈Oj, Oi〉. We check the two options, and keep only
the one whose cost is smaller in the table at position (. . . , 0, 1, 0, . . . , 0, 1, 0, . . .), where the
1s appear in positions i and j.
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: Comparing Bidirectional Warping (BDW) and Bidirectional Similarity (BDS) of
[Simakov et al. 2008]. In image (b) we switched the left and right parts of image (a), and image
(e) is missing some repetitive structure (a tower) found in image (d). In both cases the BDS is one
order of magnitude smaller than BDW as measured in equation 2.5.4 (it is two order of magnitudes
smaller if we use max instead of mean). This is because every patch in one image will have, with high
probability, a similar patch in the other image, and vice versa. On the other hand, the BDW measure
is order-preserving, thus recovering the best alignment (as shown in images (c) and (f)) resulting in
larger gap errors.

In general, to fill the entry (p1, . . . , pn) we examine all its predecessor sequences where
the application of one of the operators was less by one. These correspond to points where
one of the coordinates is less by one, which were already calculated and stored in the table.
Denote them for abbreviation by σi = σ(p1, . . . , pi − 1, . . . , pn), 1 ≤ i ≤ n. We append the
operator Oi to sequence σi to get the new operator sequence denoted by 〈σi ∪Oi〉 , apply this
new sequence to the original image and choose the best one:

i∗ = arg min
1≤i≤n

D(S, 〈σi ∪Oi〉(S))) (2.6.1)

The table structure is an n-dimensional simplex that is constructed in m stages. For ex-
ample in Figure 2.11 the table is an equilateral triangle, which is a 2-simplex. In practice, we
sample the search space in lower rates than 1 pixel (usually 5 or 10 pixels), meaning we apply
each operator more than once between stages. At the last stage, all points (p1, . . . , pn) where∑n

i=1 pi = −m represent target images of size w′ = w −m. We choose the one that stores
the smallest cost. To obtain the optimal sequence of retargeting operators 〈Oi1 , . . . , Oim〉
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2.11: An illustration of the dynamic programming table used to optimize the search for the
best mixed path using two operators only - seam carving (SC) and scaling (SL). The colors in table (b)
indicate the BDW distance of the best image in each step. The original image is shown in (a) and the
retargeted result is shown in (c) - this is the best result using a mixed path (i.e. the algorithm automat-
ically determines the order of operators and how much each should contribute). The optimal operator
sequence found is 〈−30SL,−30SC,−10SL,−20SC,−10SL,−10SC,−10SL,−20SC,−10SL〉.
For comparison, we show the results of using two regular paths (d) 〈−70SL,−80SC〉 and (e)
〈−80SC,−70SL〉, and the optimal regular path (f) 〈−90SC,−60SL〉. (g) uses scaling and (h) seam
carving.

we backtrack to the first entry and in each step recover the operator that had been chosen.
Note that this approach is independent of the choice of resizing space, and so can be used to
combine width and height operations in two directions.

The time and space complexities of the algorithm are O(mn) (ignoring the similarity
measure complexity, which is independent of m and n) which is polynomial in the amount
of size change, but exponential in the number of operators to be used. In fact, a tighter bound
on the complexity can be derived by examining the volume of an n-simplex [34], given by:

V(n) =
mn

n!

√
n+ 1

2n
(2.6.2)

where m is the required size change as before (in case different change is required for the
width and height then we take the larger of the two). Although this equation does not ac-
curately describe the required DP table size due to the discretization, it gives an idea of the
size of the search space with respect to its bounding hypervolume mn. For example, for a
2-operator space, the actual search space is smaller by a factor of 2.3; for 3-operator space it
is smaller by a factor of 8.48; for 4-operator space - by 42.91, and so on. Finally, the running
time of the algorithm with the BDW measure is O(mnhw2), dependent on both the required
size change, the number of operators and the image size.
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Figure 2.12: The multi-operator interface allows the user to change image size and operators combi-
nation to reach different points in the resizing space that correspond to regular paths. Using coupling
of operators, the user is able to visually examine the continuous tradeoff between two operators (in
this example, between scaling and seam carving) for all sizes.

Notice that the search for best seam order for reducing the width and height of an image,
as described in [3], can be achieved in this framework by constructing a 2-dimensional resiz-
ing space using seam carving for both width and height (hence two axes in this space), and
taking D() to be the cost of the removed seam at each step (added to the previous cost). Note
that the possible results in this case will reside within a sub-space of dimension k − 2 = 0,
which corresponds to a single position in the table, namely (w′, h′). Note moreover that their
result is also optimal in a greedy manner, as not all possible permutations are explored.

Subject to the assumptions outlined above, our discrete optimization is guaranteed to find
the optimum multi-operator sequence. However, these assumptions mean we only search in
a sub-space of the resizing space and do not reproduce all images of the desired target size.
There might exist a retargeted image that is more similar to the source image. Furthermore,
the definition of best results may change depending both on the user and on the goal for
retargeting the image. In our study (Section 2.3) we found that all users tend to use a com-
bination of operators (Figure 2.2). However, the variance between users choices was very
large (σ ≈ 1

2
µ). Therefore, in addition to the automatic optimization method we present an

interactive technique that allows users to explore a sub-space of retargeting possibilities in a
simple manner.

2.7 Interactive Multi-Operator Retargeting

Recall that regular paths fix the order of operators ahead of time and can conveniently be
written as: 〈k1 × Oi1 , . . . , kn × Oin〉, where

∑n
j=1 kj = m (see e.g. Figure 2.11(d)-(f)).

So the only question is how much does each operator contribute to the image retargeting
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process? This creates a one-to-one mapping between a point in the resizing space and a
regular path (Figure 2.13). Fixing m is equivalent to choosing a hyper-plane in the resizing
space, and choosing how much each operator will contribute corresponds to choosing a point
on this hyper-plane. This means that we can find the optimal solution for this problem using
exhaustive search in O(mn−1), which is polynomial in the size change m but exponential in
the number of operators n. Since n is usually small (say, three or four operators) and we can
sample m in discrete steps, this search is feasible.

Regular paths also lend themselves to a simple interface that assists users search in this
sub-space for desired results. First, the order of operators in the sequence is chosen ahead of
time (e.g. 〈k1 × SC, k2 × CR, k3 × SL〉 or 〈k1 × SL, k2 × SC, k3 × CR〉). Next, there is
a slider governing the image size change m, and a slider for each operator separately. Since
the contribution of all operators must sum to the total size change m, users must choose a
coupling of a pair of sliders to change their value. Moving one in a positive direction will
drive the other to move in the negative direction, and vice versa (Figure 2.12). We take advan-
tage of the ability to precalculate seam index maps to allow fluent interactive retargeting for
enlarging and reduction of size. The cropping and scaling operations can also be efficiently

(a) (b)

(c) (d)

Figure 2.13: A depiction of a specific hyper-plane k1 + k2 + k3 = m in 3-dimensional operator
space, for m = 3. By using a specific ordering of the operators in regular paths, there is a one-to-
one mapping between each point on the plane and a specific multi-operator path. In this example
the operator ordering is O3, O1, O2, hence the four points shown in red on the plane represent the
paths: (a)〈2 × O3, 1 × O1, 0 × O2〉, (b)〈1 × O3, 1 × O1, 1 × O2〉, (c)〈0 × O3, 1 × O1, 2 × O2〉,
(d)〈3×O3, 0×O1, 0×O2〉.
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(a)
(b)

Figure 2.14: The regular-monotonic interface for images (left) and videos (right). The user uses one
slider to control the target size, and another slider with two nobs for choosing the desired balance
between the operators. For videos, the user is able to specify different operator sequences at different
frames.

computed at interactive rates.
Note that such interface enables using both positive and negative amounts of specific

operators. For example, we can bound the contribution of each operator Oij to m ≥ kj ≥
−m such that

∑n
j=1 kj = m. In our user study of Section 2.3, we constrain sign(kj) =

sign(m) and fix the order of operators to be 〈k1×SC, k2×CR, k3×SL〉 to define a simpler
interface using just one slider for all operators (see accompanying video). This constrains
the retargeting to regular-monotonic sequences, and further confines the search space to the
intersection of the hyperplane with the axes (Figure 2.13). Although somewhat limiting,
users found this method to be intuitive and productive. Note that in the general case, the
intersection of the (n− 1)-dimension hyperplane with the axes is an (n− 1)-simplex in Zn.

2.8 Retargeting Video

Video provides a more challenging medium for retargeting. On the one hand, a single multi-
operator path cannot be applied to the entire video. This is because objects and camera
movements inside the video most often mean that an optimal solution for one frame will
not be optimal for other frames. On the other hand, retargeting each frame individually
may create jittery artifacts since temporal coherency must be maintained between frames.
For retargeting videos using multiple operators, we additionally require the operators to be
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temporally coherent (which is the case when using SC;CR;SL), and extend multi-operator
image retargeting to video using key frames.

Assume we are given a video sequence {It}Nt=1, and retargeting operators {O1, . . . , On}.
Also assume we would like to change the width of the video by m pixels as previously done
for images. For each key-frame Iti ∈ {It1 , It2 , . . . , Itr}, where 1 ≤ t1 < t2 < · · · < tr ≤ N ,
we find the best regular path 〈kti

1 × Oi1 , k
ti
2 × Oi2 , . . . , k

ti
n × Oin〉 according to some pre-

determined operator ordering. This defines a set of multi-operator sequence constraints for
r time-steps that should be interpolated in-between. However, each path is actually defined
by the amounts of each operator: (kt1

1 , . . . , k
t1
n ), (kt2

1 , . . . , k
t2
n ), . . . , (ktr

1 , . . . , k
tr
n ). These se-

quences can be interpolated linearly on in-between frames, for each operator separately. This
is because if kti

1 + kti
2 + . . . + kti

n = m, and kti+1

1 + k
ti+1

2 + . . . + k
ti+1
n = m then for every

0 ≤ α ≤ 1 we have:

(α · kti
1 + (1− α)k

ti+1

1 ) +

(α · kti
2 + (1− α)k

ti+1

2 ) +
...

(α · kti
n + (1− α)kti+1

n ) = m

Hence, once we define a method to linearly interpolate different amounts of applications
for each operator, we can create a temporal coherent interpolation between multi-operator
paths. For scaling, this interpolation is trivial since we just change the scale factor linearly.
Seam carving also supports linear interpolation since we can remove (α · kti

1 + (1− α)k
ti+1

1 )

least cost seams. For cropping, we separate the amount of cropping in each key-frame to
the left and right cropping (or top and bottom) and interpolate linearly between each one
separately.

Such sequence interpolations can sometime insert virtual camera motion into the result-
ing video. For example, interpolating between cropping k columns on the left to cropping
k columns on the right introduces a panning effect, while interpolating between different
scaling levels may introduce a zoom in/out effect. Some example results can be found in
Figure 2.20 and the supplemental video.

The key-frames that guide this process can either be sampled uniformly (say every 10
frames) or chosen using more sophisticated methods which consider the video content (see
e.g. [38] for a survey on key-frame selection techniques). In addition, we supply an interface
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that allows the user to choose key-frames and examine monotonic-regular multi-operator
paths for videos (Figure 2.14(b)).

2.9 Results

To validate our optimization and BDW similarity measure we compared the mean results of
the user study to results obtained by our optimization on regular paths (Figure 2.15). The
average difference between the automatic and mean user choice is 20%, which is well within
the standard deviation of about 50% in the user choices. Figure 2.15 also illustrates that the
visual results are comparable (all image results can be found in the supplemental material).
Moreover, the mean user study result usually does not differ much in terms of the BDW score
from the best score (i.e. our result). This demonstrates the effectiveness of the BDW measure
itself.

Figure 2.15: Using regular paths we are limited to searching on a plane in resizing space (left). We
find the optimal multi-operator resizing sequence having the minimum BDW cost (0.241 in this case).
The distance throughout the search space is colored from blue (small distance) to red (large distance)
and was interpolated for visualization purposes. We compare our results to the results and score of the
mean of the user study (where BDW = 0.355). On the right we show a summary of the comparison of
the ratios of all results. Blue is the mean of the user study and Red is our results using optimization
with BDW. The average difference is around 20%, well within the standard deviation of the user study
which is 50%. More image results can be found in Appendix 2.B.

Our multi-operator framework supports various scenarios for finding the optimal combi-
nation for retargeting. We illustrate this by showing results of a number of cases where we
change the set of operators and also the image similarity measure used. Figure 2.16 illus-
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(a)

(b) (c) (d) (e)

Figure 2.16: We find the optimal regular path by finding the minimal BDW score (the red dot in (b))
for a combination of two operators (seam carving and scaling in this case) to retarget an image (a).
Compare the resulting image (c) to using just seam carving (d) or just scaling (e).

trates an example of optimally combining seam carving and scaling in a regular sequence.
We find the best transition point between applying seam carving and scaling by measuring
the BDW of the results. In Figure 2.17 we show results of computing the optimal mixed

sequences using two operators (seam carving and scaling) by dynamic programming using
the BDW score. The teaser figure (Figure 2.1) shows the result of finding the optimal mixed

sequence for changing the width of an image consisting of three operators (scaling, crop-
ping and seam carving), subject to the BDW image similarity measure. In Figure 2.19 we
find the best mixed path using the bidirectional similarity measure [33] and four image re-
targeting operators (horizontal and vertical scaling and seam carving). As can be seen, the
horizontal dimension is retargeted mainly with seam carving while the vertical dimension is
mainly scaled. Figure 2.18 shows a comparison between several retargeting methods and our
multi-operator results.

In some cases, the optimal multi-op result might reduce to a single operator (e.g. scaling).
However, we should note that this reduction is achieved automatically by the algorithm in an
informed manner. This is exactly the purpose of the suggested system. A good result is
not necessarily one that utilizes all available operators, but rather one that achieves higher
similarity of the required size. In particular, by attempting to use cropping, scaling and
seam-carving, the algorithm chose the scaling approach for more structured media, as seam
carving tends to insert artifacts in such cases, and cropping might remove too much important
information. In fact, we deliberately used images that are difficult cases for non-uniform
operators (such as seam carving) to test if our method can recognize this automatically.

In Figure 2.20 we show an example of a key-frame from a video that demonstrates why
multi-operator retargeting provides the flexibility to achieve better results than a single opera-
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Seams Multi-op Scaling
Seams Multi-op Scaling

Figure 2.17: A comparison between seam carving (left), Multi-operator (center) and scaling (right).
The multi-operator algorithm uses the BDW image similarity measure and finds the best mixed path
using two image retargeting operators (seam carving and scaling).

tor in video. Lastly, our framework also enables utilizing a simple user interface (Figure 2.12)
for combining regular multi-operator sequences in an intuitive manner. In the accompanying
video we also show several interactive sessions for image retargeting, and more retarget-
ing results for images and video. Taken together, these results show that our multi-operator
algorithm can combine multiple operators together using various similarity measures (e.g.
BDW or BDS), various paths (either regular or mixed) and various operators (horizontal and
vertical, seam carving, scaling and cropping).

All results were created either on a 1.8 GHz dual core laptop with 2GB memory or on a 2.2
GHz dual core desktop with 4GB memory. Several processing time statistics for computing
BDW and the optimizations are detailed in Table 2.1 based on our unoptimized implemen-
tation. As for the interactive interfaces, in most cases (as seen in the video) the interaction
is performed in real time. There are waiting periods, for instance, when there is a switch in
the direction of size change between height and width. This is because the change triggers
a recalculation of the seams which may take a few seconds. For video, we store just the in-
terpolation values of the operators for all frames. Once seam carving has been pre-computed
on the video, the video playback is instant. Moreover, by constraining the ratio between
the amounts of applying each operator to remain constant during resize, we can interactively
change the video size as well.
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Original Seams Scaling Multi-Op

Original Scale Crop Seams Warp(1) Warp(2) Multi-Op

Figure 2.18: Comparison of retargeting results (expansion and reduction) using various image re-
targeting methods. These examples illustrate cases where using optimized multi-operator retargeting
combining seam caving, cropping and scaling achieves better results. Seams is using seam carving
from [Rubinstein et al. 2008], Warp(1) and Warp(2) are non-homogeneous scaling from [Wang et al.
2008] and [Wolf et al. 2007] respectively.

Input

Scaling Seam Carving

Multi-op

Figure 2.19: Result of 2D retargeting. In this case we find the optimal mixed path using the bidirec-
tional similarity measure and a combination of four retargeting operators (horizontal and vertical seam
carving and scaling). The multi-operator result finds the best result by mainly applying seam carving
in the horizontal dimension (compare the size of the monitor in the different methods) and scaling in
the vertical dimension (look at the bottom of the desk and the face of Woody on the left). For compar-
ison, we show the result of applying a uniform 2D scaling, or seam carving (running horizontal seam
carving first, followed by vertical seam carving).
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Figure 2.20: An example of a video key-frames where multi-operator retargeting achieves better
results than scaling or seam carving.

2.10 Limitations

Figure 2.15 and the supplemental material (Section 2.B) show that our automatic results do
not always agree with the users’ preference. Still, one must remember that the users also did
not agree on the “correct” result and we have used the barycenter of all users choices as our
ground truth.

As mentioned in Section 2.6, the optimization is still exponential in the number of oper-
ators. Devising a more efficient algorithm is an interesting challenge, and we have yet been
able to improve on this bound. The overall complexity of the algorithm is measured by the
number of entries in the dynamic programming table that we need to fill. In each iteration
we need to apply one operator and compute the bidirectional warping, which is the major
bottleneck as can be seen in Table 2.1. It currently takes about 3 seconds to compute one
bidirectional warp, and we have discussed relevant optimization methods in Section 2.5.4.
To the best of our knowledge, only one other metric, namely bidirectional similarity [33],
was proposed in the context of media retargeting. Compared to their method, our measure is
asymptotically faster. In context of the optimization, additional means might be considered.
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Resolution Running time (sec)
Large overlap No overlap

Pixels - 7.5
4× 4 Patches 5 3.1
8× 8 Patches 3.2 1.5

16× 16 Patches 2.4 1.1
32× 32 Patches 0.9 0.4

Optimization Running time (min)
2-regular 2
2-mixed 10
3-regular 10
3-mixed 15
4-mixed 20

Table 2.1: Average processing times for BDW (left, in seconds) and several optimization schemes
(right, in minutes) for the examples used in this paper. For BDW, times are shown for patches taken
in 1-pixel steps (large overlap) and with no overlap. Larger overlap can result in better alignment
(smaller distance).

For example, we can employ early termination of the BDW evaluation in case the images
are too different. Moreover, our experiments show that the resizing space can be sampled at
coarser resolution (e.g 20-pixel steps) while still producing good results, which significantly
reduces running times as well. The process can then be repeated with a finer resolution grid
around the coarse solution in a standard multiresolution fashion.

Lastly, it is clear that the suggested algorithm is only as good as the operators used.
Limitations imposed by the specific methods (cropping, scaling, seam-carving) will also be
carried over to our solution. Towards this end we found that the combination of several
operators could alleviate some limitations of specific ones.

2.11 Conclusions and Future Work

We proposed an algorithm for combining multiple retargeting operators. We first defined the
resizing space as a conceptual multi-dimensional space combining several resizing operators,
and showed how a path in this space defines a sequence of operations to retarget media. Then,
we presented the multi-operator algorithm that relies on dynamic programming to find the
optimal path in resizing space, given a global objective function that measures the similarity
between the source and target images.

The resizing space model was introduced both for modeling the problem, but- not less
importantly- to understand its complexity. Using this model we were able to show that
the problem of combining multiple operators for retargeting is exponential in the amount
of size change, and introduced an assumption (and understood its geometric implication in



CHAPTER 2. MULTI-OPERATOR MEDIA RETARGETING 58

this space) that reduces the problem to a polynomial one, given fixed number of operators.
Thus, the running time is largely dependent on the complexity of the underlying similarity
measure.

For the global objective function we proposed Bi-Directional Warping (BDW) which is
based on Dynamic Time Warping (DTW). Remarkably, all levels of our algorithm bene-
fit from dynamic programming. It is used to compute Seam Carving, used to compute a-
symmetric alignment between two signals that forms the basis to our BDW image similarity
measure and finally, it is the basis of our algorithm to find the optimal multi-operator path.

We tested our approach on a large number of images and videos. Note that many of those
images were difficult cases for previous single retargeting operators. We also validated our
results by comparing them with ground truth data, collected in the user study. In addition, we
described a simple and intuitive user interface to interactively explore the resizing space and
achieve high quality results.

The BDW measure we presented is best suited to changes applied to the image in one
direction. However, BDW can be extended to match 2D modifications in some cases by re-
cursively applying asymmetric-DTW on the rows (or columns) of the image (Appendix 2.A).
In the future we plan to investigate other applications for BDW, as well as possible extensions
to 2D and 3D. For given source and retargeted video volumes, the BDW will result in a map-
ping which is order-preserving both spatially and temporally, thus giving higher similarity
scores to results which preserve the original video structure and time-line. We also intend to
combine other types of operators in our multi-operator framework.

Finally, there are further ways to utilize the user data. For example, it should be interesting
to verify more carefully whether the BDW metric agrees with the users’ preference, or get
direct user feedback on the automatically generated results. Another interesting direction is
to search for correlation between the preferred resizing paths and the media content, which
will enable a “retargeting-by-example” framework.
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Appendix 2.A Two-Dimensional Asymmetric-DTW

For retargeting operators which work along a single dimension such as cropping, scaling,
Seam-Carving [3] and non-homogeneous warping [48], applying our Asymmetric-DTW on
the rows (or columns) of the image independently is sufficient to correctly estimate the under-
lying transformation. However, we should note that the framework presented above supports
operators that resize images in one direction (either horizontally or vertically), yet, the oper-
ators still have the freedom to distribute changes along the two dimensions. An example of
such operator is the recently proposed Scale-and-Stretch warping [46]. This method extends
its predecessor [48] by diverting the distortions to both spatial dimensions, regardless of the
resizing direction.

The two-dimensional version of DTW is commonly known as Dynamic Planar Warping

(DPW), and its definition is similar to its one-dimensional counterpart. Unfortunately, this
problem was shown to be NP-complete [13], and several approximation methods have been
proposed [39].

A heuristic extension of our one-dimensional solution is to recursively apply Asymmetric-
DTW on the rows of the image, taking the cost of matching row i of S to row j of T as the

Source

Scale&Stretch

Warp Alignment

Figure 2.21: Examples of 2D A-DTW. Alignments of the Scale-and-Stretch result (top) and non-
homogeneous warping result (bottom) to the original image (left) using 4 × 4 patches. On the right,
the pairwise 1D A-DTW row distances are shown for each result, colored from blue (small distance)
to red (large distance).
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Figure 2.22: 2D A-DTW can be used to detect reference objects in images, even when they undergo
some deformations. On the left, an excerpt from the woman face image (top), was scaled-down
horizontally and vertically at different rates (left), and then aligned to the original image. The A-DTW
distance between the rows of the reference and source, and the optimal alignment result are shown in
the middle and bottom respectively. On the right, a reference object (upper left) was extracted from a
frame of a surveillance video taken from the PETS’2006 database [1], and aligned to each frame of the
sequence. By considering the mean and covariance (middle column, plotted in red on the respective
frames) of the aligned patches (right column), we are able to detect the reference object in the video,
although it exhibits different deformations and scales.

A-DTW distance between them, thus dividing the two-dimensional problem to a collection
of one-dimensional ones. This results in a two-dimensional order-preserving mapping be-
tween the two images that is optimal under this rigid row-to-row alignment. Although this
method will not estimate correctly all possible transformations, we found it to produce good
approximation for assessing image similarity. Some results of the two-dimensional A-DTW
are shown in Figure 2.21. Notice that as the Scale-and-Stretch operator deforms the image in
both directions, the optimal alignment inserts gaps in some rows, while for non-homogeneous
warping, which works along the resized dimension, every row in the retargeted image is
matched to its corresponding row in the source (still solving for the best 2D alignment). As
can be seen in the row distance maps, the A-DTW distance between rows in the sky region is
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relatively small as they share similar structure. This is shown as a blurred low-distance area
in the upper-left region of the maps.

The running time of this algorithm is O(h2w2) using naive implementation, but can be
further optimized using the techniques mentioned in Section 2.5.4. Specifically, there is
no reason to compare each row to all other rows. Instead, we can compare each row to
its neighboring rows in a bounded distance, which significantly reduces the search space.
Other applications for this method might include object detection and tracking, as shown in
Figure 2.22. We are currently investigating these approaches.
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Appendix 2.B Supplemental Results

Figure 2.23: Optimal 2-operator regular paths using seam-carving and scaling. From left to right:
the source image; the retargeted image; a plot of the BDW distance versus different transition points
between seam-carving and scaling; the BDW alignment of the retargeted image to the source image;
the BDW alignment of the source image to the retargeted image. For the latter visualizations, in case
several pixels of one image are mapped to the same pixel in the other - their average value is taken.
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Figure 2.24: Optimal 2-operator mixed paths using the seam-carving and scaling operators, and BDW
similarity. From left to right: the source image; the retargeted image; the dynamic programming table
colored by the BDW distance (relative per image); the BDW alignment of the retargeted image to the
source image. The table size corresponds to the amount of change and the rate at which the search
space is sampled.
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Comparison to the User Study:

Image Mean User Study Optimal 3-operator Optimization
regular path search space
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Image Mean User Study Optimal 3-operator Optimization
regular path search space

tiger

volleyball

osaka

waterfall

model

Figure 2.25: Comparison between automatic (3-operator regular paths) and user study results. From
left to right: the image used in the study; the mean user result, taken as the weighted center of mass
of the user data; the optimal retargeted image; a visualization of the search space as discussed in the
paper and shown in the first (car) figure. The automatic and user results are marked on the search
space with black and red markings respectively.



Chapter 3

Conclusion

This thesis investigates discrete solutions to the media resizing problem. Our experiments
are based on the Seam-Carving operator [3] recently proposed for content-aware image retar-
geting. We first adapted this operator to the video domain using a reduction to a minimal-cut
graph problem, and extended this technique to videos by carving low-energy surfaces from
video cubes. We also suggested a novel energy criteria that significantly improves the re-
sults for both images and videos. We showed results for various video editing operations
that are considered state-of-the-art in this field, or successfully compete with (and sometimes
outperform) existing content-aware video retargeting techniques.

Additionally, we suggested the first meta-algorithm for media retargeting. It is guaranteed
to find the optimal combination of existing, as well as future, media retargeting operators in
polynomial time under some assumptions. We also defined a new objective function: the
bidirectional warping. We demonstrated the effectiveness of this measure and approach for
both quantifying the quality of retargeted results, as well as combining multiple resizing
operators. We are also the first, in the recent crop of media retargeting works, to conduct a
user study to investigate the implication of media resizing on user perception, and compare
automatically generated results against the collected ground truth.

Our experiments show that there is no clear superiority of discrete operators over contin-
uous ones, or vice versa. We also showed that there is no single method that is strictly better
than any other for all images and target sizes. Instead, each resizing operator has its strengths
and weaknesses, and we have studied and enumerated some of them throughout this thesis.
This emphasizes the need for a quality measure that identifies when one method performs
better than another, and supports the suggested meta approach.

67
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Our work can be extended in numerous ways and we have touched upon specific direc-
tions in the respective conclusion sections in each chapter. Content-aware media retargeting
is a relatively nascent field of research and there is much room for further study and im-
provement. Recent non-linear deformation methods such as the Scale-and-Stretch warping
and Seam-Carving took over previous rigid methods that were bound to choosing an optimal
cropping window. These new methods show very nice results for both images and video,
but are based, by definition, on distorting the media. Specifically, they were shown to create
serious artifacts and awry results when homogenous regions are scarce, and there are cases
where the result might not agree with what the users perceive as satisfactory resizing.

The problem with these methods is that they are content-aware but not user-aware. In
particular, all content-aware operators are driven by well-studied perceptual models that have
been investigated for many years and aim to describe what the human vision discerns as im-
portant, or salient, in a media. However, to our knowledge, no studies were conducted to
investigate what is the preferred way to deform the media in case some of its content has to
be misplaced. What bothers the users more- distortion, or loss of information? loss of pro-
portions, or broken structures? is there some correlation between the type of content and the
preferred operator? Such studies are needed to better understand the objectives of media re-
targeting, which will in turn allow to devise better suited resizing algorithms. Understanding
these tradeoffs will probably stand as major goal in forthcoming research in this field.
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