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Abstract

Our world is constantly changing, and it is important for us to understand how our envi-

ronment changes and evolves over time. A common method for capturing and communicating

such changes is imagery – whether captured by consumer cameras, microscopes or satellites,

images and videos provide an invaluable source of information about the time-varying nature

of our world. Due to the great progress in digital photography, such images and videos are

now widespread and easy to capture, yet computational models and tools for understanding and

analyzing time-varying processes and trends in visual data are scarce and undeveloped.

In this dissertation, we propose new computational techniques to efficiently represent, an-

alyze and visualize both short-term and long-term temporal variation in videos and image se-

quences. Small-amplitude changes that are difficult or impossible to see with the naked eye,

such as variation in human skin color due to blood circulation and small mechanical move-

ments, can be extracted for further analysis, or exaggerated to become visible to an observer.

Our techniques can also attenuate motions and changes to remove variation that distracts from

the main temporal events of interest.

The main contribution of this thesis is in advancing our knowledge on how to process

spatiotemporal imagery and extract information that may not be immediately seen, so as to

better understand our dynamic world through images and videos.
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guidance, and Prof. Frédo Durand and Dr. Ce Liu, with whom I have collaborated closely

during my PhD. I would also like to thank my other collaborators in this work: Prof. John

Guttag, Dr. Peter Sand, Dr. Eugene Shih, and MIT students Neal Wadhwa and Hao-Yu Wu.

During two summer internships at Microsoft Research, I also had the pleasure working with

Dr. Ce Liu, Dr. Johannes Kopf, and Dr. Armand Joulin, on a separate project that is not part of

this thesis [43, 42].

I would like to thank Dr. Richard Szeliski for insightful and inspiring discussions, and for

his helpful feedback on this dissertation. I would also like to thank Dr. Sylvain Paris, Steve

Lewin-Berlin, Guha Balakrishnan, and Dr. Deqing Sun, for fruitful discussions that contributed

to this work.

I thank Adam LeWinter and Matthew Kennedy from the Extreme Ice Survey for providing

us with their time-lapse videos of glaciers, and Dr. Donna Brezinski, Dr. Karen McAlmon,

and the Winchester Hospital staff, for helping us collect videos of newborn babies. I also thank

Justin Chen from the MIT Civil Engineering Department, for his help with the controlled metal

structure experiment that is discussed in Chapter 3.

I would like to acknowledge fellowships and grants that supported my research during

my PhD: Mathworks Fellowhip (2010), NVIDIA Graduate Fellowship (2011), Microsoft Re-

search PhD Fellowship (2012-13), NSF CGV-1111415 (Analyzing Images Through Time), and

Quanta Computer.

Finally, I would like to thank my parents and my wife, for years of support and encourage-

ment; and my daughter, Danielle, for helping me see things in perspective, and for constantly

reminding me what is truly important in life.

7



8



Contents

Abstract 4

Acknowledgments 7

List of Figures 12

1 Introduction 27

2 Motion Denoising 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Motion and Color Magnification 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Eulerian Video Magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Space-time Video Processing . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Eulerian Motion Magnification . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Pulse and Heart Rate Extraction . . . . . . . . . . . . . . . . . . . . . 62

3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.5 Sensitivity to Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.6 Eulerian vs. Lagrangian Processing. . . . . . . . . . . . . . . . . . . . 72

9



10 CONTENTS

3.3 Phase-Based Video Motion Processing . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.2 Phase-based Motion Processing . . . . . . . . . . . . . . . . . . . . . 77

3.3.3 Motion Magnification . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.4 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.5 Sub-octave Bandwidth Pyramids . . . . . . . . . . . . . . . . . . . . . 83

3.3.6 Noise handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.8 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4 Visualizations and User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Conclusion 99

A Eulerian and Lagrangian Motion Magnification 103
A.1 Derivation of Eulerian and Lagrangian Error . . . . . . . . . . . . . . . . . . . 103

A.1.1 Without Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1.2 With Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B Sub-octave Bandwidth Pyramids 107
B.1 Improved Radial Windowing Function for Sub-octave Bandwidth Pyramids . . 107

C Videos 109

Bibliography 112



CONTENTS 11



12 CONTENTS



List of Figures

1.1 Timescales in imagery. High-speed videos (left) capture short-term, fast mo-

tions, such as vibration of engines and small eye movements. Normal-rate

videos (middle) can capture physiological functions, such as heart rate and res-

piratory motions. Time-lapse sequences (right) depict long-term physical pro-

cesses, such as the growth of plants and melting of glaciers. The listed frame

rates (Frames Per Second; fps) are only representative rates and can vary con-

siderably between videos in each category. . . . . . . . . . . . . . . . . . . . . 28

2.1 A time-lapse video of plants growing (sprouts). XT slices of the video volumes

are shown for the input sequence and for the result of our motion denoising al-

gorithm (top right). The motion-denoised sequence is generated by spatiotem-

poral rearrangement of the pixels in the input sequence (bottom center; spatial

and temporal displacement on top and bottom, respectively, following the color

coding in Figure 2.5). Our algorithm solves for a displacement field that main-

tains the long-term events in the video while removing the short-term, noisy

motions. The full sequence and result are available in the accompanying material. 32
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2.2 The responses of different temporal filters on a canonical, 1D signal. The mean

and median temporal filters operate by sliding a window temporally at each

spatial location, and setting the intensity at the center pixel in the window to the

mean and median intensity value of the pixels inside the window, respectively.

The motion-compensated filter computes the mean intensity value along the

estimated motion trajectory. In this example, the temporal filters are of size 3,

centered at the pixel, and the motion denoising algorithm uses a 3× 3 support.

For illustration, we assume the temporal trajectory estimated by the motion-

compensated filter is accurate until t = 6. That is, the motion from (x, t) =

(2, 6) to (4, 7) was not detected correctly. . . . . . . . . . . . . . . . . . . . . 34

2.3 Comparison of motion denoising with simple temporal filtering on the plants

sequence of Figure 2.1. At the top, zoom-ins on the left part of the XT slice

from Figure 2.1 are shown for the original sequence, the (temporally) mean-

filtered sequence, the median-filtered sequence, and the motion-denoised se-

quence. At the bottom, a representative spatial patch from each sequence is

shown, taken from a region roughly marked by the yellow bar on the input

video slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 An illustration of the graphical model corresponding to Equation 2.5. Note

that each node contains the three (unknown) components of the spatiotemporal

displacement at that location. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Comparison between different optimization techniques for solving Equation 2.5,

demonstrated on the plant time-lapse sequence (Figure 2.7). (a-c) Representa-

tive frames from each result. The spatial components of the displacement fields

(overlaid) illustrate that different local minima are attained by the different op-

timization methods (the full sequences are available in the accompanying ma-

terial). (d) The energy convergence pattern over 10 iterations of the algorithms.

(e) The color coding used for visualizing the displacement fields, borrowed

from [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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2.6 A visualization of the beliefs computed by LBP for a single pixel in the plant

sequence, using a 31× 31× 3 support. The support frame containing the pixel

is zoomed-in on the upper left. The beliefs over the support are shown on the

upper right, colored from blue (low energy) to red (high energy). We seek the

displacement that has the minimal energy within the support region. At the

bottom, the belief surface is shown for the middle frame of the support region,

clearly showing multiple equivalent (or nearly equivalent) solutions. . . . . . . 43

2.7 Motion denoising results on the time-lapse sequences plant and sprouts. For

each sequence, we show a representative source frame (top left), representative

frames of the long-term (motion-denoised) and short-term changes (top right),

the computed displacement field (bottom left; spatial displacement on the left,

temporal displacement on the right), and a part of an XT slice of the video vol-

umes for the input and motion-denoised result (bottom right). The short-term

result is computed by thresholding the color difference between the input and

motion-denoised frames and copying pixels from the input. The vertical posi-

tion of the spatiotemporal slice is chosen such that salient sequence dynamics

are portrayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Additional results on the time-lapse sequences street, pool, and pond, shown in

the same layout as in Figure 2.7. . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.9 Four frames from the glacier time-lapse (top), taken within the same week of

May 18, 2007, demonstrate the large variability in lighting and weather condi-

tions, typical to an outdoor time-lapse footage. For this sequence, we first apply

a non-uniform sampling procedure (bottom; see text) to prevent noisy frames

from affecting the synthesis. The x-axis is the frame number, and the vertical

lines represent the chosen frames. . . . . . . . . . . . . . . . . . . . . . . . . 48

2.10 Result on the time-lapse sequence glacier, shown in the same layout as in Fig-

ure 2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.11 Zoom-in on the rightmost plant in the sprouts sequence in four consecutive

frames shows that enlarging the search volume used by the algorithm can greatly

improve the results. “Large support” corresponds to a 31× 31× 5 search vol-

ume, while “small support” is the 7× 7× 5 volume we used in our experiments. 49
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3.1 An example of using our Eulerian Video Magnification framework for visualiz-

ing the human pulse. (a) Four frames from the original video sequence (face).

(b) The same four frames with the subject’s pulse signal amplified. (c) A verti-

cal scan line from the input (top) and output (bottom) videos plotted over time

shows how our method amplifies the periodic color variation. In the input se-

quence the signal is imperceptible, but in the magnified sequence the variation

is clear. The complete sequence is available in the supplemental video. . . . . . 52

3.2 Overview of the Eulerian video magnification framework. The system first de-

composes the input video sequence into different spatial frequency bands, and

applies the same temporal filter to all bands. The filtered spatial bands are then

amplified by a given factor α, added back to the original signal, and collapsed

to generate the output video. The choice of temporal filter and amplification

factors can be tuned to support different applications. For example, we use the

system to reveal unseen motions of a Digital SLR camera, caused by the flip-

ping mirror during a photo burst (camera; full sequences are available in the

supplemental video). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Temporal filtering can approximate spatial translation. This effect is demon-

strated here on a 1D signal, but equally applies to 2D. The input signal is shown

at two time instants: I(x, t) = f(x) at time t and I(x, t+1) = f(x+δ) at time

t + 1. The first-order Taylor series expansion of I(x, t + 1) about x approxi-

mates well the translated signal. The temporal bandpass is amplified and added

to the original signal to generate a larger translation. In this example α = 1,

magnifying the motion by 100%, and the temporal filter is a finite difference

filter, subtracting the two curves. . . . . . . . . . . . . . . . . . . . . . . . . . 59
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3.4 Illustration of motion amplification on a 1D signal for different spatial frequen-

cies and α values. For the images on the left side, λ = 2π and δ(1) = π
8 is the

true translation. For the images on the right side, λ = π and δ(1) = π
8 . (a) The

true displacement of I(x, 0) by (1 + α)δ(t) at time t = 1, colored from blue

(small amplification factor) to red (high amplification factor). (b) The amplified

displacement produced by our filter, with colors corresponding to the correctly

shifted signals in (a). Referencing Equation 3.14, the red (far right) curves of

each plot correspond to (1 + α)δ(t) = λ
4 for the left plot, and (1 + α)δ(t) = λ

2

for the right plot, showing the mild, then severe, artifacts introduced in the mo-

tion magnification from exceeding the bound on (1 + α) by factors of 2 and 4,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Motion magnification error, computed as theL1-norm between the true motion-

amplified signal (Figure 3.4(a)) and the temporally-filtered result (Figure 3.4(b)),

as function of wavelength, for different values of δ(t) (a) and α (b). In (a), we

fix α = 1, and in (b), δ(t) = 2. The markers on each curve represent the

derived cutoff point (1 + α)δ(t) = λ
8 (Equation 3.14). . . . . . . . . . . . . . . 61

3.6 Amplification factor, α, as function of spatial wavelength λ, for amplifying

motion. The amplification factor is fixed to α for spatial bands that are within

our derived bound (Equation 3.14), and is attenuated linearly for higher spatial

frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Spatial frequencies of the Laplacian pyramid. To estimate the spatial frequen-

cies at each pyramid level, we decompose an impulse image (a) to its spa-

tial frequency bands (b), and compute the DCT coefficients for each band (c).

We estimate the spatial frequency for each band (given below the DCT coeffi-

cients in (c)) as the average magnitude of its corresponding DCT coefficients,

weighted by their distance from the origin (upper left corner in (c)). . . . . . . 62

3.8 Heart rate extraction. (a) The spatially-averaged, temporally-bandpassed signal

from one point on the face in the face video from Figure 3.1, with the local

maxima marked, indicating the pulse onsets. (b) Pulse locations used to esti-

mate the pulse signal and heart rate. Each row on the y-axis corresponds to a

different point on the face in no particular ordering. Black pixels represent the

detected peak locations at each point, and the red vertical lines correspond to

the final estimated pulse locations that are used to compute the heart rate. . . . 63
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3.9 Eulerian video magnification used to amplify subtle motions of blood vessels

arising from blood flow. For this video, we tuned the temporal filter to a fre-

quency band that includes the heart rate—0.88 Hz (53 bpm)—and set the am-

plification factor to α = 10. To reduce motion magnification of irrelevant

objects, we applied a user-given mask to amplify the area near the wrist only.

Movement of the radial and ulnar arteries can barely be seen in the input video

(a) taken with a standard point-and-shoot camera, but is significantly more no-

ticeable in the motion-magnified output (b). The motion of the pulsing arteries

is more visible when observing a spatio-temporal Y T slice of the wrist (a) and

(b). The full wrist sequence can be found in the supplemental video. . . . . . . 65

3.10 Temporal filters used in the thesis. The ideal filters (a) and (b) are implemented

using DCT. The Butterworth filter (c) is used to convert a user-specified fre-

quency band to a second-order IIR structure that can be used for real-time pro-

cessing (Section 3.4). The second-order IIR filter (d) also allows user input.

These second-order filters have a broader passband than an ideal filter. . . . . . 66

3.11 Selective motion amplification on a synthetic sequence (sim4 on left). The

video sequence contains blobs oscillating at different temporal frequencies as

shown on the input frame. We apply our method using an ideal temporal band-

pass filter of 1-3 Hz to amplify only the motions occurring within the specified

passband. In (b), we show the spatio-temporal slices from the resulting video

which show the different temporal frequencies and the amplified motion of the

blob oscillating at 2 Hz. We note that the space-time processing is applied

uniformly to all the pixels. The full sequence and result can be found in the

supplemental video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.12 Selective motion amplification on a natural video (guitar). Each of the guitar’s

strings (a) vibrates at different frequency. (b-c) The signals of intensities over

time (top) and their corresponding power spectra (bottom) are shown for two

pixels located on the low E and A strings, respectively, superimposed on the

representative frame in (a). The power spectra clearly reveal the vibration fre-

quency of each string. Using an appropriate temporal bandpass filter, we are

able to amplify the motion of particular strings while maintaining the motion

of the others. The result is available in the supplemental video. . . . . . . . . . 68
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3.13 Proper spatial pooling is imperative for revealing the signal of interest. (a)

A frame from the face video (Figure 3.1) with white Gaussian noise added

(σ = 0.1). On the right are intensity traces over time for the pixel marked

blue on the input frame, where (b) shows the trace obtained when the (noisy)

sequence is processed with the same spatial filter used to process the original

face sequence, a separable binomial filter of size 20, and (c) shows the trace

when using a filter tuned according to the estimated radius in Equation 3.16, a

binomial filter of size 80. The pulse signal is not visible in (b), as the noise level

is higher than the power of the signal, while in (c) the pulse is clearly visible

(the periodic peaks about one second apart in the trace). . . . . . . . . . . . . . 71

3.14 Comparison between Eulerian and Lagrangian motion magnification on a syn-

thetic sequence with additive noise (a). (b) The minimal error, min(εE , εL),

computed as the (frame-wise) RMSE between each method’s result and the

true motion-magnified sequence, as function of noise and amplification, col-

ored from blue (small error) to red (large error), with (left) and without (right)

spatial regularization in the Lagrangian method. The black curves mark the

intersection between the error surfaces, and the overlayed text indicate the best

performing method in each region. (c) RMSE of the two approaches as func-

tion of noise (left) and amplification (right). (d) Same as (c), using spatial noise

only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.15 Motion magnification of a crane imperceptibly swaying in the wind. (a) Top: a

zoom-in onto a patch in the original sequence (crane) shown on the left. Bot-

tom: a spatiotemporal XT slice of the video along the profile marked on the

zoomed-in patch. (b-c) Linear (Section 3.2) and phase-based motion magnifi-

cation results, respectively, shown for the corresponding patch and spatiotem-

poral slice as in (a). The previous, linear method visualizes the crane’s motion,

but amplifies both signal and noise and introduces artifacts for higher spatial

frequencies and larger motions, shown by the clipped intensities (bright pixels)

in (b). In comparison, our new phase-based method supports larger magni-

fication factors with significantly fewer artifacts and less noise (c). The full

sequences are available in the supplemental video. . . . . . . . . . . . . . . . . 75
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3.16 Our phase-based approach manipulates motion in videos by analyzing the sig-

nals of local phase over time in different spatial scales and orientations. We use

complex steerable pyramids to decompose the video and separate the amplitude

of the local wavelets from their phase (a). We then temporally filter the phases

independently at at each location, orientation and scale (b). Optionally, we ap-

ply amplitude-weighted spatial smoothing (c, Sect. 3.3.6) to increase the phase

SNR, which we empirically found to improve the results. We then amplify

or attenuate the temporally-bandpassed phases (d), and reconstruct the video

(e). This example shows the processing pipeline for the membrane sequence

(Sect. 3.3.7), using a pyramid of two scales and two orientations (the relative

difference in size between the pyramid levels is smaller in this figure for clarity

of the visualization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.17 Phase-based motion magnification is perfect for sinusoidal functions. In these

plots, the initial displacement is δ(t) = 1. While the errors for the linear tech-

nique (Section 3.2) are dependent on wavelength for sinusoids, there is no such

dependence for the present technique and the error is uniformly small. The

vertical axis in (d) is logarithmic. . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.18 A comparison between octave and sub-octave bandwidth pyramids for motion

magnification. Each color in the idealized frequency response represents a dif-

ferent filter. (a) The original steerable pyramid of Portilla and Simoncelli [37].

This pyramid has octave bandwidth filters and four orientations. The impulse

response of the filters is narrow (rows 2 − 3), which reduces the maximum

magnification possible (rows 4 − 5). (b-c) Pyramid representations with two

and four filters per octave, respectively. These representations are more over-

complete, but support larger magnification factors. . . . . . . . . . . . . . . . . 80

3.19 For general non-periodic structures, we achieve performance at least four times

that of the linear technique, and do not suffer from clipping artifacts (a). For

large amplification, the different frequency bands break up due to the higher

bands having a smaller window (b). . . . . . . . . . . . . . . . . . . . . . . . 82
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3.20 The impulse response of the steerable filter bank illustrates the artifacts that

arise when modulating phase to magnify motion. (a) The impulse response of a

wavelet being phase shifted. As the phase increases (orange corresponds to 3π
4 ),

the primary peak shifts to the right decreasing under the Gaussian window. A

secondary peak forms to the left of the primary peak. (c) Error in magnification

of the impulse response as the impulse is moved under the Gaussian window.

The maximum (normalized) error occurs when the phase-shifted wavelet no

longer overlaps with the true-shifted one. The constant C = σ is marked on the

curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.21 Comparison between linear and phase-based Eulerian motion magnification in

handling noise. (a) A frame in a sequence of IID noise. In both (b) and (c),

the motion is amplified by a factor of 50, where (b) uses the linear technique

(Section 3.2) and (c) uses the phase-based approach. (d) shows a plot of the

error as function of noise for each method, using several magnification factors. 84

3.22 Over-completeness as function of the bound on the amplification factor, α, in

our pyramid representation with different number of orientations, k, 1−6 filters

per octave (points left to right), and assumed motion δ(t) = 0.1 pixels. For

example, a half-octave, 8-orientation pyramid is 32x over-complete, and can

amplify motions up to a factor of 20, while a similar quarter-octave pyramid

can amplify motions by a factor of 30, and is 43x over-complete. . . . . . . . . 86

3.23 Comparison of the phase-based motion magnification result on the camera se-

quence (d) with the result of linear motion magnification (a), denoised by two

state-of-the-art video denoising algorithms: VBM3D [11] (b) and motion-based

denoising by Liu and Freeman [24] (c). The denoising algorithms cannot deal

with the medium frequency noise, and are computationally intensive. The full

videos and similar comparisons on other sequences are available in the supple-

mentary material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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3.24 A controlled motion magnification experiment to verify our framework. (a) A

hammer strikes a metal structures which then moves with a damped oscilla-

tory motion. (b) A sequence with oscillatory motion of amplitude 0.1 pixels is

magnified 50 times using our algorithm and compared to a sequence with oscil-

latory motion of amplitude 5 pixels (50 times the amplitude). (c) A comparison

of acceleration extracted from the video with the accelerometer recording. (d)

The error in the motion signal we extract from the video, measured as in (c), as

function of the impact force. Our motion signal is more accurate as the motions

in the scene get larger. All videos are available in the supplementary material. . 91

3.25 Motion attenuation stabilizes unwanted head motions that would otherwise be

exaggerated by color amplification. The exaggerated motions appear as wiggles

in the middle spatiotemporal slice on the right, and do not appear in the bottom

right slice. The full sequence is available in the supplemental video. . . . . . . 92
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Chapter 1

Introduction

The only reason for time is so that everything doesn’t happen at once.

–Albert Einstein

Modern photography provides us with useful tools to capture physical phenomena occur-

ring over different scales of time (Figure 1.1). At one end of the spectrum, high-speed imagery

now supports frame rates of 6 MHz (6 million frames per second), allowing the high quality

capture of ultrafast events such as shock waves and neural activity [20]. At the other end of

the spectrum, time-lapse sequences can reveal long-term processes spanning decades, such as

the evolution of cities, melting of glaciers, and deforestation, and have even recently become

available on a planetary scale [12]. However, methods to automatically identify and analyze

physical processes or trends in visual data are still in their infancy [17]

This thesis is comprised of several projects I explored during my PhD, which focus on ana-

lyzing and manipulating temporal variations in video and image sequences, in order to facilitate

the analysis of temporal phenomena captured by imagery, and reveal interesting temporal sig-

nals and processes that may not be easily visible in the original data. Here we give a high-level

overview of these projects. The details of the proposed techniques and review of related lit-

erature are given in the chapters to follow. In the rest of the thesis, I will refer to changes in

intensities recorded in video and images over time (caused by change in color, or motion) as

“temporal variation”, or simply “variation” for brevity.

Removing distracting variation. First, we explored the problem of removing motions and

changes that distract from the main temporal signals of interest. This is especially useful for

time-lapse sequences that are often used for long-period medical and scientific analysis, where

dynamic scenes are captured over long periods of time. When day- or even year-long events

are condensed into minutes or seconds, the pixels can be temporally inconsistent due to the
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significant time aliasing. Such aliasing effects take the form of objects suddenly appearing and

disappearing, or illumination changing rapidly between consecutive frames, making the long-

term processes in those sequences difficult to view or further analyze. For example, we can

more easily measure the growth of outdoor plants by re-synthesizing the video to suppress the

leaves waving in the wind.

We designed a video processing system which treats short-term visual changes as noise,

long-term changes as signal, and re-renders a video to reveal the underlying long-term events [44]

(Chapter 2). We call this technique “motion denoising” in analogy to image denoising (the

process of removing sensor noise added during image capture). The result is an automatic

decomposition of the original video into short- and long-term motion components. We show

that naive temporal filtering approaches are often incapable of achieving this task, and present

a novel computational approach to denoise motion without explicit motion analysis, making

it applicable to diverse videos containing highly involved dynamics common to long-term im-

agery.

Magnifying imperceptible variation. In other cases, one may want to magnify motions and

changes that are too subtle to be seen by the naked eye. For example, human skin color varies

slightly with blood circulation (Figure 3.1). This variation, while invisible to the naked eye, can

Months, years

10−4 fps (time-lapse)

Seconds, Minutes

101 fps (standard videos)

Milliseconds

104 fps (high-speed)

Chapter 3 Chapter 2

Figure 1.1: Timescales in imagery. High-speed videos (left) capture short-term, fast motions, such as

vibration of engines and small eye movements. Normal-rate videos (middle) can capture physiological

functions, such as heart rate and respiratory motions. Time-lapse sequences (right) depict long-term

physical processes, such as the growth of plants and melting of glaciers. The listed frame rates (Frames

Per Second; fps) are only representative rates and can vary considerably between videos in each category.
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be exploited to extract pulse rate and reveal spatial blood flow patterns. Similarly, motion with

low spatial amplitude, while hard or impossible for humans to see, can be magnified to reveal

interesting mechanical behavior.

We proposed efficient methods that combine spatial and temporal processing to emphasize

subtle temporal changes in videos [59, 45, 55] (Chapter 3). These methods use an Eulerian

specification of the changes in the scene, analyzing and amplifying the variation over time

at fixed locations in space (pixels). The first method we proposed, which we call the linear

method, takes a standard video sequence as input, and applies spatial decomposition followed

by temporal filtering to the frames. The resulting temporal signal is then amplified to reveal hid-

den information (Section 3.2). This temporal filtering approach can also reveal low-amplitude

spatial motion, and we provide a mathematical analysis that explains how the temporal intensity

signal interplays with spatial motion in videos, which relies on a linear approximation related

to the brightness constancy assumption used in traditional optical flow formulations. This ap-

proximation (and thus the method) only applies to very small motions, but those are exactly the

type of motions we want to amplify.

The linear method to amplify motions is simple and fast, but suffers from two main draw-

backs. Namely, noise gets amplified linearly with the amplification, and the approximation to

the amplified motion breaks down quickly for high spatial frequencies and large motions. To

counter these issues, we proposed a better approach to process small motions in videos, where

we replace the linear approximation with a localized Fourier decomposition using complex-

valued image pyramids [55] (Section 3.3). The phase variations of the coefficients of these

pyramids over time correspond to motion, and can be temporally processed and modified to

manipulate the motion. In comparison to the linear method, this phase-based technique has a

higher computational overhead, but can support larger amplification of the motion with fewer

artifacts and less noise. This further extends the regime of low-amplitude physical phenomena

that can be analyzed and visualized by Eulerian approaches.

Visualization. We produced visualizations that suppress or highlight different patterns of tem-

poral variation by synthesizing videos with smaller or larger changes (Chapters 2, 3). For

small-amplitude variations, we also explored interactive user interfaces and visualization tools

to assist the user in exploring temporal signals in videos (Section 3.4). We built a prototype ap-

plication that can amplify and reveal micro changes from video streams in real-time and show

phenomena occurring at temporal frequencies selected by the user. This application can run
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on modern laptops and tablets, essentially turning those devices into “microscopes” for minus-

cule visual changes. We can also produce static image visualizations summarizing the temporal

frequency content in a video.

This thesis is largely based on work that appeared in the 2011 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) [44], and ACM Transactions on Graphics (Pro-

ceedings SIGGRAPH 2012 and 2013) [59, 55]. All the the accompanying materials referenced

here, including software, videos and demos, are available for the research community through

the thesis web page: http://people.csail.mit.edu/mrub/PhDThesis.

http://people.csail.mit.edu/mrub/PhDThesis


Chapter 2

Motion Denoising

Motions can occur over both short and long time scales. In this chapter, we introduce mo-

tion denoising, a video processing technique that treats short-term visual changes as noise,

long-term changes as signal, and re-renders a video to reveal the underlying long-term events.

We demonstrate motion denoising for time-lapse videos. One of the characteristics of tradi-

tional time-lapse imagery is stylized jerkiness, where short-term changes in the scene appear as

small and annoying jitters in the video, often obfuscating the underlying (long-term) temporal

events of interest. We apply motion denoising for resynthesizing time-lapse videos showing the

long-term evolution of a scene with jerky short-term changes removed. We show that existing

filtering approaches are often incapable of achieving this task, and present a novel computa-

tional approach to denoise motion without explicit motion analysis. We demonstrate promising

experimental results on a set of challenging time-lapse sequences.

� 2.1 Introduction

Randomness appears almost everywhere in the visual world. During the imaging process, for

example, randomness occurs in capturing the brightness of the light going into a camera. As

a result, we often see noise in images captured by CCD cameras. As image noise is mostly

unwanted, a large number of noise removal approaches have been developed to recover the

underlying signal in the presence of noise.

Randomness also appears in the form of motion. Plants sprout from soil in an unplanned

order; leaves move arbitrarily under wind; clouds spread and gather; the surface of our planet

changes over seasons with spotted decorations of snow, rivers, and flowers.

As much as image noise is often unwanted, motion randomness can also be undesired. For

example, traditional time-lapse sequences are often characterized by small and annoying jitters

31
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Figure 2.1: A time-lapse video of plants growing (sprouts). XT slices of the video volumes are shown

for the input sequence and for the result of our motion denoising algorithm (top right). The motion-

denoised sequence is generated by spatiotemporal rearrangement of the pixels in the input sequence

(bottom center; spatial and temporal displacement on top and bottom, respectively, following the color

coding in Figure 2.5). Our algorithm solves for a displacement field that maintains the long-term events

in the video while removing the short-term, noisy motions. The full sequence and result are available in

the accompanying material.

resulting from short-term changes in shape, lighting, viewpoint, and object position, which

obfuscate the underlying long-term events depicted in a scene. Atmospheric and heat turbulence

often show up as short-term, small and irregular motions in videos of far-away scenes.

It is therefore important to remove random, temporally inconsistent motion. We want to

design a video processing system that removes temporal jitters and inconsistencies in an input

video, and generate a temporally smooth video as if randomness never appeared. We call this

technique motion denoising in analogy to image denoising. Since visual events are decomposed
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into slow-varying and fast-changing components in motion denoising, such technique can be

useful for time-lapse photography, which is widely used in the movie industry, especially for

documentary movies, but has recently become prevalent among personal users as well. It can

also assist long-period medical and scientific analysis. For the rest of the chapter we will refer

to motion denoising and its induced motion decomposition interchangeably.

Motion denoising is by no means a trivial problem. Previous work on motion editing has

focused on accurately measuring the underlying motion and carefully constructing coherent

motion layers in the scene. These kind of motion-based techniques are often not suitable for

analyzing time-lapse videos. The jerky nature of these sequences violates the core assumptions

of motion analysis and optical flow, and prevents even the most sophisticated motion estimation

algorithm from obtaining accurate enough motion for further analysis.

We propose a novel computational approach to motion denoising in videos that does not

require explicit motion estimation and modeling. We formulate the problem in a Bayesian

framework, where the goal is to recover a “smooth version” of the input video by reshuffling its

pixels spatiotemporally. This translates to a well-defined inference problem over a 3D Markov

Random Field (MRF), which we solve using a time-space optimized Loopy Belief Propagation

(LBP) algorithm. We show how motion denoising can be used to eliminate short-term motion

jitters in time-lapse videos, and present results for time-lapse sequences of different nature and

scenes.

� 2.2 Background and Related Work

The input to our system is an M × N × T video sequence, I(x, y, t), with RGB intensities

given in range [0, 255]. Our goal is to produce an M × N × T output sequence, J(x, y, t), in

which short-term jittery motions are removed and long-term scene changes are maintained. A

number of attempts have been made to tackle similar problems from a variety of perspectives,

which we will now briefly review.

Temporal filtering. A straightforward approach is to pass the sequence through a temporal

low-pass filter

J(x, y, t) = f(I(x, y, {k}t+δtt−δt) (2.1)

where f denotes the filtering opreator, and δt defines the temporal window size. For a video

sequence with a static viewpoint, f is often taken as the median operator, which is useful for

tasks such as background-foreground segmentation and noise reduction. This approach, albeit
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Figure 2.2: The responses of different temporal filters on a canonical, 1D signal. The mean and median

temporal filters operate by sliding a window temporally at each spatial location, and setting the intensity

at the center pixel in the window to the mean and median intensity value of the pixels inside the window,

respectively. The motion-compensated filter computes the mean intensity value along the estimated

motion trajectory. In this example, the temporal filters are of size 3, centered at the pixel, and the motion

denoising algorithm uses a 3× 3 support. For illustration, we assume the temporal trajectory estimated

by the motion-compensated filter is accurate until t = 6. That is, the motion from (x, t) = (2, 6) to

(4, 7) was not detected correctly.

simple and fast, has an obvious limitation – the filtering is performed independently at each

pixel. In a dynamic scene with rapid motion, pixels belonging to different objects are averaged,

resulting in a blurred or discontinuous result. Figure 2.2 demonstrates this on a canonical signal,

and figure 2.3 further illustrates these effects on a natural time-lapse video.

To address this issue, motion-compensated filtering was introduced, filtering the sequence

along motion trajectories (e.g., [34]). Such techniques are commonly employed for video com-

pression, predictive coding, and noise removal. Although this approach is able to deal with

some of the blur and discontinuity artifacts, as pixels are only integrated along the estimated

motion path, it does not filter the actual motion (i.e. making the motion trajectory smoother),

but rather takes the motion into account for filtering the sequence. In addition, errors in the

motion estimation may result in unwanted artifacts at object boundaries.

Motion editing. One work that took a direct approach to motion editing in videos is “Motion

Magnification” [23]. A layer segmentation system was proposed for exaggerating motions

that might otherwise be difficult or even impossible to notice. Similar to our work, they also

manipulate video data to resynthesize a sequence with modified motions. However, our work

modifies the motion without explicit motion analysis or layer modeling that are required by
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Figure 2.3: Comparison of motion denoising with simple temporal filtering on the plants sequence

of Figure 2.1. At the top, zoom-ins on the left part of the XT slice from Figure 2.1 are shown for

the original sequence, the (temporally) mean-filtered sequence, the median-filtered sequence, and the

motion-denoised sequence. At the bottom, a representative spatial patch from each sequence is shown,

taken from a region roughly marked by the yellow bar on the input video slice.

their method. In fact, layer estimation can be challenging for the sequences we are interested

in; these sequences may contain too many layers (e.g., leaves) for which even state-of-the-art

layer segmentation algorithms would have difficulties producing reliable estimates.

Motion denoising has been addressed before in a global manner, known as video stabiliza-

tion (e.g., [31, 28]). Camera jitter (mostly from hand-held devices) is modeled using image-

level transforms between consecutive frames, which are used to synthesize a sequence with

smoother camera motion. Image and video inpainting techniques are often utilized to fill-in

missing content in the stabilized sequence. In contrast, we focus on stabilization at the object

level, supporting spatially-varying, pixel-wise displacement within a single frame. Inpainting

is built-in naturally into our formulation.

Time-lapse videos. Time-lapse videos are valuable for portraying events occurring through-

out long time periods. Typically, a frame is captured once every few minutes or hours over a
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long time period (e.g., weeks, months), and the captured frames are then stacked in time to cre-

ate a video depicting some long-term phenomena [10]. Captured sequences span a large variety

of scenes, from building construction, through changes in the human body (e.g., pregnancy,

aging), to natural phenomena such as celestial motion and season change. Capturing time-

lapse sequences no longer requires an expert photographer. In fact, it is supported as built-in

functionality in many modern consumer digital cameras.

Although sequences captured by time-lapse photography are very different in nature, they

all typically share a common artifact—stylized jerkiness—caused by temporal aliasing that is

inherent to the time-lapse capture process. Rapidly moving objects, as well as lighting changes,

and even small camera movements (common if the camera is positioned outdoors) then appear

as distracting, non-physical jumps in the video. These effects might sometimes be desirable,

however in often cases they simply clutter the main temporal events the photographer wishes

to portray.

Previous academic work involving time-lapse sequences use them as an efficient represen-

tation for video summarization. Work such as [4, 39] take a video-rate footage as input, and

output a sequence of frames that succinctly depict temporal events in the video. Work such as

[39, 40] can take an input time-lapse video, and produce a single-frame representation of that

sequence, utilizing information from throughout the time span. Time-lapse sequences have also

been used for other applications. For example, Weiss [57] uses a sequence of images of a scene

under varying illumination to estimate intrinsic images. These techniques and applications are

significantly different from ours. Both input and output of our system are time-lapse videos,

and our goal is to improve the input sequence quality by suppressing short-term distracting

events and maintaining the underlying long-term flux of the scene.

Direct editing of time-lapse imagery was proposed in [49] by factorizing each pixel in an

input time-lapse video into shadow, illumination and reflectance components, which can be

used for relighting or editing the sequence, and for recovering the scene geometry. In our work,

we are interested in a different type of decomposition: separating a time-lapse sequence into

shorter- and longer-term events. These two types of decompositions can be complimentary to

each other.

Geometric rearrangement. In the core of our method is a statistical (data-driven) algorithm

for inferring smooth motion from noisy motion by rearranging the input video. Content rear-

rangement in images and video has been used in the past for various editing applications. Image



Sec. 2.3. Formulation 37

reshuffling is discussed in [9]. They work in patch space, and the patch moves are constrained

to an underlying coarse grid which does support relatively small motions common to time-lapse

videos. We, on the other hand, work in pixel resolution, supporting both small and irregular

displacements. [38] perform geometric image rearrangement for various image editing tasks

using a MRF formulation. Our work concentrates on a different problem and requires different

formulation. Inference in videos is much more challenging than in images, and we use different

inference tools from the ones used in their work.

For videos, [46] consider the sequence appearance and dynamics for shifting entire frames

to create a modified playback. [39] generate short summaries for browsing and indexing

surveillance data by shifting individual pixels temporally while keeping their spatial locations

intact. [52] align two videos using affine spatial and temporal warps. Our problem is again very

different from all these work. Temporal shifts alone are insufficient to denoise noisy motion,

and spatial offsets must be defined in higher granularity than the global frame or video. This

makes the problem much more challenging to solve.

� 2.3 Formulation

We model the world as evolving slowly through time. That is, within any relatively small time

span, we assume objects in the scene attain some stable configuration, and changes to these

configurations occur in low time rates. Moreover, we wish to make use of the large redun-

dancy in images and videos to infer those stable configurations. This leads to the following

formulation.

Given an input video I , we seek an output video J that minimizes the energyE(J), defined

as

E(J) =
∑
x,y,t

∣∣J(x, y, t)− I(x, y, t)
∣∣+ α

∑
x,y,t

∣∣J(x, y, t)− J(x, y, t+ 1)
∣∣, (2.2)

subject to

J(x, y, t) = I(x+ wx(x, y, t), y + wy(x, y, t), t+ wt(x, y, t)) (2.3)

for spatiotemporal displacement field

w(x, y, t) ∈ {(δx, δy, δt) : |δx| ≤ ∆s, |δy| ≤ ∆s, |δt| ≤ ∆t} , (2.4)

where (∆s,∆t) are parameters defining the support (search) region.
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In this objective function, the first term is a fidelity term, enforcing the output sequence to

resemble the input sequence at each location and time. The second term is a temporal coherence

term, which requires the solution to be temporally smooth. The tension between those two

terms creates a solution which maintains the general appearance of the input sequence, and is

temporally smooth. This tradeoff between appearance and temporal coherence is controlled via

the parameter α.

As J is uniquely defined by the spatiotemporal displacements, we can equivalently rewrite

Equation 2.2 as an optimization on the displacement field w. Further parameterizing p =

(x, y, t), and plugging constraint 2.3 into Equation 2.2, we get

E(w) =
∑
p

∣∣I(p+ w(p))− I(p)
∣∣+

α
∑

p,r∈Nt(p)

∣∣∣∣I(p+ w(p))− I(r + w(r))
∣∣∣∣2+

γ
∑

p,q∈N (p)

λpq
∣∣w(p)− w(q)

∣∣, (2.5)

where we added an additional term for regularizing the displacement field w, with weight

λpq = exp{−β||I(p) − I(q)||2}. β is learnt as described in [50]. λpq assigns varying weight

to discontinuities in the displacement map, as function of the similarity between neighboring

pixels in the original video. N (p) denotes the spatiotemporal neighborhood of pixel p, and

Ns(p),Nt(p) ⊆ N (p) denote the spatial and temporal neighbors of p, respectively. We use the

six spatiotemporal pixels directly connected to p as the neighborhood system.

α and γ weight the temporal coherence and regularization terms, respectively. The L2

norm is used for temporal coherence to discourage motion discontinuities, while L1 is used in

the fidelity and regularization terms to remove noise from the input sequence, and to account

for discontinuities in the displacement field, respectively.

� 2.3.1 Optimization

We optimize Equation 2.5 discretely on a 3D MRF corresponding to the three-dimensional

video volume, where each node p corresponds to a pixel in the video sequence and represents

the latent variables w(p). The state space in our model is the set of possible three-dimensional

displacements within a predefined search region (Equation 2.4). The potential functions are
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Figure 2.4: An illustration of the graphical model corresponding to Equation 2.5. Note that each node

contains the three (unknown) components of the spatiotemporal displacement at that location.

given by

ψp(w(p)) =
∣∣I(p+ w(p))− I(p)

∣∣, (2.6)

ψtpr(w(p), w(r)) = α
∣∣∣∣I(p+ w(p))− I(r + w(r))

∣∣∣∣2+
γλpr

∣∣w(p)− w(r)
∣∣, (2.7)

ψspq(w(p), w(q)) = γλpq
∣∣w(p)− w(q)

∣∣, (2.8)

where ψp is the unary potential at each node, and ψtpr, ψ
s
pq denote the temporal and spatial

pairwise potentials, respectively. Figure 2.4 depicts the structure of this graphical model.

We have experimented with several optimization techniques for solving Equation 2.5, namely

Iterated Conditional Modes (ICM), α-expansion (GCUT) [6] and Loopy Belief Propagation

(LBP) [60]. Our temporal pairwise potentials (Equation 2.7) are neither a metric nor a semi-

metric, which makes the graph-cut based algorithms theoretically inapplicable to this optimiza-

tion. Although previous work use those algorithms ignoring the metric constraints and still

report good results (e.g., [38]), our experiments consistently showed that LBP manages to pro-

duce more visually appealing sequences, and in most cases also achieves lower energy solutions

compared to the other solvers. We therefore choose LBP as our inference engine.

Figure 2.5 compares the results of the three optimizations. The complete sequences are

available in the supplementary material. The ICM results suffer, as expected, from noticeable
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Figure 2.5: Comparison between different optimization techniques for solving Equation 2.5, demon-

strated on the plant time-lapse sequence (Figure 2.7). (a-c) Representative frames from each result. The

spatial components of the displacement fields (overlaid) illustrate that different local minima are attained

by the different optimization methods (the full sequences are available in the accompanying material).

(d) The energy convergence pattern over 10 iterations of the algorithms. (e) The color coding used for

visualizing the displacement fields, borrowed from [3].

discontinuities. There are also noticeable artifacts in the graph-cut solution. As part of our pair-

wise potentials are highly non-metric, it is probable that α-expansion will make incorrect moves

that will adversely affect the results. All three methods tend to converge quickly within 3 − 5

iterations, which agrees with the related literature [50]. Although the solution energies tend to

be within the same ballpark, we noticed they usually correspond to different local minima.

� 2.3.2 Implementation Details

Our underlying graphical model is a massive 3D grid, which imposes computational difficul-

ties in both time and space. For tractable runtime, we extend the message update schedule by
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Tappen and Freeman [51] to 3D, by first sending messages (forth and back) along rows in all

frames, then along columns, and finally along time. This sequential schedule allows informa-

tion to propagate quickly through the grid, and helps the algorithm converge faster. To search

larger ranges, we apply LBP to a spatiotemporal video pyramid. Since time-lapse sequences

are temporally aliased, we apply smoothing to the spatial domain only, and sample in the tem-

poral domain. At the coarser level, the same search volume effectively covers twice the volume

used in the finer level, allowing the algorithm to consider larger spatial and temporal ranges. To

propagate the displacements to the finer level, we bilinear-interpolate and scale (multiply by 2)

the shifts, and use them as centers of the search volume at each pixel in the finer level.

The complexity of LBP is linear in the graph size, but quadratic in the state space. In our

model, we have a K3 search volume (for ∆s = ∆t = K), which requires K6 computations per

message update and may quickly become intractable even for relatively small search volumes.

Nevertheless, we can get significant speedup in the computation of the spatial messages using

distance transform, as the 3D displacement components are decoupled in the L1-norm distance.

Felzenszwalb and Huttenlocher have shown that computing a distance transform on such 3D

label grids can be reduced to consecutive efficient computations of 1D distance transforms [13].

The overall complexity of this computation is O(3K3), which is linear in the search range. For

our multiscale computation, Liu et al. [27] already showed how the distance transform can be

extended to handle offsets (corresponding to the centers of the search volumes obtained from

the coarser level of the video pyramid) in 2D. Following the reduction in [13] therefore shows

that we can trivially handle offsets in the 3D case as well. We note that the distance transform

computation is not an approximation, and results in the exact message updates.

We briefly demonstrate the computation of the spatial messages in our formulation using

distance transform, and refer the interested reader to [13] for more details. Our min-sum spatial

message update equation can be written as

mp→q(wq) = min
wp

(
|wp − wq|+ hp(wp)

)
, (2.9)

where hp is the distance transform function, given by hp(wp) = ψp(wp)+
∑

r∈Ns(p)\qmr→p(wp).



42 CHAPTER 2. MOTION DENOISING

We can expand Equation 2.9 as

mp→q(w
x
q , w

y
q , w

t
q)

= min
wx

p ,w
y
p ,wt

p

(
|wxp − wxq |+ |wyp − wyq |+ |wtp − wtq|+ hp(wp)

)
= min

wt
p

|wtp − wtq|+
(

min
wy

p

|wyp − wyq |+
(

min
wx

p

|wxp − wxq |+ hp(wp)
)))

. (2.10)

Written in this form, it is evident that the the 3D distance transform can be computed by con-

secutively computing the distance transform of each component in place. Note that the order

of the components above was chosen arbitrarily, and does not affect the decomposition.

This yields a significant improvement in running time, since 2/3 of the messages propagat-

ing through the graph can be computed in linear time. Unfortunately, we cannot follow a similar

approach for the temporal messages, as the temporal pairwise potential function (Equation 2.7)

is non-convex.

This massive inference problem imposes computational difficulties in terms of space as

well. For example, a 5003 video sequence with a 103 search region requires memory, for

the messages only, of size at least 5003 × 103 × 6 × 4 ' 3 terabytes (!). Far beyond current

available RAM, and probably beyond the average available disk space. We therefore restrict our

attention to smaller sequences and search volumes. As the messages structure cannot fit entirely

in memory, we store it on disk, and read and write the necessary message chunks on need. For

our message update schedule, it suffices to maintain in memory the complete message structure

for one frame for passing messages spatially, and two frames for passing messages temporally.

This imposes no memory difficulty even for larger sequences, but comes at the cost of lower

performance as disk I/O is far more expensive than memory access. Section 2.4 details the

algorithm’s space and time requirements for the videos and parameters we used.

Finally, once LBP converges or message passing is complete, the MAP label assignment is

traditionally computed independently at each node [14]:

ŵp = arg min
wp

(
ψp(wp) +

∑
q∈N (p)

mq→p(wp)
)
. (2.11)

For our problem, we observe that the local conditional densities are often multi-modal (Fig-

ure 2.6), indicating multiple possible solutions that are equivalent, or close to equivalent, with

respect to the objective function. The label (displacement) assigned to each pixel using Equa-

tion 2.11 therefore depends on the order of traversing the labels, which is somewhat arbitrary.
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Figure 2.6: A visualization of the beliefs computed by LBP for a single pixel in the plant sequence,

using a 31 × 31 × 3 support. The support frame containing the pixel is zoomed-in on the upper left.

The beliefs over the support are shown on the upper right, colored from blue (low energy) to red (high

energy). We seek the displacement that has the minimal energy within the support region. At the

bottom, the belief surface is shown for the middle frame of the support region, clearly showing multiple

equivalent (or nearly equivalent) solutions.

As a result, the selected displacements at neighboring pixels need not be coherent with respect

to the pairwise potentials.

We propose a different procedure for assigning the MAP label at each node. Following

our message update schedule, we start with the pixel at position (0, 0, 0) and assign it the label

satisfying Equation 2.11. Then, traversing the grid from back to front, top to bottom and left to

right, we assign each node the label according to

ŵ∗p = arg min
wp

(
ψp(wp) +

∑
q∈P(p)

ψpq(wp, ŵ
∗
q) +

∑
q∈N (p)\P(p)

mq→p(wp)
)
, (2.12)

where P(p) denotes the left, top, and backward neighbors of node p. Notice that these nodes

were already assigned labels by the time node p is reached in this scan pattern, and so their

assignments are used while determining the assignment for p. Overall, this process produces

a MAP assignment that is locally more coherent with respect to the objective function. In
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practice, we found that the solutions produced with this approach have energies 2 − 3% lower

on average comparing to independent assignment of states to pixels, and the decrease in energy

is obviously larger when heavier regularization is sought.

� 2.4 Results

Our main application of interest is time-lapse processing, and so we ran the motion denoising

algorithm on several time-lapse sequences of different nature. We fixed the parameters in all

the experiments to α = 2, γ = 10, ∆s = 7, ∆t = 5, and used a 2-level video pyramid.

We ran LBP for 5 − 10 iterations, during which the algorithm converged to a stable minima.

Representative frames for each experiment are shown in Figures 2.7, 2.8 and 2.10, and the full

sequences and results are available in the accompanying material.

Recall that our basic assumption is that the input sequence contains events of different time

scales. We first produced sequences which demonstrate this effect in a controlled environment.

First, we set up a Canon PowerShot series camera shooting a plant indoors ((plant, Figure 2.7

top). We used a fan for simulating wind, and a slow-moving light source for emulating a

low-variation change in the scene. We then sampled the captured video at a low frame rate to

introduce aliasing in time. A sampling rate of 2 frames/sec allowed sufficient time for the leaves

to move and create the typical motion jitter effect. As can be seen in the result, our algorithm

manages to find a stable and faithful configuration for the plant, while perfectly maintaining the

(longer-term) lighting change in the scene.

sprouts (Figure 2.7 bottom) illustrates the process of plants growing in a similar indoor

setup. In this experiment, we set the camera to capture a still image every 15 minutes, and

the sprouts were placed in an enclosure so that motions are created solely by the plants. The

motion-denoised result appears smoother than the original sequence, and captures the growth

process of the plants with the short-term noisy motions removed. It can be seen that for some

parts of the plants the motions are stabilized (as also shown in the spatiotemporal slices of the

video (Figures 2.1, 2.7), while other parts, namely the sprouts’ tops, are partly removed in the

result. The motion at the top of the stems is the largest, and the algorithm is sometimes unable to

infer the underlying stationary configuration using the search volumes we used. In such cases,

the algorithm gracefully removes these objects and fills-in their place with the background or

other objects they occlude, so as to generate a smooth looking sequence. Enlarging the support

region allows the algorithm to denoise larger motions (Figure 2.11), but has a large impact on
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Figure 2.7: Motion denoising results on the time-lapse sequences plant and sprouts. For each se-

quence, we show a representative source frame (top left), representative frames of the long-term (motion-

denoised) and short-term changes (top right), the computed displacement field (bottom left; spatial dis-

placement on the left, temporal displacement on the right), and a part of an XT slice of the video volumes

for the input and motion-denoised result (bottom right). The short-term result is computed by thresh-

olding the color difference between the input and motion-denoised frames and copying pixels from the

input. The vertical position of the spatiotemporal slice is chosen such that salient sequence dynamics

are portrayed.
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its performance as will be discussed shortly.

Time-lapse videos span a large variety of scenes and styles. To test our technique on a

different type of time-lapse sequences, we experimented with a sequence of a melting glacier

(Figure 2.10) taken by the Extreme Ice Survey (EIS) [1]. EIS documents the changes to the

Earth’s glacial ice via time-lapse photography. We received their raw time-lapse capture of the

Sólheimajökull glacier in Iceland, taken between April 2007 and May 2010 at a rate of 1 frame

per hour. While the video appears cluttered due to changes in lighting and weather conditions

in this extreme environment, the characteristics of this sequence and motions within it are quite

different than the ones we addressed before. Specifically, the decomposition into short-term

and long-term changes is not as evident.

To reduce the sequence size and to prevent the large scene variations from contaminating

the result, we first sampled this sequence using a non-uniform sampling technique similar to

the one proposed by [4], and then ran our motion denoising algorithm on the selected frames

(Figure 2.9). We found the gist descriptor [33] useful as a frame distance measure for selecting

the frames, producing a more temporally-coherent sampling than the one produced with L1 or

L2 distance in color space as used in [4].

Our algorithm’s result on this sequence resembles the response of a temporal filter. Without

apparent motions jitters, the best solution is to smooth the sequence temporally. Indeed, the

computed displacements are dominated by the temporal component (Figure 2.10), meaning

that the algorithm reduces to temporal rearrangement. This, however, happens naturally without

user intervention or parameter tuning.

More results are shown in Figure 2.8. pool and pond nicely illustrate how the algorithm

manages to maintain temporal events in the scene while eliminating short term distracting mo-

tions. Notice how in the pool sequence, the shadows are maintained on the porch and near the

swing chair, while the rapid motions of the tree in the back and flowers in the front are stabi-

lized. Worthy of note is that the input sequences were downloaded from the web in moderate

resolution, showing robustness of the algorithm to video quality and compression artifacts.

In pond, the algorithm manages to denoise the jittery motions in the water and vegetation,

while maintaining the motion of the sun and its reflection on the water. Some artifacts are

apparent, however, in the sky region. This is because the clouds’ dynamics does not fully fit

our motion decomposition model – they neither exhibit jittery motion per se, nor evolve slowly

as other objects (e.g., the sun) in the scene.

Despite our optimizations, the running time of the algorithm is still substantial. Solving for
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Figure 2.8: Additional results on the time-lapse sequences street, pool, and pond, shown in the same

layout as in Figure 2.7.
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(a) (b) (c) (d)
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Figure 2.9: Four frames from the glacier time-lapse (top), taken within the same week of May 18,

2007, demonstrate the large variability in lighting and weather conditions, typical to an outdoor time-

lapse footage. For this sequence, we first apply a non-uniform sampling procedure (bottom; see text) to

prevent noisy frames from affecting the synthesis. The x-axis is the frame number, and the vertical lines

represent the chosen frames.

Input frame (pool) Long-term Short-term

Space Time Input Result

Spatiotemporal displacement x

t
XT slice

Figure 2.10: Result on the time-lapse sequence glacier, shown in the same layout as in Figure 2.7.

a sequence of size 3003 with a 73 search volume takes approximately 50 hours for our CPU-

based C++ implementation of LBP using sequential message passing, on a quad-core Intel

Xeon 2.66GHZ desktop with 28GB RAM. For such dimensions, the algorithm makes use of

1GB of RAM, and up to 50GB scratch space on disk. We used an Intel X-25M solid state drive,
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Figure 2.11: Zoom-in on the rightmost plant in the sprouts sequence in four consecutive frames shows

that enlarging the search volume used by the algorithm can greatly improve the results. “Large support”

corresponds to a 31× 31× 5 search volume, while “small support” is the 7× 7× 5 volume we used in

our experiments.

which gave an approximate x2 speedup in disk I/O, but the running time was dominated by

the computation of the temporal messages. As this computation is quadratic in the size of the

search volume, using larger volumes means even larger increase in the run time. We therefore

resorted to using relatively small search volumes in our experiments.

Even with multi-scale processing, some objects might exhibit motions larger than the range

scanned by the algorithm. In such cases they will be gracefully removed from the sequence,

which might not necessarily be the desired result. Figure 2.11 demonstrates that this limitation

is computational, rather than theoretical.
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Chapter 3

Motion and Color Magnification

It is only with the heart that one can see rightly; what is essential is invisible to the

eye.

–Antoine de Saint-Exupery

In the previous chapter, we saw examples of imagery containing random, distracting vari-

ation that is important to remove. In many other cases, however, it is essential to amplify

temporal variations that are of interest, yet may be imperceptible to us. In this chapter, we

describe a computational ”microscope” for such variations – new techniques we developed that

can efficiently extract, from regular video, subtle motion and color changes that are difficult or

impossible to see with the naked eye, and re-render a video with the desired changes amplified.

Our techniques model changes through space and time in a way that is analogous to an

Eulerian framework for fluid flow analysis, observing and manipulating temporal variations at

fixed locations in space. We call those techniques Eulerian video processing. We describe two

Eulerian approaches to analyze and manipulate small-amplitude motion and color changes in

video, which we call linear and phase-based. We discuss their tradeoffs, and also compare

between our proposed Eulerian techniques and previous Lagrangian methods to amplify mo-

tion. We use our techniques to reveal a variety of faint yet informative visual signals related to

physiological and mechanical functions.

� 3.1 Introduction

The human visual system has limited spatio-temporal sensitivity, but many signals that fall

below this capacity can be informative. For example, human skin color varies slightly with

blood circulation. This variation, while invisible to the naked eye, can be exploited to extract

pulse rate [53, 36, 35]. Similarly, motion with low spatial amplitude, while hard or impossible

51
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(a) Input

(b) Magnified (c) Spatiotemporal YT slicestime
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Figure 3.1: An example of using our Eulerian Video Magnification framework for visualizing the human

pulse. (a) Four frames from the original video sequence (face). (b) The same four frames with the

subject’s pulse signal amplified. (c) A vertical scan line from the input (top) and output (bottom) videos

plotted over time shows how our method amplifies the periodic color variation. In the input sequence

the signal is imperceptible, but in the magnified sequence the variation is clear. The complete sequence

is available in the supplemental video.

for humans to see, can be magnified to reveal interesting mechanical behavior [26]. The success

of these tools motivates the development of new techniques to reveal invisible signals in videos.

Our basic approach is to consider the time series of color values at any spatial location

(pixel) and amplify variation in a given temporal frequency band of interest (Section 3.2). For

example, in Figure 3.1 we automatically select, and then amplify, a band of temporal frequen-

cies that includes plausible human heart rates. The amplification reveals the variation of redness

as blood flows through the face. For this application, temporal filtering needs to be applied to

lower spatial frequencies (spatial pooling) to allow such a subtle input signal to rise above the

camera sensor and quantization noise.

It turns out that this temporal filtering approach not only amplifies color variation, but can

also reveal low-amplitude motion. For example, in the supplemental video, we show that we can

enhance the subtle motions around the chest of a breathing baby. We provide a mathematical

analysis that explains how temporal filtering interplays with spatial motion in videos. Our

analysis relies on a linear approximation related to the brightness constancy assumption used

in optical flow formulations. We also derive the conditions under which this approximation

holds. This leads to a multiscale approach to magnify motion without feature tracking or motion
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estimation.

Previous attempts have been made to unveil imperceptible motions in videos. [26] ana-

lyze and amplify subtle motions and visualize deformations that would otherwise be invisible.

[56] propose using the Cartoon Animation Filter to create perceptually appealing motion ex-

aggeration. These approaches follow a Lagrangian perspective, in reference to fluid dynamics

where the trajectory of particles is tracked over time. As such, they rely on accurate motion

estimation, which is computationally expensive and difficult to make artifact-free, especially at

regions of occlusion boundaries and complicated motions. Moreover, Liu et al. [26] have shown

that additional techniques, including motion segmentation and image in-painting, are required

to produce good quality synthesis. This increases the complexity of the algorithm further.

In contrast, we are inspired by the Eulerian perspective, where properties of a voxel of

fluid, such as pressure and velocity, evolve over time. In our case, we study and amplify the

variation of pixel values over time, in a spatially-multiscale manner. In our Eulerian approach

to motion magnification, we do not explicitly estimate motion, but rather exaggerate motion

by amplifying temporal color changes at fixed positions. We rely on the same differential

approximations that form the basis of optical flow algorithms [30, 22].

Temporal processing has been used previously to extract invisible signals [36] and to smooth

motions [18]. For example, Poh et al. [36] extract a heart rate from a video of a face based on

the temporal variation of the skin color, which is normally invisible to the human eye. They

focus on extracting a single number, whereas we use localized spatial pooling and bandpass

filtering to extract and reveal visually the signal corresponding to the pulse1. This primal do-

main analysis allows us to amplify and visualize the pulse signal at each location on the face.

This has important potential monitoring and diagnostic applications to medicine, where, for

example, the asymmetry in facial blood flow can be a symptom of arterial problems.

Fuchs et al. [18] use per-pixel temporal filters to dampen temporal aliasing of motion in

videos. They also discuss the high-pass filtering of motion, but mostly for non-photorealistic

effects and for large motions (Figure 11 in their paper). In contrast, our method strives to make

imperceptible motions visible using a multiscale approach. We analyze our method theoreti-

cally and show that it applies only for small motions.

Finally, we further extend our approach and introduce a technique to manipulate small

movements in videos based on an analysis of motion in complex-valued image pyramids (Sec-

1See Section 3.2.3 for the algorithm we used to extract the heart rate, which we did not describe in detail in our

SIGGRAPH 2012 paper [59].
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tion 3.3). Phase variations of the coefficients of a complex-valued steerable pyramid over time

correspond to motion, and can be temporally processed and amplified to reveal imperceptible

motions, or attenuated to remove distracting changes. In comparison to the aforementioned

method, this phase-based method has a higher computational overhead, but supports larger

amplification factors and is significantly less sensitive to noise. These improved capabilities

significantly broaden the set of applications for Eulerian motion processing in video.

� 3.2 Eulerian Video Magnification

Our goal is to reveal temporal variations in videos that are difficult or impossible to see with the

naked eye and display them in an indicative manner. Our method, which we call Eulerian Video

Magnification, takes a standard video sequence as input, and applies spatial decomposition,

followed by temporal filtering to the frames. The resulting signal is then amplified to reveal

hidden information. Using our method, we are able to visualize the flow of blood as it fills the

face and also to amplify and reveal small motions. Our technique can run in real time to show

phenomena occurring at temporal frequencies selected by the user.

We make several contributions. First, we demonstrate that nearly invisible changes in a

dynamic environment can be revealed through Eulerian spatio-temporal processing of standard

monocular video sequences. Moreover, for a range of amplification values that is suitable for

various applications, explicit motion estimation is not required to amplify motion in natural

videos. Our approach is robust and runs in real time. Second, we provide an analysis of the

link between temporal filtering and spatial motion and show that our method is best suited to

small displacements and lower spatial frequencies. Third, we present a single framework that

can be used to amplify both spatial motion and purely temporal changes, e.g., the heart pulse,

and can be adjusted to amplify particular temporal frequencies—a feature which is not sup-

ported by Lagrangian methods. Finally, we analytically and empirically compare Eulerian and

Lagrangian motion magnification approaches under different noisy conditions. To demonstrate

our approach, we present several examples where our method makes subtle variations in a scene

visible.

� 3.2.1 Space-time Video Processing

Consider a local fixed region in a video. Color changes in the local region could be attributed to

one of two possible reasons: (a) a static object inside the region has changed color, and (b) an
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object in the region has moved, in which case the region may now contain a different part of the

object that was there before, or a different object altogether. Amplifying these color changes

locally and rendering them back into the video will make them more perceptible to the human

eye.

Our approach combines spatial and temporal processing to emphasize subtle temporal

changes in a video. The process is illustrated in Figure 3.2. We first decompose the video

sequence into different spatial frequency bands. These bands might be magnified differently

because (a) they might exhibit different signal-to-noise ratios, or (b) they might contain spatial

frequencies for which the linear approximation used in our motion magnification does not hold

(Sect. 3.2.2). In the latter case, we reduce the amplification for these bands to suppress arti-

facts. When the goal of spatial processing is simply to increase temporal signal-to-noise ratio

by pooling multiple pixels, we spatially low-pass filter the frames of the video and downsample

them for computational efficiency. In the general case, however, we compute a full Laplacian

pyramid [8].

We then perform temporal processing on each spatial band. We consider the time series

corresponding to the value of a pixel in a frequency band and apply a bandpass filter to extract

the frequency bands of interest. For example, we might select frequencies within 0.4-4Hz,

corresponding to 24-240 beats per minute, if we wish to magnify a pulse. If we are able to

extract the pulse rate, we can use a narrow band around that value. The temporal processing is

uniform for all spatial levels, and for all pixels within each level. We then multiply the extracted

bandpassed signal by a magnification factor α. This factor can be specified by the user, and may

be attenuated automatically according to guidelines in Sect. 3.2.2. Possible temporal filters are

discussed in Sect. 3.2.4. Next, we add the magnified signal to the original and collapse the

spatial pyramid to obtain the final output. Since natural videos are spatially and temporally

smooth, and since our filtering is performed uniformly over the pixels, our method implicitly

maintains spatiotemporal coherency of the results.

� 3.2.2 Eulerian Motion Magnification

Our processing can amplify small motion even though we do not track motion as in Lagrangian

methods [26, 56]. In this section, we show how temporal processing produces motion mag-

nification using an analysis that relies on the first-order Taylor series expansions common in

optical flow analyses [30, 22].
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First-order motion To explain the relationship between temporal processing and motion mag-

nification, we consider the simple case of a 1D signal undergoing translational motion. This

analysis generalizes directly to locally-translational motion in 2D.

Let I(x, t) denote the image intensity at position x and time t. Since the image undergoes

translational motion, we can express the observed intensities with respect to a displacement

function δ(t), such that I(x, t) = f(x+ δ(t)) and I(x, 0) = f(x). The goal of motion magni-

fication is to synthesize the signal

Î(x, t) = f(x+ (1 + α)δ(t)) (3.1)

for some amplification factor α.

Assuming the image can be approximated by a first-order Taylor series expansion, we write

the image at time t, f(x+ δ(t)) in a first-order Taylor expansion about x, as

I(x, t) ≈ f(x) + δ(t)
∂f(x)

∂x
. (3.2)

LetB(x, t) be the result of applying a broadband temporal bandpass filter to I(x, t) at every

position x (picking out everything except f(x) in Equation 3.2). For now, let us assume the

motion signal, δ(t), is within the passband of the temporal bandpass filter (we will relax that

assumption later). Then we have

B(x, t) = δ(t)
∂f(x)

∂x
. (3.3)

In our process, we then amplify that bandpass signal by α and add it back to I(x, t), result-

ing in the processed signal

Ĩ(x, t) = I(x, t) + αB(x, t). (3.4)

Combining Eqs. 3.2, 3.3, and 3.4, we have

Ĩ(x, t) ≈ f(x) + (1 + α)δ(t)
∂f(x)

∂x
. (3.5)

Assuming the first-order Taylor expansion holds for the amplified larger perturbation, (1 +

α)δ(t), we can relate the amplification of the temporally bandpassed signal to motion magnifi-

cation. The processed output is simply

Ĩ(x, t) ≈ f(x+ (1 + α)δ(t)). (3.6)
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This shows that the processing magnifies motions—the spatial displacement δ(t) of the

local image f(x) at time t, has been amplified to a magnitude of (1 + α).

This process is illustrated for a single sinusoid in Figure 3.3. For a low frequency cosine

wave and a relatively small displacement, δ, the first-order Taylor series expansion serves as a

good approximation for the translated signal at time t+ 1. When boosting the temporal signal

by α and adding it back to I(x, t), we approximate that wave translated by (1 + α)δ.

For completeness, let us return to the more general case where δ(t) is not entirely within

the passband of the temporal filter. In this case, let δk(t), indexed by k, represent the different

temporal spectral components of δ(t). Each δk(t) will be attenuated by the temporal filtering

by a factor γk. This results in a bandpassed signal (compare with Equation 3.3),

B(x, t) =
∑
k

γkδk(t)
∂f(x)

∂x
(3.7)

Because of the multiplication in Equation 3.4, this temporal frequency dependent atten-

uation can equivalently be interpreted as a frequency-dependent motion magnification factor,

αk = γkα, resulting in a motion magnified output,

Ĩ(x, t) ≈ f(x+
∑
k

(1 + αk)δk(t)) (3.8)

The result is as would be expected for a linear analysis: the modulation of the spectral

components of the motion signal becomes the modulation factor in the motion amplification

factor, αk, for each temporal subband, δk, of the motion signal.

Bounds In practice, the assumptions in Sect. 3.2.2 hold for smooth images and small motions.

For quickly changing image functions (i.e., high spatial frequencies), f(x), the first-order Tay-

lor series approximations becomes inaccurate for large values of the perturbation, 1 + αδ(t),

which increases both with larger magnification α and motion δ(t). Figures 3.4 and 3.5 demon-

strate the effect of higher frequencies, larger amplification factors and larger motions on the

motion-amplified signal of a sinusoid.

As a function of spatial frequency, ω, we can derive a guide for how large the motion

amplification factor, α, can be, given the observed motion δ(t). For the processed signal,

Ĩ(x, t) to be approximately equal to the true magnified motion, Î(x, t), we seek the conditions

under which

Ĩ(x, t) ≈ Î(x, t)

⇒ f(x) + (1 + α)δ(t)
∂f(x)

∂x
≈ f(x+ (1 + α)δ(t)) (3.9)
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Figure 3.3: Temporal filtering can approximate spatial translation. This effect is demonstrated here on

a 1D signal, but equally applies to 2D. The input signal is shown at two time instants: I(x, t) = f(x) at

time t and I(x, t + 1) = f(x + δ) at time t + 1. The first-order Taylor series expansion of I(x, t + 1)

about x approximates well the translated signal. The temporal bandpass is amplified and added to the

original signal to generate a larger translation. In this example α = 1, magnifying the motion by 100%,

and the temporal filter is a finite difference filter, subtracting the two curves.

Let f(x) = cos(ωx) for spatial frequency ω, and denote β = 1 + α. We require that

cos(ωx)− βωδ(t) sin(ωx) ≈ cos(ωx+ βωδ(t)) (3.10)

Using the addition law for cosines, we have

cos(ωx)− βωδ(t) sin(ωx) =

cos(ωx) cos(βωδ(t))− sin(ωx) sin(βωδ(t)) (3.11)

Hence, the following should approximately hold

cos(βωδ(t)) ≈ 1 (3.12)

sin(βωδ(t)) ≈ βδ(t)ω (3.13)

The small angle approximations of Eqs. (3.12) and (3.13) will hold to within 10% for

βωδ(t) ≤ π
4 (the sine term is the leading approximation and we have sin(π4 ) = 0.9π4 ). In

terms of the spatial wavelength, λ = 2π
ω , of the moving signal, this gives

(1 + α)δ(t) <
λ

8
. (3.14)
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(a) True motion amplification: Î(x, t) = f(x+ (1 + α)δ(t)).
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(b) Motion amplification via temporal filtering: Ĩ(x, t) = I(x, t) + αB(x, t).

Figure 3.4: Illustration of motion amplification on a 1D signal for different spatial frequencies and α

values. For the images on the left side, λ = 2π and δ(1) = π
8 is the true translation. For the images on

the right side, λ = π and δ(1) = π
8 . (a) The true displacement of I(x, 0) by (1 + α)δ(t) at time t = 1,

colored from blue (small amplification factor) to red (high amplification factor). (b) The amplified

displacement produced by our filter, with colors corresponding to the correctly shifted signals in (a).

Referencing Equation 3.14, the red (far right) curves of each plot correspond to (1 +α)δ(t) = λ
4 for the

left plot, and (1 + α)δ(t) = λ
2 for the right plot, showing the mild, then severe, artifacts introduced in

the motion magnification from exceeding the bound on (1 + α) by factors of 2 and 4, respectively.

Equation 3.14 above provides the guideline we seek, giving the largest motion amplification

factor, α, compatible with accurate motion magnification of a given video motion δ(t) and

image structure spatial wavelength, λ. Figure 3.4 (b) shows the motion magnification errors for

a sinusoid when we boost α beyond the limit in Equation 3.14. In some videos, violating the

approximation limit can be perceptually preferred and we leave the λ cutoff as a user-modifiable

parameter in the multiscale processing.
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Figure 3.5: Motion magnification error, computed as the L1-norm between the true motion-amplified

signal (Figure 3.4(a)) and the temporally-filtered result (Figure 3.4(b)), as function of wavelength, for

different values of δ(t) (a) and α (b). In (a), we fix α = 1, and in (b), δ(t) = 2. The markers on each

curve represent the derived cutoff point (1 + α)δ(t) = λ
8 (Equation 3.14).

 
(1 +α)δ(t)<

0 λ

α 
λ

Figure 3.6: Amplification factor, α, as function of spatial wavelength λ, for amplifying motion. The

amplification factor is fixed to α for spatial bands that are within our derived bound (Equation 3.14), and

is attenuated linearly for higher spatial frequencies.

Multiscale analysis The analysis in Sect. 3.2.2 suggests a scale-varying process: use a spec-

ified α magnification factor over some desired band of spatial frequencies, then scale back for

the high spatial frequencies (found from Equation 3.14 or specified by the user) where amplifi-

cation would give undesirable artifacts. Figure 3.6 shows such a modulation scheme for α. The

spatial frequency content of the different levels of the Laplacian pyramid can be estimated as

shown in Figure 3.7. Although areas of high spatial frequencies (sharp edges) will be generally

amplified less than lower frequencies, we found the resulting videos to contain perceptually

appealing magnified motion. Such effect was also exploited in the earlier work of Freeman et

al. [16] to create the illusion of motion from still images.
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(b) Spatial bands

(c) DCT coefficients
f = 51.23 f = 20.88 f = 10.83 f = 5.67 f = 2.96

(a) Impulse (128x128)

Figure 3.7: Spatial frequencies of the Laplacian pyramid. To estimate the spatial frequencies at each

pyramid level, we decompose an impulse image (a) to its spatial frequency bands (b), and compute the

DCT coefficients for each band (c). We estimate the spatial frequency for each band (given below the

DCT coefficients in (c)) as the average magnitude of its corresponding DCT coefficients, weighted by

their distance from the origin (upper left corner in (c)).

� 3.2.3 Pulse and Heart Rate Extraction

Our Eulerian processing can also be useful for quantitative analysis of temporal variation. In

particular, although not the focus of this thesis, we show how we can utilize the subtle color

variation of the human skin due to blood flow in order to extract heart rate (HR) measurements

from standard RGB video.

State-of-the-art techniques for measuring cardiac pulse either use electrocardiogram (ECG,

a.k.a. EKG) or pulse oximetry, which require the patient to either wear patches or attach an

external device. Measuring the pulse without direct contact can be useful in a variety of cases

when attaching patches or devices may be undesirable or impossible. Those include remote

medical diagnosis and checkups, vital-sign monitoring in prenatal babies, and search and rescue

operations where the subject may be out of reach. This has led to recent attempts in both the

academia and industry to create video-based solutions for contactless measurement of HR and

other vital signs [36, 35, 32].

As we have seen earlier, the color of the skin changes slightly with blood flow. When

recorded by video, we found this signal corresponds to roughly 0.5 intensity units in an 8-bit

scale (each pixel records an intensity value within 0− 255) . This subtle signal can be reliably

extracted with our Eulerian processing, to visualize spatial blood flow patterns as previously

discussed, and also to recover the actual pulse signal and HR of the subject being recorded.
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(a) Bandpassed signal and detected peaks (b) Point-wise pulse onsets and detected pulse locations

Figure 3.8: Heart rate extraction. (a) The spatially-averaged, temporally-bandpassed signal from one

point on the face in the face video from Figure 3.1, with the local maxima marked, indicating the pulse

onsets. (b) Pulse locations used to estimate the pulse signal and heart rate. Each row on the y-axis

corresponds to a different point on the face in no particular ordering. Black pixels represent the detected

peak locations at each point, and the red vertical lines correspond to the final estimated pulse locations

that are used to compute the heart rate.

Our process works as follows. We apply the same spatial decomposition described in Sec-

tion 3.2.1 using a Gaussian pyramid of 3 − 4 levels, and filter the signal at the coarse pyramid

level temporally selecting frequencies between 0.4− 4Hz (corresponding to 24− 240 beats per

minute). The spatial pooling of the Gaussian pyramid averages over enough pixels to reveal the

underlying pulse in the signal, and the temporal filter further removes some of the noise.

The instantaneous HR can be determined by a frequency analysis of the color variation in

the extracted bandpassed signal, however we also explored a basic method that can recover the

actual pulse signal over time (and from it the HR), which we will describe next. This prelim-

inary method was later extended by [58] to more rigorously account for the onset differences

when determining the HR.

Specifically, we detect the pulse onset times at each location on the face in the coarse pyra-

mid level, by finding maxima points in the bandpassed signal within a local temporal window.

The size of the temporal window can be chosen according to the detected frequency of the
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color variation in the bandpassed signal, however we generally found that a temporal window

of 10 − 15 frames for a 30 frames-per-second video produced good results. In figure 3.8 we

show the bandpassed signal with its detected peak positions for one point from a smooth region

on the face in the face video (Figure 3.1).

Typically, the quality of the pulse signal extracted from different points on the face may

vary. This is both because the amplitude of the signal may be modulated according to the

density of peripheral blood vessels, as well as due to high spatial-contrast regions of the body

or face from which it is harder to extract the signal. There can also be errors in detecting the

peaks in the bandpassed signal.

Thus, to get a robust estimate of the pulse onset times we integrate the signal extracted from

the different locations in the video. We ignore all the points for which the temporal frequency

deviates sufficiently (parameter) from the dominant temporal frequency in the face region (the

face region can be provided by a user, or identified automatically using a face detector). We then

consider the rest of the points as containing a pulse signal, and determine the pulse locations

as the local (temporally) centers of mass of the detected peaks in all the points (Figure 3.8(b)).

Notice that even though the pulse estimation at particular points on the face may be noisy,

combining the estimation from multiple points provides a robust estimation of the pulse signal.

Finally, from the estimated pulse signal we directly establish the HR as the number of pulses

within a small temporal window (we used a 5 seconds window).

An important difference between our technique and that of Poh et al. [36] is that they

average the pixel values over the entire face region, while in our approach only pulsatile regions

on the face will be used for the HR estimation. In fact, we noticed empirically that many pixels

on the face, especially those within high spatial-contract regions, do not provide reliable cardiac

signal (Figure 3.29). Thus, averaging over those regions, as done by Poh et al., may reduce the

pulse SNR and the accuracy of the estimated HR.

� 3.2.4 Results

The results were generated using non-optimized MATLAB code on a machine with a six-core

processor and 32 GB RAM. The computation time per video was on the order of a few minutes.

We used a separable binomial filter of size five to construct the video pyramids.

To process an input video by Eulerian video magnification, there are four steps a user needs

to take: (1) select a temporal bandpass filter; (2) select an amplification factor, α; (3) select

a spatial frequency cutoff (specified by spatial wavelength, λc) beyond which an attenuated
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Figure 3.9: Eulerian video magnification used to amplify subtle motions of blood vessels arising from

blood flow. For this video, we tuned the temporal filter to a frequency band that includes the heart

rate—0.88 Hz (53 bpm)—and set the amplification factor to α = 10. To reduce motion magnification

of irrelevant objects, we applied a user-given mask to amplify the area near the wrist only. Movement

of the radial and ulnar arteries can barely be seen in the input video (a) taken with a standard point-and-

shoot camera, but is significantly more noticeable in the motion-magnified output (b). The motion of the

pulsing arteries is more visible when observing a spatio-temporal Y T slice of the wrist (a) and (b). The

full wrist sequence can be found in the supplemental video.

version of α is used; and (4) select the form of the attenuation for α—either force α to zero

for all λ < λc, or linearly scale α down to zero. The frequency band of interest can be chosen

automatically in some cases, but it is often important for users to be able to control the frequency

band corresponding to their application.

We first select the temporal bandpass filter to pull out the motions or signals that we wish to

be amplified (step 1 above). The choice of filter is generally application dependent. For motion

magnification, a filter with a broad passband is preferred; for color amplification of blood flow, a

narrow passband produces a more noise-free result. Figure 3.10 shows the frequency responses

of some of the temporal filters used in this paper. We use ideal bandpass filters for color

amplification, since they have passbands with sharp cutoff frequencies. Low-order IIR filters

can be useful for both color amplification and motion magnification and are convenient for a

real-time implementation. In general, we used two first-order lowpass IIR filters with cutoff

frequencies ωl and ωh to construct an IIR bandpass filter.

Next, we select the desired magnification value, α, and spatial frequency cutoff, λc (steps 2

and 3). While Equation 3.14 can be used as a guide, in practice, we may try various α and

λc values to achieve a desired result. Users can select a higher α that violates the bound to
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(a) Ideal 0.8-1 Hz (face)
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(b) Ideal 175-225 Hz (guitar)
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(c) Butterworth 3.6-6.2 Hz (subway)
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(d) Second-order IIR (pulse detection)

Figure 3.10: Temporal filters used in the thesis. The ideal filters (a) and (b) are implemented using

DCT. The Butterworth filter (c) is used to convert a user-specified frequency band to a second-order IIR

structure that can be used for real-time processing (Section 3.4). The second-order IIR filter (d) also

allows user input. These second-order filters have a broader passband than an ideal filter.

exaggerate specific motions or color changes at the cost of increasing noise or introducing

more artifacts. In some cases, one can account for color clipping artifacts by attenuating the

chrominance components of each frame. Our approach achieves this by doing all the processing

in the YIQ space. Users can attenuate the chrominance components, I and Q, before conversion

to the original color space.

For human pulse color amplification, where we seek to emphasize low spatial frequency

changes, we may force α = 0 for spatial wavelengths below λc. For motion magnification

videos, we can choose to use a linear ramp transition for α (step 4).

Color Amplification We evaluated our method for color amplification using a few videos: two

videos of adults with different skin colors and one of a newborn baby. An adult subject with

lighter complexion is shown in face (Figure 3.1), while an individual with darker complexion is

shown in face2 (Table C.1). In both videos, our objective was to amplify the color change as the

blood flows through the face. In both face and face2, we applied a Laplacian pyramid and set α

for the finest two levels to 0. Essentially, we downsampled and applied a spatial lowpass filter
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(a) Input (sim4) (b) Motion-amplified spatiotemporal slices

Figure 3.11: Selective motion amplification on a synthetic sequence (sim4 on left). The video sequence

contains blobs oscillating at different temporal frequencies as shown on the input frame. We apply our

method using an ideal temporal bandpass filter of 1-3 Hz to amplify only the motions occurring within

the specified passband. In (b), we show the spatio-temporal slices from the resulting video which show

the different temporal frequencies and the amplified motion of the blob oscillating at 2 Hz. We note

that the space-time processing is applied uniformly to all the pixels. The full sequence and result can be

found in the supplemental video.

to each frame to reduce both quantization and noise and to boost the subtle pulse signal that

we are interested in. For each video, we then passed each sequence of frames through an ideal

bandpass filter with a passband of 0.83 Hz to 1 Hz (50 bpm to 60 bpm). Finally, a large value

of α ≈ 100 and λc ≈ 1000 was applied to the resulting spatially lowpass signal to emphasize

the color change as much as possible. The final video was formed by adding this signal back

to the original. We see periodic green to red variations at the heart rate and how blood perfuses

the face.

Heart Rate Extraction We demonstrate heart rate measurement on a video of a newborn

recorded in situ at the Nursery Department at Winchester Hospital in Massachusetts (baby2).

The video was taken with a standard DSLR camera, and we obtained ground truth vital signs

from a hospital-grade monitor that was recorded in sync with the video. We used this informa-

tion to confirm the accuracy of our heart rate estimate and to verify that the color amplification

signal extracted from our method matches the photoplethysmogram, an optically obtained mea-

surement of the perfusion of blood to the skin, as measured by the monitor. This video is part of
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(a) Input (guitar) (b) Low E (82.4 Hz) (c) A (100 Hz)

Figure 3.12: Selective motion amplification on a natural video (guitar). Each of the guitar’s strings (a)

vibrates at different frequency. (b-c) The signals of intensities over time (top) and their corresponding

power spectra (bottom) are shown for two pixels located on the low E and A strings, respectively, su-

perimposed on the representative frame in (a). The power spectra clearly reveal the vibration frequency

of each string. Using an appropriate temporal bandpass filter, we are able to amplify the motion of par-

ticular strings while maintaining the motion of the others. The result is available in the supplemental

video.

a larger study done by [58] involving several prenatal babies, and we refer the interested reader

to their paper for more details and a comprehensive evaluation.

Motion Amplification To evaluate our method for motion magnification, we used several

different videos: face (Figure 3.1), sim4 (Figure 3.11), wrist (Figure 3.9), camera (Figure 3.2),

face2, guitar, baby, subway, shadow, and baby2 (Table C.1). For all videos, we used a standard

Laplacian pyramid for spatial filtering. For videos where we wanted to emphasize motions at

specific temporal frequencies (e.g., in sim4 and guitar), we used ideal bandpass filters. In sim4

and guitar, we were able to selectively amplify the motion of a specific blob or guitar string by

using a bandpass filter tuned to the oscillation frequency of the object of interest. These effects

can be observed in the supplemental video. The values used for α and λc for all of the videos

discussed in this paper are shown in Table 3.1.

For videos where we were interested in revealing broad, but subtle motion, we used tempo-

ral filters with a broader passband. For example, for the face2 video, we used a second-order
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IIR filter with slow roll-off regions. By changing the temporal filter, we were able to mag-

nify the motion of the head rather than amplify the change in the skin color. Accordingly,

α = 20, λc = 80 were chosen to magnify the motion.

By using broadband temporal filters and setting α and λc according to Equation 3.14, our

method is able to reveal subtle motions, as in the camera and wrist videos. For the camera

video, we used a camera with a sampling rate of 300 Hz to record a Digital SLR camera

vibrating while capturing photos at about one exposure per second. The vibration caused by

the moving mirror in the SLR, though invisible to the naked eye, was revealed by our approach.

To verify that we indeed amplified the vibrations caused by the flipping mirror, we secured a

laser pointer to the camera and recorded a video of the laser light, appearing at a distance of

about four meters from the source. At that distance, the laser light visibly oscillated with each

exposure, with the oscillations in sync with the magnified motions.

Our method is also able to exaggerate visible, yet subtle motion, as seen in the baby, face2,

and subway videos. In the subway example we deliberately amplified the motion beyond the

derived bounds of where the first-order approximation holds in order to increase the effect

and to demonstrate the algorithm’s artifacts. We note that most of the examples in our paper

contain oscillatory movements because such motion generally has longer duration and smaller

amplitudes. However, our method can be used to amplify non-periodic motions as well, as long

as they are within the passband of the temporal bandpass filter. In shadow, for example, we

process a video of the sun’s shadow moving linearly yet imperceptibly over 15 seconds. The

magnified version makes it possible to see the change even within this short time period.

Finally, some videos may contain regions of temporal signals that do not need amplification,

or that, when amplified, are perceptually unappealing. Due to our Eulerian processing, we can

easly allow the user to manually restrict magnification to particular areas by marking them on

the video (this was used for face and wrist).

� 3.2.5 Sensitivity to Noise.

The amplitude variation of the signal of interest is often much smaller than the noise inherent

in the video. In such cases direct enhancement of the pixel values will not reveal the desired

signal. Spatial filtering can be used to enhance these subtle signals. However, if the spatial filter

applied is not large enough, the signal of interest will not be revealed (Figure 3.13).

Assuming that the noise is zero-mean white and wide-sense stationary with respect to space,

it can be shown that spatial low pass filtering reduces the variance of the noise according to the
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Video α λc ωl (Hz) ωh (Hz) fs (Hz)

baby 10 16 0.4 3 30

baby2 150 600 2.33 2.67 30

camera 120 20 45 100 300

face 100 1000 0.83 1 30

face2 motion 20 80 0.83 1 30

face2 pulse 120 960 0.83 1 30

guitar Low E 50 40 72 92 600

guitar A 100 40 100 120 600

shadow 5 48 0.5 10 30

subway 60 90 3.6 6.2 30

wrist 10 80 0.4 3 30

Table 3.1: Table of α, λc, ωl, ωh values used to produce the various output videos. For face2, two

different sets of parameters are used—one for amplifying pulse, another for amplifying motion. For

guitar, different cutoff frequencies and values for (α, λc) are used to “select” the different oscillating

guitar strings. fs is the frame rate of the camera.

area of the low pass filter. To demonstrate this, let σ2 be the noise variance in the original

image, and N(i, j) be the noise at position (i, j). Also let g(i, j) be the filter value at position

(i, j), such that
∑

i,j g(i, j) = 1. Then the noise variance in the spatially filtered image, σ′2,

can be expressed as

σ′
2

= E
[
N ′(k, l)2

]
−
(
E
[
N ′(k, l)

])2
= E

∑
i,j

g(i, j)N(i− k, j − l)

2− 0

=
∑
i,j

g(i, j)2E[N(i− k, j − l))2]

= σ2
∑
i,j

g(i, j)2. (3.15)

For this low pass filter, the noise power level is thus inversely proportional to the area of the

filter.

In order to boost the power of a specific signal, e.g., the pulse signal in the face, we can

use the spatial characteristics of the signal to estimate the spatial filter size. Assuming our prior
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(b) Insufficient spatial pooling
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(c) Sufficient spatial pooling

Figure 3.13: Proper spatial pooling is imperative for revealing the signal of interest. (a) A frame from

the face video (Figure 3.1) with white Gaussian noise added (σ = 0.1). On the right are intensity traces

over time for the pixel marked blue on the input frame, where (b) shows the trace obtained when the

(noisy) sequence is processed with the same spatial filter used to process the original face sequence, a

separable binomial filter of size 20, and (c) shows the trace when using a filter tuned according to the

estimated radius in Equation 3.16, a binomial filter of size 80. The pulse signal is not visible in (b), as

the noise level is higher than the power of the signal, while in (c) the pulse is clearly visible (the periodic

peaks about one second apart in the trace).

on signal power over spatial wavelengths is S(λ), we want to find a spatial low pass filter with

radius r such that the signal power is greater than the noise in the filtered frequency region.

The wavelength cut off of such a filter is proportional to its radius, r, so the signal prior can

be represented as S(r). The noise power, σ2, can be estimated by examining pixel values in a

stable region of the scene, from a gray card, or by using a technique as in [25]. Since the filtered

noise power level, σ′2, is inversely proportional to r2, we can solve the following equation for

r,

S(r) = σ′
2

= k
σ2

r2
(3.16)

where k is a constant that depends on the shape of the low pass filter. This equation gives an

estimate for the size of the spatial filter needed to reveal the signal at a certain noise power

level.
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� 3.2.6 Eulerian vs. Lagrangian Processing.

Because the two methods take different approaches to motion—Lagrangian approaches explic-

itly track motions, while our Eulerian approach does not—they can be used for complementary

motion domains. Lagrangian approaches, e.g. [26], work better to enhance motions of fine

point features and support larger amplification factors, while our Eulerian method is better

suited to smoother structures and small amplifications. We note that our technique does not

assume particular types of motions. The first-order Taylor series analysis can hold for general

small 2D motions along general paths.

In Appendix A, we further derive estimates of the accuracy of the two approaches with

respect to noise2. Comparing the Lagrangian error, εL (Equation A.18), and the Eulerian error,

εE (Equation A.20), we see that both methods are equally sensitive to the temporal character-

istics of the noise, nt, while the Lagrangian process has additional error terms proportional to

the spatial characteristics of the noise, nx, due to the explicit estimation of the motion (Equa-

tion A.15). The Eulerian error, on the other hand, grows quadratically with α, and is more

sensitive to high spatial frequencies (Ixx). In general, this means that Eulerian magnification

would be preferable over Lagrangian magnification for small amplifications and larger noise

levels.

We validated this analysis on a synthetic sequence of a 2D cosine oscillating at 2 Hz tem-

porally and 0.1 pixels spatially with additive white spatiotemporal Gaussian noise of zero mean

and standard deviation σ (Figure 3.14). The results match the error-to-noise and error-to-

amplification relationships predicted by the derivation (Figure 3.14(c-d)). The region where the

Eulerian approach outperforms the Lagrangian results (Figure3.14(b), left) is also as expected.

The Lagrangian method is more sensitive to increases in spatial noise, while the Eulerian er-

ror is hardly affected by it (Figure 3.14(d)). While different regularization schemes used for

motion estimation (that are harder to analyze theoretically) may alleviate the Lagrangian error,

they did not change the result significantly (Figure 3.14(b), right). In general, our experiments

show that for small amplifications the Eulerian approach strikes a better balance between per-

formance and efficiency. Comparisons between the methods on natural videos are available on

the project webpage.

2This is a more detailed version of the derivation we gave in Appendix A in our SIGGRAPH 2012 paper [59].
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(a) A frame from the synthetic input sequence.
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Figure 3.14: Comparison between Eulerian and Lagrangian motion magnification on a synthetic se-

quence with additive noise (a). (b) The minimal error, min(εE , εL), computed as the (frame-wise)

RMSE between each method’s result and the true motion-magnified sequence, as function of noise and

amplification, colored from blue (small error) to red (large error), with (left) and without (right) spatial

regularization in the Lagrangian method. The black curves mark the intersection between the error sur-

faces, and the overlayed text indicate the best performing method in each region. (c) RMSE of the two

approaches as function of noise (left) and amplification (right). (d) Same as (c), using spatial noise only.
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� 3.3 Phase-Based Video Motion Processing

The Eulerian method we presented in Section 3.2, which we have shown produces a linear ap-

proximation to the magnified motion, is simple and fast, but suffers from two main drawbacks:

(a) it supports relatively small magnification factors, and (b) it can significantly amplify noise

when the magnification factor is increased (Figure 3.15(b)).

To counter these issues, we explored another Eulerian approach to motion processing,

which is based on complex-valued steerable pyramids [48, 37], and inspired by phase-based

optical flow [15, 19] and motion without movement [16]. Just as the phase variations of Fourier

basis functions (sine waves) are related to translation via the the Fourier shift theorem, the phase

variations of the complex steerable pyramid correspond to local motions in spatial subbands of

an image. We compute the local phase variations to measure motion without explicit optical

flow computation, and perform temporal processing to amplify motion in selected temporal

frequency bands, and then reconstruct the modified video.

In this section, we show how this phase-based technique improves on the previous, linear

Eulerian magnification method in two important aspects (Figure 3.15): (a) it supports larger

magnification, and (b) it has substantially better noise performance. Because the linear method

amplifies temporal brightness changes, the amplitude of noise is amplified linearly. In contrast,

the method we propose here modifies phases, not amplitudes, which does not increase the

magnitude of spatial noise.

We start from the relation between motion and phase in steerable pyramids and show that

by increasing the phase variations by a multiplicative factor we can amplify subtle motions. We

then use this relation to analyze the limits of the method, which are set by the spatial support

of the steerable basis functions. To amplify motions further, we extend the complex steerable

pyramid to sub-octave bandwidth pyramids, comprised of filters with larger spatial support in

the primal domain. While this new image representation is over-complete by a larger factor,

it supports larger amplification of motions at all spatial frequencies, leading to fewer artifacts.

This expands the set of small-scale physical phenomena that can be visualized with Eulerian

motion magnification techniques.

The extension to sub-octave bandwidth pyramids is mostly due to Wadhwa [54]. We briefly

describe it here for completeness (Section 3.3.5, Appendix B), and refer the interested reader to

his thesis for a more comprehensive discussion of sub-octave pyramid construction and other

implementation details.
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(a) Source (b) Linear (c) Phase-basedx

t

Figure 3.15: Motion magnification of a crane imperceptibly swaying in the wind. (a) Top: a zoom-in

onto a patch in the original sequence (crane) shown on the left. Bottom: a spatiotemporal XT slice of

the video along the profile marked on the zoomed-in patch. (b-c) Linear (Section 3.2) and phase-based

motion magnification results, respectively, shown for the corresponding patch and spatiotemporal slice as

in (a). The previous, linear method visualizes the crane’s motion, but amplifies both signal and noise and

introduces artifacts for higher spatial frequencies and larger motions, shown by the clipped intensities

(bright pixels) in (b). In comparison, our new phase-based method supports larger magnification factors

with significantly fewer artifacts and less noise (c). The full sequences are available in the supplemental

video.

� 3.3.1 Background

Phase-based Optical Flow. Fleet and Jepson [15] tracked constant phase contours by com-

puting the phase gradient of a spatio-temporally bandpassed video, and showed that it provides

a good approximation to the motion field, and that phase is more robust than amplitude to im-

age changes due to contrast and scale. Gautama and Van Hulle [19] used a similar technique

in which they computed the temporal gradient of the phases of a spatially bandpassed video to

estimate the motion field. We build on this link between phase and motion, but seek to avoid

the explicit computation of flow vectors, and instead directly manipulate the phase variations

in videos.

Complex Steerable Pyramids. The steerable pyramid [48, 47] is an overcomplete transform

that decomposes an image according to spatial scale, orientation, and position. The basis func-

tions of the transform resemble Gabor wavelets, sinusoids windowed by a Gaussian envelope,

and are steerable. We don’t exploit the steerability of those basis functions in this work, but
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the transform has other properties which are important for our motion analysis: non-aliased

subbands and quadrature phase filters.

We measure phase within each subband using the pairs of even and odd-phase oriented spa-

tial filters whose outputs are the complex-valued coefficients in the steerable pyramid [48], The

sub-sampling scheme of the steerable pyramid avoids spatial aliasing and thus allows mean-

ingful signal phase measurements from the coefficients of the pyramid.The real part of each

coefficient represents the even-symmetric filter (cosine), while its imaginary counterpart repre-

sents an odd-symmetric filter (sine). While twice as over-complete as a real-valued pyramid,

the complex-valued pyramid allows simple measurement of local amplitude and phase, which

we exploit to process motion.

The steerable pyramid has non-oriented, real-valued high and low-pass coefficients describ-

ing residual signal components not captured by the bandpass filters [48]. The frequency domain

transfer functions in the oriented bands of the steerable pyramid, Ψω,θ, are scaled and rotated

copies of a basic filter, indexed by scale ω and orientation θ.

The steerable pyramid is built by applying these transfer functions to the discrete Fourier

transform Ĩ of an image I to decompose it into different spatial frequency bands Sω,θ which

have DFT S̃ω,θ(x, y) = ĨΨω,θ. Each filter isolates a continuous region of the frequency do-

main and therefore has an impulse response that is localized in space (Figure 3.18(Impulse

Response)). The resulting spatial frequency band is localized in space, scale and orientation

(see [37] for filter design steps). The transfer functions of a complex steerable pyramid only

contain the positive frequencies of the corresponding real steerable pyramid’s filter. That is, the

response of 2 cos(ωx) = eiωx + e−iωx is eiωx so that there is a notion of both amplitude and

phase.

In the frequency domain, the process to build and then collapse the pyramid is given by

ĨR =
∑

S̃ω,θΨω,θ =
∑

ĨΨ2
ω,θ (3.17)

where the sums are over all of the scales and orientations in the pyramid, yielding the recon-

structed image, IR. We perform filtering in the frequency domain.

� 3.3.2 Phase-based Motion Processing

Our processing amplifies small motions by modifying local phase variations in a complex steer-

able pyramid representation of the video. In this section, we describe our approach and discuss

why the phase-based technique has better noise handling and maximum magnification than the
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Figure 3.17: Phase-based motion magnification is perfect for sinusoidal functions. In these plots, the

initial displacement is δ(t) = 1. While the errors for the linear technique (Section 3.2) are dependent

on wavelength for sinusoids, there is no such dependence for the present technique and the error is

uniformly small. The vertical axis in (d) is logarithmic.

linear Eulerian motion magnification technique (Section 3.2). To give intuition and to demon-

strate that the phase variations correspond to motion, we show how our technique works on

sinusoidal waves (Fourier basis elements). For non-periodic image structures, phase-based mo-

tion magnification is bounded by the spatial support of the complex steerable pyramid filters.

We overcome this bound by using sub-octave bandwidth complex steerable pyramids that have

wider spatial support.
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� 3.3.3 Motion Magnification

The phase-based approach relies on complex-valued steerable pyramids because they allow us

to measure and modify local motions. To give intuition for our phase-based motion processing,

we first give an example using a global Fourier basis and consider the case of a 1D image inten-

sity profile f under global translation over time, f(x + δ(t)), for some displacement function

δ(t) (not to be confused with a Dirac function). We wish to synthesize a sequence with modi-

fied motion, f(x+ (1 + α)δ(t)), for some magnification factor α. We will discuss the general

case at the end of this section.

Using the Fourier series decomposition, we can write the displaced image profile, f(x +

δ(t)), as a sum of complex sinusoids,

f(x+ δ(t)) =
∞∑

ω=−∞
Aωe

iω(x+δ(t)) (3.18)

in which each band corresponds to a single frequency ω.

From Equation 3.18, the band for frequency ω is the complex sinusoid

Sω(x, t) = Aωe
iω(x+δ(t)). (3.19)

Because Sω is a sinusoid, its phase ω(x+ δ(t)) contains motion information. Like the Fourier

shift theorem, we can manipulate the motion by modifying the phase.

To isolate motion in specific temporal frequencies, we temporally filter the phase ω(x +

δ(t)) (Equation 3.19) with a DC balanced filter. To simplify the derivation, we assume that the

temporal filter has no other effect except to remove the DC component ωx. The result is

Bω(x, t) = ωδ(t). (3.20)

We then multiply the bandpassed phase Bω(x, t) by α and increase the phase of sub-band

Sω(x, t) by this amount to get the motion magnified sub-band

Ŝω(x, t) := Sω(x, t)eiαBω = Aωe
iω(x+(1+α)δ(t)). (3.21)

The result Ŝω(x, y) is a complex sinusoid that has motions exactly 1 + α times the input (Fig-

ure 3.17). We can reconstruct the motion-magnified video by collapsing the pyramid. In this

analysis, we would do this by summing all the sub-bands to get the motion magnified sequence

f(x+ (1 + α)δ(t)).
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In general, motions in a video are local and δ(t) is actually δ(x, t). We use the complex

steerable pyramid to deal with local motions as its filters have impulse responses with finite

spatial support (Figure 3.18(Impulse Response)). Specifically, our method works as follows

(Figure 3.16). We compute the local phase over time at every spatial scale and orientation of

a steerable pyramid. Then, we temporally bandpass these phases to isolate specific temporal

frequencies relevant to a given application and remove any temporal DC component. These

temporally bandpassed phases correspond to motion in different spatial scales and orientations.

To synthesize magnified motion, we multiply the bandpassed phases by an amplification factor

α. We then use these amplified phase differences to magnify (or attenuate) the motion in the

sequence by modifying the phases of each coefficient by this amount for each frame.

� 3.3.4 Bounds

As we move an image feature by phase-shifting each complex pyramid filter covering that

feature, we eventually reach a limit beyond which we can’t move the feature because of the

limited spatial support of each pyramid filter (Figure 3.16(a) and Figure 3.18(1D Wavelets)).

As an approximate analytic model of an image feature moved by the localized filters of the

steerable pyramid, we consider the case of a single Dirac under uniform translation over time,

moved by phase shifting Gabor filters, complex sinusoids modulated by a Gaussian window

function. As the Dirac is phase-shifted, it is attenuated by the Gaussian window of the Gabor

filters. Therefore, we bound the maximum phase shift such that the Dirac is only attenuated by

a small amount.

A one dimensional Gabor filter has frequency domain transfer function

e−2π(ωx−ω0)2σ2
, (3.22)

where ω0 is the frequency the filter selects for and 1√
2σ

is the width of Gaussian window in

the frequency domain. Typically, σ depends on the frequency ω0 (self-similar wavelets). The

inverse Fourier transform gives us the following impulse response in the spatial domain (up to

a constant factor):

Sω(x, 0) = e−x
2/(2σ2)e2πiω0x, (3.23)

a complex sinusoid windowed by a Gaussian envelope. Respectively, the impulse response of

a Dirac function shifted by δ(t) pixels (not to be confused with the Dirac function) at time t is

Sω(x, t) = e−(x−δ(t))
2/(2σ2)e2πiω0(x−δ(t)) (3.24)
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Figure 3.19: For general non-periodic structures, we achieve performance at least four times that of

the linear technique, and do not suffer from clipping artifacts (a). For large amplification, the different

frequency bands break up due to the higher bands having a smaller window (b).

Note that the spatial Gaussian envelope (the left term on the RHS of Equation 3.24) does not

affect the phase.

Applying a finite difference bandpass filter ([1−1]) to the phase at time 0 and time t, gives

Bω(x, t) = 2πω0δ(t), (3.25)

and the synthesized phase difference for modulating the motion by α is then

2πω0αδ(t). (3.26)

This phase difference corresponds to a shift of the Dirac by an additional αδ(t) pixels. We need

to bound the shift αδ(t) such that the amplified shift approximates well the true shifted signal.

We use one standard deviation of the Gaussian window as our bound. This maintains roughly

61% of the amplitude (Figure 3.18 (1D Wavelets), Figure 3.20), and so we have

αδ(t) < σ. (3.27)

In the octave-bandwidth steerable pyramid of Portilla and Simoncelli [37] (Figure 3.18(a)),

there is approximately one period of the sinusoid under the Gaussian envelope. That is, 4σ ≈
1
ω0

, which gives the bound αδ(t) < σ = 1
4ω0

. By equating the spatial wavelength λ = 1
ω0

, we

get1

αδ(t) <
λ

4
. (3.29)
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Figure 3.20: The impulse response of the steerable filter bank illustrates the artifacts that arise when

modulating phase to magnify motion. (a) The impulse response of a wavelet being phase shifted. As

the phase increases (orange corresponds to 3π
4 ), the primary peak shifts to the right decreasing under the

Gaussian window. A secondary peak forms to the left of the primary peak. (c) Error in magnification of

the impulse response as the impulse is moved under the Gaussian window. The maximum (normalized)

error occurs when the phase-shifted wavelet no longer overlaps with the true-shifted one. The constant

C = σ is marked on the curve.

From Equation 3.29, we see that the motions of the low spatial frequencies can be magni-

fied more than those of the high spatial frequencies. Indeed, from Equation 3.25, phase changes

between frames will be much greater for the high frequency components than for the low fre-

quency components. While derived for an impulse image feature moved by Gabor filters, we

find the bound (and its extension below for sub-octave bandwidth pyramids) to be valid for both

synthetic examples (Figure 3.19) and natural videos (Figure 3.15, Figure 3.18, Sect. 3.3.7).

Exceeding the bound in Equation 3.30 manifests as artifacts or blur, as not all image pyra-

mid components are present in their proper ratios to reconstruct the desired translated feature.

In Figure 3.19(b), a Gaussian function magnified using our approach breaks up.

� 3.3.5 Sub-octave Bandwidth Pyramids

We see, therefore, that the bound in Equation 3.29 is directly related to the spatial support of the

filters. The smaller the filters in the frequency domain the larger their support is in the spatial

domain, which allows us to shift the signals underneath their windows further. In the limit of a

having a filter for every frequency band, the representation becomes equivalent to the Fourier
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Figure 3.21: Comparison between linear and phase-based Eulerian motion magnification in handling

noise. (a) A frame in a sequence of IID noise. In both (b) and (c), the motion is amplified by a factor of

50, where (b) uses the linear technique (Section 3.2) and (c) uses the phase-based approach. (d) shows a

plot of the error as function of noise for each method, using several magnification factors.

transform and motion magnification is achieved via the shift theorem. However, we then lose

the ability to measure or synthesize any spatial variation in the amount of motion. We found

a good compromise between localization and magnification ability when using pyramid filters

about two times as wide (in the sinusoidally varying spatial direction) as those described in

Portilla and Simoncelli [37]. They specify their steerable pyramid filters as being self-similar

and having octave bandwidth (Figure 3.18(a)), and we extend their representation to sub-octave

bandwidth pyramids (Figure 3.18(b,c)).

A simple way to accomplish this is to scale the filters in log space. This method works well

for a half-octave bandwidth pyramid, while pyramids with more filters per octave need to be

constructed differently, as discussed in Appendix B.
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For the half octave pyramid, there are 2 periods under the Gaussian envelope of the wavelet.

Thus, 4σ ≈ 2
ω0

, and the bound on the amplification (Equation 3.29) becomes

αδ(t) <
λ

2
. (3.30)

This bound improves over the one we derived in Section 3.2 using a Taylor series approxi-

mation by a factor of 4.1

There is a trade-off between the compactness of the representation and the amount of

motion-magnification we can achieve. The 4-orientation, octave-bandwidth pyramid of Portilla

and Simoncelli (Figure 3.18(a)) is over-complete by a factor of 12 (each orientation contributes

a real and imaginary part), and can easily support real time processing, but limits the amount

of motion-magnification that can be applied. On the other hand, an 8-orientation half-octave

pyramid (Figure 3.18(b)) supports larger amplification, but is over-complete by a factor of 33.

In Figure 3.22, we show how the overcompleteness varies with the bound on the amplifica-

tion factor.

� 3.3.6 Noise handling

Phase-based motion magnification has excellent noise characteristics. As the amplification

factor is increased, noise is translated rather than amplified. At a particular scale and orientation

band, the response for a noisy image I + σnn might be

Sω = eiω(x+δ(t)) + σnNω(x, t), (3.31)

where Nω(x, t) is the response of n to the complex steerable pyramid filter indexed by ω. We

assume that σn is much lower in magnitude than the noiseless signal, so that temporal filtering

of the phase is approximately ωδ(t) as in Equation 3.20. To magnify the motion, the response

in the Equation 3.31 is shifted by eiαωδ(t), so that the motion magnified band is

Ŝω = eiω(x+(1+α)δ(t)) + σne
iαωδ(t)Nω(x, t) (3.32)

1Notice that the bound on the phase-based method is expressed in terms of αδ(t), while in Section 3.2 it is

expressed in terms of (1 + α)δ(t). This is because in this section, we express the motion magnified image profile

at time t as generated by modifying (phase-shifting) the shifted, but unamplified image profile at time t, whereas

in the analysis in Section 3.2, the motion magnified image profile at time t is generated by modifying the unshifted

image profile at time 0.
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Figure 3.22: Over-completeness as function of the bound on the amplification factor, α, in our pyramid

representation with different number of orientations, k, 1 − 6 filters per octave (points left to right),

and assumed motion δ(t) = 0.1 pixels. For example, a half-octave, 8-orientation pyramid is 32x over-

complete, and can amplify motions up to a factor of 20, while a similar quarter-octave pyramid can

amplify motions by a factor of 30, and is 43x over-complete.

The only change to the noise after processing is a phase shift. When the pyramid is collapsed,

this phase shift corresponds to a translation of the noise. In contrast, the linear magnification

method amplifies the noise linearly in α (Figure 3.21).

Still, noise in the input sequence can also cause the phase signal itself to be noisy, which

can result in incorrect motions being amplified. We found that we consistently got better results

when low-passing the phase signal spatially as a simple way to increase its SNR. However, as

the phase-signal in regions of low amplitude is not meaningful, we use an amplitude-weighted

spatial Gaussian blur on the phases. For each band i of the representation and each frame k, we

have a phase signal φi,k and amplitude Ai,k. We compute a weighted Gaussian blur:

(φi,kAi,k) ∗Kρ

Ai,k ∗Kρ
(3.33)

where Kρ is a Gaussian kernel given by exp(−x2+y2

ρ2
). We chose ρ to be equal to that of the

spatial domain filter widths. This step incurs a small computational cost that may be avoided

for performance considerations, as the results without it are usually good.
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� 3.3.7 Results

Our algorithm allows users to see small motions without excessive noise or computational cost,

as well as remove motions that may distract from an underlying phenomena of interest. We

show several applications of our algorithm in this section. Please refer to the supplemental

video for the full sequences and results.

Unless mentioned otherwise, our processing was done using a complex steerable pyramid

with a half-octave bandwidth filters and eight orientations. We computed the filter responses

in the frequency domain. The processing was done in YIQ color space and processing was

done on each channel independently. Processing a 512 × 512 video with 300 frames took 56

seconds with an octave-bandwidth pyramid and two orientations, and 280 seconds with the

aforementioned half-octave pyramid, using non-optimized MATLAB code on a laptop with 4

cores and 16GB of RAM. With an octave-bandwidth pyramid and 2 orientations, our method

can be efficiently implemented to run in real time similar to the linear method, as computing a

compact steerable–rather than Laplacian–decomposition introduces a relatively minor perfor-

mance overhead (about 8x slower, but still within the 30 frames per second range on 512× 512

videos using an efficient C++ or GPU implementation). Also similar to the linear method, the

user has control over the amplification factor and the temporal bandpass filter.

A Big World of Small Motions The world is full of subtle and small motions that are invisible

to the naked eye. Our phase-based approach allows pushing motion magnification further than

before, to reveal imperceptible phenomena, not previously visualized, in clarity and detail.

In eye (Table C.1), we were able to magnify subtle, involuntary, low amplitude (10-400

micron) movements in the human eye and head such as microsaccades [41]. This video was

taken with a high speed camera at 500 Hz. A one second (500 frames) sequence was processed

with an ideal bandpass filter with passband between 30−50 Hz and the motions were amplified

150x. A spatial mask was applied to the phase shifts to emphasize the motion around the iris.

Such a detection system may have medical applications, as the frequency content of ocular

microtremor was shown to have clinical significance [5].

Man-made structures such as buildings and bridges are designed to sway in the wind, but

their motion is often invisible. In crane, we took a video of a construction crane on a uniform

background during a windy day. In the original video, the superstructure does not appear to

move, however when amplifying low-frequency motions in the video within 0.2−0.4 Hz 150x,

the swaying of the crane’s mast and undulation of its hook become apparent. For this sequence,



88 CHAPTER 3. MOTION AND COLOR MAGNIFICATION

a half-octave pyramid yields good results. However, because the crane was a solitary moving

object over a uniform background, we found that we were able to further increase the motion

and remove artifacts by using a quarter-octave pyramid (Figure 3.18(c)).

Comparison with linear Eulerian motion magnification The main differences between the

phase-based approach and the linear approach are summarized in Table 3.2. In particular, the

new method supports larger amplification factors and gives a fundamentally better way of han-

dling noise for Eulerian motion magnification. To demonstrate that, we compared the results

from this method with those from the linear method described in Section 3.2. Several compar-

isons are available in Figure 3.15 and the supplemental video. To illustrate that shifting phases

is better than directly modifying pixel intensities, we did not spatially-smooth the phase signal

in these comparisons.

On all the sequences we tested, we found the proposed approach to perform better. In

particular, the magnified motions in the phase-based results (e.g. the respiratory motions of

the baby and the vibrations of the guitar strings) appear crisper, and contain significantly fewer

artifacts and noise.

We also compared the phase-based results with noise removal processing: preceding and

following the linear magnification by video denoising. We tested several denoising algorithms,

namely NL-means [7], VBM3D [11], and the recent motion-based denoising algorithm by Liu

and Freeman [24]. We tuned the denoising methods so as to produce the best result on each

sequence. We achieved the overall best performance with VBM3D applied to the motion-

magnified video (comparisons with all the denoising methods in pre- and post-processing are

available in the supplementary material). We found that in some cases (e.g. guitar) denoising

Linear Phase-based

Decomposition Laplacian pyramid Complex steerable pyramid

Over-complete 4/3 2k/(1− 2−2/n)

Exact for Linear ramps Sinusoids

Bounds (1 + α)δ(t) < λ/8 αδ(t) < λn/4

Noise Magnified Translated

Table 3.2: The main differences between the linear and phase-based approximations for motion mag-

nification. The representation size is given as a factor of the original frame size, where k represents the

number of orientation bands and n represents the number of filters per octave for each orientation.
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the video before magnification in fact kills the low-amplitude motion signal we are after. For

the low-noise baby and guitar sequences, the denoised results were visually comparable to that

of the phase-based method, although achieved at a higher computational cost, 17 times slower.

For the higher-noise camera and eye sequences, the denoised linear magnification result looks

significantly worse than the phase-based results, as the denoising algorithms cannot do much

with the medium frequency noise (Figure 3.23).

Controlled Experiments At the miniature scales of motion we are after, one might ask: are

the signals we pick out and amplify real (the actual motion signals in the scene)? Would our

magnified motions resemble the motions in the scene had they actually been actually larger?

To answer these questions, we conducted two controlled experiments. In the first, we recorded

ground truth motion data along with a (natural) video (structure, Figure 3.24). We induced

small motions in a metal structure, and affixed an accelerometer to it to capture its vibrations.

To induce the motion we used an impact hammer with a sensor at its tip allowing to record the

exact amount of force applied. We then recorded the structure using a standard DSLR video

camera at 60 frames per second, along with the accelerometer and impact hammer data. We

applied our transform to every frame and recorded the phase changes between the N th frame

and the first frame in one level of the pyramid oriented in the direction of the motion for a salient

region of pixels near the accelerometer. These phase changes corresponded to displacement. To

recover acceleration, we took a second derivative of Gaussian filter. Once scaled and aligned,

the resulting signal matched the data from the accelerometer very closely 3.24(c). We also took

two different sequences of the structure, one in which the amplitude of the oscillatory motion

was 0.1 pixels and another in which it was 5 pixels (50x larger, from a harder hammer hit).

We magnified the former 50 times and found the result to be visually comparable to the latter

(Figure 3.24(b)).

In a second experiment, we mount a sheet of rubber on a section of PVC pipe using a

rubber band to create a tense membrane (Figure 3.16). We use a loudspeaker to vibrate air in

specific frequencies that in turn vibrates the membrane, and capture the result with a high speed

camera. Through experimentation, we found two modes of the membrane when waveforms at

76Hz and 110Hz were sent through the loudspeaker. We then took a video of the membrane

when a composite waveform of these two frequencies was sent through the loudspeaker and

used our algorithm to separate and amplify these two modes. The results of this experiment are

in the supplemental material.



90 CHAPTER 3. MOTION AND COLOR MAGNIFICATION

(a) Linear (b) (a) denoised by [11]

(c) (a) denoised by [24] (d) Phase-based

Figure 3.23: Comparison of the phase-based motion magnification result on the camera sequence (d)

with the result of linear motion magnification (a), denoised by two state-of-the-art video denoising al-

gorithms: VBM3D [11] (b) and motion-based denoising by Liu and Freeman [24] (c). The denoising

algorithms cannot deal with the medium frequency noise, and are computationally intensive. The full

videos and similar comparisons on other sequences are available in the supplementary material.

Motion Attenuation Our phase-based formulation also lends itself naturally to attenuation of

motions in videos, which allows us to remove low-amplitude, short-term motions while larger

amplitude motions continue to pass through. Motion attenuation is achieved by setting the

amplification factor α to a negative value in the range [−1, 0), where α = −1 zeros-out all

the phase changes over time within the desired frequency band, effectively canceling out the

motions within that band. The result is not the same as a constant frame as the coefficient



Sec. 3.3. Phase-Based Video Motion Processing 91
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Figure 3.24: A controlled motion magnification experiment to verify our framework. (a) A hammer

strikes a metal structures which then moves with a damped oscillatory motion. (b) A sequence with

oscillatory motion of amplitude 0.1 pixels is magnified 50 times using our algorithm and compared to

a sequence with oscillatory motion of amplitude 5 pixels (50 times the amplitude). (c) A comparison

of acceleration extracted from the video with the accelerometer recording. (d) The error in the motion

signal we extract from the video, measured as in (c), as function of the impact force. Our motion signal

is more accurate as the motions in the scene get larger. All videos are available in the supplementary

material.

amplitudes are still evolving over time. This is similar to motion denoising we presented in

Chapter 2 [44] and video de-animation [2], but can be done efficiently in our approach (when

the motions in the scene are small enough).

We apply motion attenuation for two applications: turbulence removal and color ampli-
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Source

Color-amplified (Section 3.2)

Color-amplified

after motion cancellation

x

t

Source frame

Figure 3.25: Motion attenuation stabilizes unwanted head motions that would otherwise be exaggerated

by color amplification. The exaggerated motions appear as wiggles in the middle spatiotemporal slice on

the right, and do not appear in the bottom right slice. The full sequence is available in the supplemental

video.

fication (Figure 3.25). In moon (Table C.1, supplemental video), atmospheric turbulence is

manifested as low-mid frequency jitters in a video of the moon as it passes through the night

sky (see supplemental video). We pass a temporal window over the video (we used a window of

11 frames), transformed to our representation, and set the phases in each spatial scale and orien-

tation of the center frame to the corresponding median phase of the transformed frames within

the temporal window. This effectively shifts pixels in order to compensate for the turbulent

motions.

Since the linear magnification method amplifies color changes and motions jointly, small

motions of the face become much larger, visible when amplifying the color changes corre-

sponding to the pulse, which may not be desirable. By canceling the motions as a pre-process

to their algorithm, we are able to remove those motions from their results (Figure 3.25).

A similar color amplification result as that of the linear method can be achieved entirely

with steerable pyramids. We can temporally bandpass the amplitude Aω (Equation 3.18) and

the low pass residual and add a multiple of the resulting amplitude variations to the amplitude
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signal. This yields similar results because in both cases the same processing is applied to the

low-pass residual band of an image pyramid (Laplacian pyramid in one case, steerable pyramid

in the other).

� 3.3.8 Discussion and Limitations

Lagrangian approaches to motion magnification (e.g. [26]) are complementary to the Eulerian

approach proposed in this paper. Such methods can amplify the motion in a video arbitrarily,

but rely on accurate optical flow estimates, image segmentation, and inpainting. Such process-

ing is difficult to do well and requires long computation times. In addition, we have shown that

for moderate magnification and noisy inputs, the Eulerian approach performs better than La-

grangian (Appendix A). The phase-based method significantly reduces the sensitivity to noise

of Eulerian video magnification over the linear method, as well as increases its supported range

of amplification, which further expands the regime where it performs better than Lagrangian

approaches.

While the analysis in Section 3.2 is exact in the case of linear ramps, the phase-based

approach is exact for sinusoidal waves (Figure 3.17), since such signals contain only a single

spatial frequency. However, both methods rely on spatial pyramids, where each level is band

limited. We argue that such spatially bandpassed images are better approximated by sinusoidal

waves than linear ramps.

Our half-octave bandwidth pyramid representation, in which the windowing function of

the wavelets in the primal domain is larger, extends the magnification capability of the linear

method by a factor of 4, and pyramids with more filters per octave may improve on it by

even larger factors. While this allows us to magnify motions further, the wavelets are also

more likely to span multiple motions as their support get larger, which may corrupt the phase

signal and eventually lead to artifacts in the results. Currently, the user can select the desired

representation based on the motions in the scene and the available computational resources.

If the input video has large motions, than the bandpassed phase (Equation 3.20) will not

reflect the true motion in the scene and the motion magnified video will suffer from artifacts

in the regions of large motion (Figure 3.26(a)). To mitigate this, we can automatically detect

regions where phase exceeds our bound (or some user-specified threshold) and set the ampli-

fication to be zero in these regions. To increase robustness, we spatiotemporally lowpass the

absolute value of the phase and compare the result to a threshold to determine which regions

have large motions. The supplememntal video shows an example.
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(a) Motion magnified sequence (b) Large motions unmagnifiedx
t

Figure 3.26: Motion magnification can cause artifacts (cyan insets and spatiotemporal timeslices) in

regions of large motion such as those in this sequence of a boy jumping on a platform (a). We can

automatically remove such artifacts by identifying regions where the phase change exceeds our bound

or a user-specified threshold (b). When the boy hits the platform, the time slice (purple highlights) shows

that the subtle motions of the platform or the camera tripod due to the boy’s jump are magnified in both

cases.

Finally, for sequences in which the phase signal is noisy, parts of the image in the magnified

video may appear to move incoherently. Using an image or motion prior to regularize the

processing may improve the results in such cases, and is an interesting direction for future

work.

� 3.4 Visualizations and User Interfaces

Sections 3.2 and 3.3 show a variety of synthesized videos where the changes of interest have

been amplified. We have also built a prototype application that allows users to reveal sub-

tle changes in real-time from live video feeds, essentially serving as a microscope for temporal

variations (Figure 3.27). The user can specify the temporal frequency band of interest by adjust-

ing the high and low cutoff frequencies for the filter. The user can also adjust the amplification

factor of the bandpass signal using a slider. Larger amplification results is a larger boost to
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Figure 3.27: A real-time computational “microscope” for small visual changes. This snapshot was

taken while using the application to visualize artery pulsation in a wrist. The application was running

on a standard laptop using a video feed from an off-the-shelf webcam. A demo is available on the thesis

webpage.

the temporal bandpass and makes the variations in the video more apparent. This application

is implemented in C++, and is currently using the linear method (Section 3.2) because of its

speed. It is entirely CPU-based, and processes 640 × 480 videos at 60 frames per second on

standard laptops and tablets. It can be sped up further by utilizing GPUs. For performance con-

siderations, we amplify only the luminance channel, which gives good enough results. A demo

of the application is available in the accompanying video, and we hope to release for public use

in the the future.

We have also experimented with a tool that allows the user to browse the variations at differ-

ent frequencies using pre-configured passbands (Figure 3.28). We dub this process “frequency

sweep”, as it essentially lets the user sweep through the temporal frequencies to examine the

temporal signals in the video. In this interface, the user is presented with a single slider that

controls the temporal passband being amplified and displayed. Empirically, we found it useful

to set the temporal frequency passband as function of the temporal frequency being shown.

Namely, for lower frequencies the passband is smaller, and for higher sequences the passband

is larger. In practice, we set the passband size to be the same as the frequency being shown,

centered at that frequency. For example, to show temporal variations around 4Hz we use a

passband of 2 − 6Hz; for temporal variations around 32Hz, we use a passband of 16 − 48Hz.
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Figure 3.28: An interface that allows the user to sweep through the temporal frequency domain and

examine temporal phenomena in a simple and intuitive manner. A demo is available in the accompanying

video.

This tool can be run in real time with the linear method (Section 3.2) and with some configura-

tions of the phase-based method (Section 3.3, or can be configured to run against pre-computed

results using either of the methods.

We have used this tool successfully with several videos. Trees and woman (Figure 3.28 and

the supplemental video) demonstrate ordinary videos that contain changes at different frequen-

cies over time that we cannot normally perceive. We used the interface with trees, and found

that lower temporal frequencies (0.5 − 11Hz) contain the swaying of the tree trunks. At mid-

range frequencies (1− 2Hz), we see the motion of the branches, and at high spatial frequencies

(2.5 − 4Hz), the motion of the leaves is most visible. In girl, we can see different motions of

the girl’s head and shoulders at different frequencies.

The aforementioned tools allow the user to explore temporal signals in videos interactively,

however we can also produce static summarizations showing the dominant temporal signals in

a video, as shown in Figure 3.29. These visualizations were produced by color-coding each

pixel according to the dominant temporal frequency at the pixel. The dominant frequency

component is computed as the (temporal) frequency with maximum energy, although other
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Representative frame Dominant temporal frequencies

Frequency (H
z)

Frequency (H
z)

Figure 3.29: A visualization of the dominant temporal frequencies for two sequences: face (left; repre-

sentative frame on the left, visualization on the right) and guitar (right; frame at the top, visualization

at the bottom), produced by showing, at every pixel, the frequency of maximum energy in the temporal

signal recorded at the pixel. This visualization clearly shows the pulsatile areas of the face from which

a reliable pulse signal can be extracted, and the frequencies in which the different strings of the guitar

vibrate.

methods to determine “dominance” can be used. Such an approach can also be used to detect

informative temporal signals in videos automatically. That is an interesting direction for future

work.
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Chapter 4

Conclusion

We have proposed novel techniques for analyzing and visualizing temporal signals in video,

and explored various applications for those techniques involving re-rendering of both larger

and smaller temporal variation.

To remove distracting changes, we have introduced motion denoising – the process of de-

composing videos into long- and short-term motions, allowing motion resynthesis in a way

that maintains one and removes the other. We showed how motion denoising can be cast as an

inference problem with a well-defined formulation that does not require explicit motion esti-

mation. This allows the algorithm to operate on videos containing highly involved dynamics.

Time-lapse videos fit particularly well within this decomposition model, and we presented a

novel application whose goal is, given an input time-lapse sequence, to synthesize a new one

that displays only the long-term changes not confounded by the random, short-term changes.

We presented results on a set of challenging time-lapse videos. Our technique successfully gen-

erates filtered timelapse sequences that are visually faithful to the long-term trends and allow a

better grasp of the underlying long-term temporal events in the scene.

To magnify motions and color changes, we described efficient Eulerian methods that tem-

porally process pixels in fixed spatial regions, and successfully reveal informative small-amplitude

signals in real-world videos. We first described a straightforward approach that merely magni-

fies temporal color changes using spatiotemporal processing, and showed how it can be used to

exaggerate both subtle, purely-temporal color changes, as well as imperceptible spatial motions.

This method, while simple and fast, suffers from several limitations, and we then described an

improved method that addresses those limitations. In particular, we proposed a method for

processing and manipulating small motions in videos by analyzing the local phase over time at

different orientations and scales. The local phase is computed using complex steerable pyra-

mids, which we extend to work with sub-octave bandwidth filters in order to increase the spatial

99
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support of the filters and allow us to push motion magnification even further. Our method then

magnifies the temporal phase differences in the corresponding bands of these pyramids to hal-

lucinate bigger or smaller motions. We demonstrated that this phase-based technique improves

the linear Eulerian motion processing both in theory and in practice, provides a fundamentally

better way of handling noise, and produces high quality, photo-realistic videos with amplified

or attenuated motions for a variety of applications.

Overall, this thesis makes several important contributions:

• New models for analyzing images over time. Different temporal signatures often corre-

spond to different physical processes. Although significant efforts have been devoted to

numerous problems related to temporal video analysis (e.g., video stabilization [29, 21],

summarization [39]), there is much less work on automatically identifying and charac-

terizing temporal processes in visual data. In this thesis, we have taken several steps

in this direction, by proposing novel techniques to decompose the temporal signals in a

scene into different components, which can then be modeled or analyzed separately. We

believe our approaches will inspire further research, and we expect this area to receive

increasing attention in computer vision and graphics research in upcoming years.

• Eulerian techniques for motion processing. We have shown that small-amplitude mo-

tions can be analyzed and manipulated using Eulerian video processing; that is, without

explicitly estimating the motions. This is an important finding since motion analysis and

features tracking in video, while well-studied, remains a challenging and computationally-

intensive task that is hard to do accurately. In contrast, the Eulerian methods we proposed

do not involve any optimization, feature tracking or optical flow computation, but rather

process the video separately in space and time. They provide an efficient representation

of the spatiotemporal signal, on top of which different tasks can be carried out, such

as quantitative analysis or visualization. The image decomposition techniques we use,

namely Laplacian pyramids [8] and complex steerable pyramids [48], were not invented

here, but we utilize them in ways that were not explored before.

• A big world of small motions. We demonstrated a plethora of phenomena that exhibit

changes and motions that are too small to be perceived by the naked eye, and which can

be recovered computationally from regular videos. We explored a variety of medical and
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scientific applications that can potentially benefit from our analysis and visualization of

those subtle temporal signals.

• Visualization. Measuring motions and variations by itself is not enough. A key aspect

in the success of our methods is in their ability to efficiently visualize the variation. We

claim that these visualizations, in many cases, give valuable insights on the phenomena

being studied, that may be hard to grasp from quantitative data or point measurement

alone.

The techniques we described in this thesis can be used in a number of different domains. For

example, our methods to remove short-term variation can help scientists analyze and visualize

time-lapse data more effectively, and can also allow photographers to retouch their time-lapse

videos. Motion amplification can potentially be used to monitor and visualize vibrations of

mechanical systems, or to analyze structural integrity of buildings, bridges, and railroads. Our

analysis of subtle color and motion changes can also support contactless vital-sign monitoring

for applications in health care, law enforcement, and search and rescue operations.
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Appendix A

Eulerian and Lagrangian Motion

Magnification

� A.1 Derivation of Eulerian and Lagrangian Error

In this section we derive estimates of the error in the Eulerian and Lagrangian motion magni-

fication results with respect to spatial and temporal noise. The derivation is done again for the

1D case for simplicity, and can be generalized to 2D. We use the same setup as in Section 3.2.2,

where the true motion-amplified sequence is

Î(x, t) = f(x+ (1 + α)δ(t))

= I(x+ (1 + α)δ(t), 0). (A.1)

Both methods approximate the true motion-amplified sequence, Î(x, t) (Equation A.1). Let

us first analyze the error in those approximations on the clean signal, I(x, t).

� A.1.1 Without Noise

Lagrangian. In the Lagrangian approach, the motion-amplified sequence, ĨL(x, t), is achieved

by directly amplifying the estimated motion, δ̃(t), with respect to the reference frame I(x, 0)

ĨL(x, t) = I(x+ (1 + α)δ̃(t), 0). (A.2)

In its simplest form, we can estimate δ(t) using point-wise brightness constancy (See Sec-

tion 3.2.6 for discussion on spatial regularization)

δ̃(t) =
It(x, t)

Ix(x, t)
(A.3)

where Ix(x, t) = ∂I(x, t)/∂x and It(x, t) = I(x, t)− I(x, 0). From now on, we will omit the

space (x) and time (t) indices when possible for brevity.
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The error in in the Lagrangian solution is directly determined by the error in the estimated

motion, which we take to be second-order term in the brightness constancy equation (although

it is usually not paid in optical flow formulations because of Newton iterations),

I(x, t) = I(x+ δ(t), 0)

≈ I(x, 0) + δ(t)Ix +
1

2
δ2(t)Ixx

⇒ It
Ix
≈ δ(t) +

1

2
δ2(t)Ixx. (A.4)

The estimated motion, δ̃(t), is thus related to the true motion, δ(t), by

δ̃(t) ≈ δ(t) +
1

2
δ2(t)Ixx (A.5)

Plugging (A.5) in (A.2),

ĨL(x, t) ≈ I
(
x+ (1 + α)

(
δ(t) +

1

2
δ2(t)Ixx

)
, 0

)
≈ I

(
x+ (1 + α)δ(t) +

1

2
(1 + α)δ2(t)Ixx, 0

)
. (A.6)

Using first-order Taylor expansion of I about x+ (1 + α)δ(t), we have

ĨL(x, t) ≈ I(x+ (1 + α)δ(t), 0) +
1

2
(1 + α)δ2(t)IxxIx. (A.7)

Subtracting (A.1) from (A.7), the error in the Lagrangian motion-magnified sequence, εL,

is

εL ≈
∣∣∣∣12(1 + α)δ2(t)IxxIx

∣∣∣∣ . (A.8)

Eulerian. In our Eulerian approach, the magnified sequence, ÎE(x, t), is computed as

ĨE(x, t) = I(x, t) + αIt(x, t)

= I(x, 0) + (1 + α)It(x, t) (A.9)

similar to Equation 3.4, using a two-tap temporal filter to compute It.

Using a Taylor expansion of the true motion-magnified sequence, Î (Equation A.1), about

x, we have

Î(x, t) ≈ I(x, 0) + (1 + α)δ(t)Ix +
1

2
(1 + α)2δ2(t)Ixx (A.10)
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Plugging (A.4) into (A.10)

Î(x, t) ≈ I(x, 0) + (1 + α)(It −
1

2
δ2(t)IxxIx) +

1

2
(1 + α)2δ2(t)Ixx

≈ I(x, 0) + (1 + α)It −
1

2
(1 + α)δ2(t)IxxIx +

1

2
(1 + α)2δ2(t)Ixx. (A.11)

Subtracting (A.9) from (A.11) gives the error in the Eulerian motion-magnified solution,

εE ,

εE ≈
∣∣∣∣12(1 + α)2δ2(t)Ixx −

1

2
(1 + α)δ2(t)IxxIx

∣∣∣∣ . (A.12)

� A.1.2 With Noise

Now, let I ′(x, t) be the noisy signal, such that

I ′(x, t) = I(x, t) + n(x, t) (A.13)

for additive noise n(x, t).

Lagrangian. The estimated motion becomes

δ̃(t) =
I ′t
I ′x

=
It + nt
Ix + nx

, (A.14)

where nx = ∂n/∂x and nt = n(x, t)− n(x, 0).

Using a Taylor Expansion on (nt, nx) about (0, 0) (zero noise), and using (A.4), we have

δ̃(t) ≈ It
Ix

+ nt
1

Ix + nx
+ nx

It + nt
(Ix + nx)2

≈ δ(t) +
nt
Ix
− nx

It
I2x

+
1

2
δ2(t)Ixx, (A.15)

where terms involving products of the noise components are ignored.

Plugging (A.15) into (A.2), and using a Taylor expansion of I about x + (1 + α)δ(t), we

get

Ĩ ′L(x, t) ≈ I(x+ (1 + α)δ(t), 0) + (1 + α)Ix

(
nt
Ix
− nx

It
I2x

+
1

2
δ2(t)Ixx

)
+ n. (A.16)

Arranging terms, and substituting (A.4) in (A.16),

Ĩ ′L(x, t) ≈ I(x+ (1 + α)δ(t), 0) + (1 + α)

(
nt − nx

(
δ(t) +

1

2
δ2(t)Ixx

)
+

1

2
δ2(t)IxxIx

)
+ n

= I(x+ (1 + α)δ(t), 0) + (1 + α)nt − (1 + α)nxδ(t)−
1

2
(1 + α)nxδ

2(t)Ixx

+
1

2
(1 + α)δ2(t)IxxIx + n (A.17)
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Using (A.5) again and subtracting (A.1), the Lagrangian error as function of noise, εL(n),

is

εL(n) ≈
∣∣∣∣(1 + α)nt − (1 + α)nxδ(t)−

1

2
(1 + α)δ2(t)Ixxnx +

1

2
(1 + α)δ2(t)IxxIx + n

∣∣∣∣
(A.18)

Eulerian. In this case, the noisy motion-magnified sequence becomes

Ĩ ′E(x, t) = I ′(x, 0) + (1 + α)I ′t

= I(x, 0) + (1 + α)(It + nt) + n

= ĨE(x, t) + (1 + α)nt + n (A.19)

Using (A.12) and subtracting (A.1), the Eulerian error as function of noise, εE(n), is

εE(n) ≈
∣∣∣∣(1 + α)nt +

1

2
(1 + α)2δ2(t)Ixx −

1

2
(1 + α)δ2(t)IxxIx + n

∣∣∣∣ (A.20)

Notice that if we set the noise to zero in (A.18) and (A.20), the resulting errors correspond

to those derived for the non-noisy signal as shown in (A.8) and (A.12).



Appendix B

Sub-octave Bandwidth Pyramids

� B.1 Improved Radial Windowing Function for Sub-octave Bandwidth Pyra-

mids

When generalizing the complex steerable pyramid of Portilla and Simoncelli [37] to sub-octave

bandwidth pyramids, we found empirically that their windowing function was well-suited for

octave and half-octave pyramids. However, at a larger number of filters per octave (≥ 3 in our

experiments) this scheme produces filters which are very sharp in the frequency domain and

have noticeable ringing artifacts (shown in the 1D wavelet plot of Fig. 3.18(b)).

They define their filters in terms of independent radial and angular windowing functions.

For quarter-octave and larger pyramids, we leave the angular windowing function unchanged

and propose a different radial windowing function, given by

cos6(log2(r))I[−π/2,π/2](log2(r)). (B.1)

This function has two nice properties: (a) it is smoother, more similar to a Gaussian, and does

not introduce ringing in the primal domain, and (b) squared copies scaled by a power of π
7

sum to a constant factor, so that the transform is invertible and we get perfect reconstruction

(Eq. 3.17). An example quarter-octave pyramid generated with this windowing function in

shown in Fig. 3.18(c) and its results for motion magnification are available in the supplemental

video.
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Appendix C

Videos

Table C.1 contains the video sequences used in Chapter 3. All videos and results are available

through the thesis web page. When applicable, we list additional properties of the videos. [this

table is under work (MR)]

Video Camera Lens Resolution Frame Rate Bit Depth Compressor

baby

Canon EOS 60D
EF-S18-200mm

f/3.5-5.6 IS
960x544 29.97 24 avc1

baby2

1440x1080 29.97 24 avc1

camera

Casio Exilim EX-

F1
512x384 300 24 avc1

crane

Pentax K-x

Sigma 18-

200mm f/3.5-6.3

DC

1280x720 24 24 mjpeg

engine

Phantom v10 1776x904 400 24 Uncompressed

eye

Phantom v7.2 1152x896 500 24 Uncompressed
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girl

640x480 60 24

guitar

Casio Exilim EX-

F1
432x192 600 24 avc1

face

528x592 30 24

face2

570x718 30 24

moon

480x322 21 24

subway

1280x720 29.97 24 avc1

shodow

960x624 30 24

shuttle

656x340 23 24

stomp

512x384 29 24

trees

640x480 60 24



111

wrist

Canon PowerShot

S95
6.00–22.5mm 1280x720 24 24 avc1

Table C.1: Videos used in Chapter 3 and their properties. All the videos and results are available through

the thesis web page.
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