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Abstract. Our goal is to automatically annotate many images with a set of word
tags and a pixel-wise map showing where each word tag occurs. Most previous
approaches rely on a corpus of training images where each pixel is labeled. How-
ever, for large image databases, pixel labels are expensive to obtain and are often
unavailable. Furthermore, when classifying multiple images, each image is typ-
ically solved for independently, which often results in inconsistent annotations
across similar images. In this work, we incorporate dense image correspondence
into the annotation model, allowing us to make do with significantly less labeled
data and to resolve ambiguities by propagating inferred annotations from images
with strong local visual evidence to images with weaker local evidence. We es-
tablish a large graphical model spanning all labeled and unlabeled images, then
solve it to infer annotations, enforcing consistent annotations over similar vi-
sual patterns. Our model is optimized by efficient belief propagation algorithms
embedded in an expectation-maximization (EM) scheme. Extensive experiments
are conducted to evaluate the performance on several standard large-scale im-
age datasets, showing that the proposed framework outperforms state-of-the-art
methods.
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Fig. 1. Input and output of our system. (a) The input image database, with scarce image tags
and scarcer pixel labels. (b) Annotation propagation over the image graph, connecting similar
images and corresponding pixels. (c) The fully annotated database by our system (more results
can be found in Fig. 5 and the supplemental material).

1 Introduction

We seek to annotate a large set of images, starting from a partially annotated set. The
resulting annotation will consist of a set of word tags for each image, as well as per-
pixel labeling indicating where in the image each word tag appears. Such automatic
annotation will be very useful for Internet image search, but will also have applications
in other areas such as robotics, surveillance, and public safety.
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In computer vision, scholars have investigated image annotation in two directions.
One methodology uses image similarities to transfer textual annotation from labeled
images to unlabeled samples, under the assumption that similar images should have
similar annotations. Notably, Makadia et al. [1] recently proposed a simple baseline
approach for auto-annotation based on global image features, and a greedy algorithm
for transferring tags from similar images. ARISTA [2] automatically annotated a web
dataset of billions of images by transferring tags via near-duplicates. Although those
methods have clearly demonstrated the merits of using similar images to transfer anno-
tations, they do so only between globally very similar images, and cannot account for
locally similar patterns.

Consequently, the other methodology focused on dense annotation of images, known
as semantic labeling [3–6], where correspondences between text and local image fea-
tures are established for annotation propagation: similar local features should have simi-
lar labels. These methods often aim to label each pixel in an image using models learned
from a training database. In [7] and [8], relationships between text and visual words are
characterized by conventional language translation models. More recently, Shotton et
al. [3] proposed to train a discriminative model based on the texton representation, and
to use conditional random fields (CRF) to combine various cues to generate spatially
smooth labeling. This approach was successively extended in [4], where efficient ran-
domized decision forests are used for significant speedup. Liu et al. [5] proposed a
nonparametric approach to semantic labeling, where text labels are transferred from a
labeled database to parse a query image via dense scene correspondences.

Since predicting annotation from image features is by nature ambiguous (e.g. tex-
tureless regions can be sky, wall, or ceiling), such methods rely on regularities in a large
corpus of training data of pixel-wise densely labeled images. However, for large im-
age databases, high-quality pixel labels are very expensive to obtain. Furthermore, the
annotation is typically computed independently for each image, which often results in
inconsistent annotations due to visual ambiguities in image-to-text.

In this work, we show that we can overcome these drawbacks by incorporating
dense image correspondences into the annotation model. Image correspondences can
help alleviate local ambiguities by propagating annotations in images with strong local
evidence to images with weaker evidence. They also implicitly add consideration of
contextual information.

We present a principled framework for automatic image annotation based on dense
labeling and image correspondence. Our model is guided by four assumptions: (a) re-
gions corresponding to each tag have distinct visual appearances, (b) neighboring pixels
in one image tend to have the same annotation, (c) similar patterns across different im-
ages should have similar annotation, and (d) tags and tag co-occurrences which are
more frequent in the database are also more probable.

By means of dense image correspondence [9], we establish a large image graph
across all labeled and unlabeled images for consistent annotations over similar image
patterns across different images, where annotation propagation is solved jointly for the
entire database rather than for a single image. Our model is effectively optimized by
efficient belief propagation algorithms embedded within an expectation-maximization
(EM) scheme, alternating between visual appearance modeling (via Gaussian mixture
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models) and pixel-wise tag inference. We conducted extensive experiments on standard
large-scale datasets, namely LabelMe [10], ESP [11] and IAPR [12], showing that our
system consistently outperforms the state-of-the-art in automatic annotation and seman-
tic labeling, while requiring significantly less labeled data.

In summary, this paper makes the following contributions. (a) We show that dense
correspondences between similar images can assist in resolving text-to-image visual
ambiguities, and can dramatically decrease the amount of training data for automatic
annotation. (b) We propose a novel graphical model for solving image annotation jointly
by building an dense image graph that spans the entire database for propagating anno-
tations. (c) Our novel formulation assumes scarce data, and combines different levels of
supervision - tagged images (cheaper to obtain) and labeled images (expensive to ob-
tain). We thoroughly studied how the ratio of tags and labels affects the performance.

2 Terminology and Formulation

Textual tagging and pixel-level labeling are both plausible types of “annotations” for
an image. In this paper, we will consistently refer to semantic, pixel-level labeling (or
semantic segmentation) as “labeling” and to textual image-level annotation as “tags”.
The set of tags of an image is comprised of “words” from a vocabulary. These words
can be specified by a user, or obtained from text surrounding an image on a webpage.

The input database Ω = (I,V) is comprised of RGB images I = {I1, . . . , IN}
and vocabulary V = {l1, . . . , lL}. We treat auto-annotation as a labeling problem,
where the goal is to compute the labeling C = {c1, . . . , cN} for all images in the
database, where for pixel p = (x, y), ci(p) ∈ {1, . . . , L,∅} (∅ denoting unlabeled)
indexes into vocabulary V. The tags associated with the images, T = {t1, . . . , tN :
ti ⊆ {1, ..., L}}, are then defined directly as the set union of the pixel labels ti =
∪p∈Λici(p), where Λi is image Ii’s lattice.

Initially, we may be given annotations for some images in the database. We denote
by It and Tt, and Il and Cl the corresponding subsets of tagged images with their tags,
and labeled images with their labels, respectively. Also let (rt, rl) be the ratio of the
database images that are tagged and labeled, respectively.

We formulate this discrete labeling problem in a probabilistic framework, where
our goal is to construct the joint posterior distribution of pixel labels given the input
database and available annotations, P (C|Ω,Tt,Cl). We assume that (a) corresponding
patterns across images should have similar annotation, and (b) neighboring pixels in one
image tend to have the same annotation. This effectively factorizes the distribution as
follows. Written in energy form (− logP (C|Ω,Tt,Cl)), the cost of global assignment
C of labels to pixels is given by

E(C) =

N∑
i=1

∑
p∈Λi

[
Φp(ci(p))+

∑
q∈Np

Ψint (ci(p), ci(q))+
∑
j∈Ni

Ψext (ci(p), cj(p + wij(p)))

]
,

(1)
whereNp are the spatial neighbors of pixel p within its image, andNi are other images
similar to image Ii. For each such image j ∈ Ni, wij defines the (dense) correspon-
dence between pixels in Ii and pixels in Ij .
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Fig. 2. System overview. Each rectangle corresponds to a module in the system.

This objective function defines a (directed) graphical model over the entire image
database. We define the data term, Φp, by means of local visual properties of image
Ii at pixel p. We extract features from all images and learn a model to correspond
vocabulary words with image pixels. Since visual appearance is often ambiguous at the
pixel or region level, we use two types of regularization. The intra-image smoothness
term, ψint, is used to regularize the labeling with respect to the image structures, while
the inter-image smoothness term, ψext, is used for regularization across corresponding
pixels in similar images.

Fig. 2 shows an overview of our system, and Fig. 4 visualizes this graphical model.
In the upcoming sections we describe in detail how we formulate each term of the
objective function, how we optimize it jointly for all pixels in the database, and show
experimental results of this approach.

3 Text-to-Image Correspondence

To characterize text-to-image correspondences, we first estimate the probability distri-
bution Pa(ci(p)) of words occurring at each pixel, based on local visual properties.
For example, an image might be tagged with car and road, but their locations within
the image are unknown. We leverage the large number of images and the available
tags to correlate the database vocabulary with image pixels. We first extract local im-
age features for every pixel, and then learn a visual appearance model for each word
by utilizing visual commonalities among images with similar tags, and pixel labels (if
available).

3.1 Local Image Descriptors

We selected features used prevalently in object and scene recognition to characterize lo-
cal image structures and color features. Structures are represented using both SIFT [9]
and HOG [13] features. We compute dense SIFT descriptors with 3 and 7 cells around
a pixel to account for scales. We then compute HOG features and stack together neigh-
boring HOG descriptors within 2 × 2 patches [14]. Color is represented using a 7 × 7
patch in L*a*b color space centered at each pixel. Stacking all the features yields a 527-
dimensional descriptor Di(p) for every pixel p in image Ii. We use PCA to reduce the
descriptor to d=50 dimensions, capturing approximately 80% of the features’ variance.
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3.2 Learning Appearance Models
We use a generative model based on Gaussian mixtures to represent the distribution of
the above continuous features. More specifically, we model each word in the database
vocabulary using a full-covariance Gaussian Mixture Model (GMM) in the 50D de-
scriptor space. Such models have been successfully applied in the past to model object
appearance for image segmentation [15]. Note that our system is not limited to work
with this particular model. In fact, we also experimented with a discriminative approach,
Randomized Forests [16], previously used for semantic segmentation [4] as an alterna-
tive to GMM. We found that GMM produces better results than random forests in our
system (see Section 5).

For pixel p in image Ii, we define

P (Di(p);Θ) =

L∑
l=1

(
ρl

M∑
k=1

πl,kN
(
Di(p);µl,k,Σl,k

))
+ ρεN (Di(p);µε,Σε) , (2)

where ρl is the weight of model (word) l in generating the feature Di(p), M is the
number of components in each model (M = 5), and θl =

(
πl,k,µl,k,Σl,k

)
is the

mixture weight, mean and covariance of component k in model l, respectively. We
use a Gaussian outlier model with parameters θε = (µε,Σε) and weight ρε. The in-
tuition for the outlier model is to add an unlabeled word to the vocabulary V. Θ =
({ρl}l=1:L, ρε,θ1, . . . ,θL,θε) is a vector containing all parameters of the model.

We optimize for Θ in the maximum likelihood sense using a standard EM algo-
rithm. We initialize the models by partitioning the descriptors into L clusters using
k-means and fitting a GMM to each cluster. The outlier model is initialized from ran-
domly selected pixels throughout the database. We also explicitly restrict each pixel to
contribute its data to models of words corresponding to its estimated (or given) image
tags only. That is, we clamp the posteriors to zero for all l /∈ ti. For labeled images
Il, we keep the posteriors fixed according to the given labels (setting zero probabil-
ity to all other labels). To account for partial annotations, we introduce an additional
weight αi for all descriptors of image Ii, set to αt, αl or 1 (we use αt = 5, αl = 10)
according to whether image Ii was tagged, labeled, or inferred automatically by the al-
gorithm, respectively. More details can be found in the supplementary material. Given
the learned model parameters, Θ, and an observed descriptor, Di(p), the probabil-
ity of the pixel belonging to word l is computed by Pa(ci(p) = l;Di(p),Θ) =

ρl
∑M
k=1 πl,kN(Di(p);µl,k,Σl,k)∑L

j=1(ρj
∑M
k=1 πj,kN(Di(p);µj,k,Σj,k))+ρεN (Di(p);µε,Σε)

.

Fig. 3 (b) and (c) show an example result of the algorithm on an image from La-
belMe Outdoors dataset (See Section 5 for details on the experiment). Clearly, our
model is able to capture meaningful correlations between words and image regions.

4 Annotation Propagation

Now that we have obtained reasonable local evidences, we can utilize image informa-
tion and correspondences between images to regularize the estimation and propagate
annotations between images in the database. To this end, we compute dense pixel-wise
correspondences and construct an image graph connecting similar images and corre-
sponding pixels.
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Fig. 3. Text-to-image and dense image correspondences. (a) An image from LabelMe Outdoors
dataset. (b) Visualization of the local evidence Pa for the four most probable words, colored from
black (low probability) to white (high probability). (c) The MAP classification based on local
evidence alone, computed independently at each pixel. (d) The classification with spatial regular-
ization (Eq. 8). (e-g) Nearest neighbors of the image in (a) and dense pixel correspondences with
(a). (h) Same as (b) for each of the neighbors, warped towards the image (a). (i) The final MAP
labeling using inter-image regularization (Eq. 7).

4.1 Dense Image Correspondence

We first fetch the top 〈K, ε〉 nearest neighbors, Ni, for every image Ii using the GIST
descriptor [17], where K is the maximum number of neighbors, and ε is a threshold
on the distance between the images (above which neighbors are discarded) [5]. We
use SIFT-flow [9] to align the image with each of its neighbors, which results in an
integer warp field wij mapping each pixel in Ii to a pixel in Ij . Notice that neither the
nearest neighbors nor wij need necessarily be symmetric (as indicated by the arrows in
Fig. 1(b)).

4.2 Large-scale Inference

Data term. The data term is comprised of four components:

Φp

(
ci(p) = l

)
= − logPa(ci(p))− logP it (l)− λs logPs(ci(p))− λc logP ic(ci(p)),

(3)
where Pa(ci(p) = l;Di(p),Θ) was defined in the previous section, P it (l) is the esti-
mated probability of image Ii having the tag l, and Ps(ci(p)) and P ic(ci(p)) capture
the probability of the pixel p having the word l based on its relative spatial position
and color, respectively. We use superscript i in P it and P ic to emphasize that they are
estimated separately for each image. λs, λc balance the contribution of Ps and P ic , re-
spectively.

The term P it (l) is used to bias the tags of image Ii towards ones with higher fre-
quency and co-occurrence among its neighbors. We estimate this probability as

P it (l) =
β

|Ni|
∑
j∈Ni

δ [l ∈ tj ] +
1− β
Z

∑
j∈Ni

∑
m∈tj

ho(l,m), (4)
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where δ[·] evaluates to 1 when the inside condition is true, ho is the L × L row-
normalized tag co-occurrence matrix, computed from the current tag estimates and
initialized from the known tags, and Z =

∑
j∈Ni |tj |. The first term in Eq. 4 mea-

sures the frequency of word l among image Ii’s neighbors, and the second term is the
mean co-occurrence rate of word l within its neighbors’ tags. We typically set β = 0.5,
assigning equal contribution to the two terms. This term is inspired by [1], but we do
not set explicit threshold on the number of tags to infer as they do.

Both the spatial and color terms are computed from the current pixel label estimates.
The spatial location term is computed as

Ps

(
ci(p) = l

)
= hsl (p), (5)

where hsl (p) is the normalized spatial histogram of word l across all images in the
database. This term will assist in places where the appearance and pixel correspondence
might not be as reliable (see Fig. 2 in the supplemental material).

The color term will assist in refining the labels internally within the image, and is
computed as

P ic

(
ci(p) = l

)
= hi,lc (Ii(p)), (6)

where hi,lc is the color histogram of word l in image Ii. We use 3D histograms of 64
bins in each of the color channels to represent hi,lc .

Smoothness terms. To encourage corresponding pixels in similar images to attain the
same word, we define the inter-image compatibility between corresponding pixels p
and r = p + wij(p) in images Ii and Ij respectively as

Ψext

(
ci(p) = lp, cj(r) = lr

)
= δ [lp 6= lr]

αj
αi
λext exp

(
− |Si(p)− Sj(r)|

)
, (7)

where αi, αj are the image weights as defined in Section 3.2, and Si is the SIFT de-
scriptor for image Ii. Intuitively, better matching between corresponding pixels will
result in higher penalty when assigning them different labels, weighted by the relative
importance of the neighbor’s label.

We define the intra-image compatibility between neighboring pixels based on tag
co-occurrence and image structures. For image Ii and spatial neighbors p,q ∈ Np,

Ψint

(
ci(p) = lp, ci(q) = lq

)
=−λo logho (lp, lq)+δ [lp 6= lq]λint exp

(
−‖Ii(p)− Ii(q)‖

)
.

(8)
Overall, the free parameters of this graphical model are {λs, λc, λo, λint, λext},

which we tune manually. We believe these parameters could be learned from a database
with ground-truth labeling, but leave this for future work. .

Inference. We use a parallel coordinate descent algorithm to optimize Eq. 1, which al-
ternates between estimating the appearance model and propagating annotations between
pixels. The appearance model is initialized from the images and partial annotations in
the database. Then, we partition the message passing scheme into intra- and inter-image
updates, parallelized by distributing the computation of each image to a different core.
Message passing is performed using efficient parallel belief propagation, while intra-
image update iterates between belief propagation and re-estimating the color models
(Eq. 6) in a GrabCut fashion [18]. Once the algorithm converges, we compute the MAP
labeling that determines both labels and tags for all the images.
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Fig. 4. The image graph serves as an underlying representation for inference and human
labeling. (a) Visualization of the image graph of the LMO dataset using 400 sampled images
and K = 10. The size of each image corresponds to its visual pagerank score. (b) The graphi-
cal model. Each pixel in the database is connected to spatially adjacent pixels in its image and
corresponding pixels in similar images. (c) Top ranked images selected automatically for human
annotation. Underneath each image is its visual pagerank score.

4.3 Choosing Images to Annotate

As there is freedom to choose images to be labeled by the user, intuitively, we would
want to strategically choose “image hubs” that have many similar images, as they will
have many direct neighbors in the image graph to which they can propagate labels
efficiently. We use visual pagerank [19] to find good images to label, using the GIST
descriptor as the image similarity measure. To make sure that images throughout the
database are considered, we initially cluster the images and use a non-uniform damping
factor in the visual rank computation (Eq. 2 in [19]), assigning higher weight to the
images closest to the cluster centers. Given an annotation budget (rt, rl), we then set Il
and It as the rl and rt top ranked images, respectively. Fig. 4(c) shows the top image
hubs selected automatically with this approach, which nicely span the variety of scenes
in the database.

5 Experiments
We conducted extensive experiments with the proposed method using several datasets:
SUN [14] (9556 256 × 256 images, 522 words), LabelMe Outdoors (LMO, subset of
SUN) [10] (2688 256× 256 images, 33 words), ESP game image set [11] (21, 846 im-
ages, 269 words) and IAPR benchmark [12] (19, 805 images, 291 words). Since both
LMO and SUN include dense human labeling, we use them to simulate human annota-
tions for both training and evaluation. We use ESP and IAPR data as used by [1]. They
contain user tags but no pixel labeling.
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Labeling Tagging
r r̄ P P̄ R R̄

Makadia [1] − − 53.87 30.23 60.82 25.51
STF [4] 52.83 24.9 34.21 30.56 73.83 58.67
LT [5] 53.1 24.6 41.07 35.5 44.3 19.33
AP (ours) 63.29 29.52 55.26 38.8 59.09 22.62
AP-RF 56.17 26.1 48.9 36.43 60.22 24.34
AP-NN 57.62 26.45 47.5 35.34 59.83 24.01

Labeling Tagging
r r̄ P P̄ R R̄

Makadia [1] − − 26.67 11.33 39.5 14.32
STF [4] 20.52 9.18 11.2 5.81 62.04 16.13
AP (ours) 33.29 19.21 32.25 14.1 47 13.74

(a) Results on LMO. (b) Results on SUN.

Table 1. Tagging and labeling performance on LMO and SUN datasets. Numbers are given
in percentages. In (a), AP-RF replaces the GMM model in the annotation propagation algorithm
with Random Forests [16]; AP-NN replaces SIFT-flow with nearest neighbor correspondences.

ESP IAPR
P R P̄ R̄ P R P̄ R̄

Makadia [1] 22 25 − − 28 29 − −
AP (Ours) 24.17 23.64 20.28 13.78 27.89 25.63 19.89 12.23

Table 2. Tagging performance on ESP and IAPR. Numbers are in percentages. The top row is
quoted from [1].

We implemented the system using MATLAB and C++ and ran it on a small cluster
of three machines with a total of 36 CPU cores. We tuned the algorithm’s parameters
on LMO dataset, and fixed the parameters for the rest of the experiments to the best
performing setting: λs = 1, λc = 2, λo = 2, λint = 60, λext = 5. In practice, 5 iterations
are required for the algorithm to converge to a local minimum. The EM (Section 3)
and inference (Section 4.2) algorithms typically converge within 15 and 50 iterations
respectively. Using K = 16 neighbors for each image gave the best result (Fig. 6(c)),
and we did not notice significant change in performance for small modifications to ε
(Section 4.1), d (Section 3.1), nor the number of GMM components in the appearance
model, M (Eq. 2). For the aforementioned settings, it takes the system 7 hours to pre-
process the LMO dataset (compute descriptors and the image graph) and 12 hours to
propagate annotations. The run times on SUN were 15 hours and 26 hours respectively.

Results on SUN and LMO. Fig. 5(a) shows some annotation results on SUN using
(rt = 0.5, rl = 0.05). All images shown are initially untagged in the database. Our
system successfully infers most of the tags in each image, and the labeling corresponds
nicely to the image content. In fact, the tags and labels we obtain automatically are often
remarkably accurate, considering that no information was initially available on those
images. Some of the images contain regions with similar visual signatures, yet are still
classified correctly due to good correspondences with other images. More results are
available in the supplemental material.

To evaluate the results quantitatively, we compared the inferred labels and tags
against human labels. We compute the global pixel recognition rate, r, and the class-
average recognition rate r̄ for images in the subset I \ Il, where the latter is used to
counter the bias towards more frequent words. We evaluate tagging performance on
the image set I \ It in terms of the ratio of correctly inferred tags, P (precision), and
the ratio of missing tags that were inferred, R (recall). We also compute the unbiased
class-average measures P̄ and R̄.
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(c) IAPR-TC12 (19, 805 images, 291 words)

Fig. 5. Automatic annotation results (best viewed electronically). (a) SUN results were pro-
duced using (rt = 0.5, rl = 0.05) (4778 images tagged and 477 images labeled, out of 9556
images). All images shown are initially un-annotated in the database. (b-c) For ESP and IAPR,
the same training set as in [1] was used, having rt = 0.9, rl = 0. For each example we show
the source image on the left, and the resulting labeling and tags on the right. The word colormap
for SUN is the average pixel color based on the ground truth labels, while in ESP and IAPR each
word is assigned an arbitrary unique color. Example failures are shown in the last rows of (a) and
(c). More results can be found in Fig. 1 and the supplemental material.
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Average Pixel Recognition Rate = 0.5363
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Learning
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Learning + intra + inter

(d)

Fig. 6. Recognition rates on LMO dataset. (a) The pattern of confusion across the dataset vo-
cabulary. (b) The per-class average recognition rate, with words ordered according to their fre-
quency in the dataset (measured from the ground truth labels), colored as in Fig. 5. (c) Recog-
nition rate as function of the number of nearest neighbors, K. (d) Recognition rate vs. ratio of
labeled images (rl) with different terms of the objective function enabled.

The global and class-average pixel recognition rates are 63% and 30% on LMO, and
33% and 19% on SUN, respectively. In Fig. 6 we show for LMO the confusion matrix
and breakdown of the scores into the different words. The diagonal pattern in the con-
fusion matrix indicates that the system recognizes correctly most of the pixels of each
word, except for less frequent words such as moon and cow. The vertical patterns (e.g.
in the column of building and sky) indicate a tendency to misclassify pixels into those
words due to their frequent co-occurrence with other words (objects) in that dataset.
From the per-class recognition plot (Fig. 6(b)) it is evident that the system generally
performs better on words which are more frequent in the database.

Components of the model. Our objective function (Eq. 1) is comprised of three main
components, namely the visual appearance model, and the inter-image and intra-image
regularizers. To evaluate the effect of each component on the performance, we repeated
the above experiment where we first enabled only the appearance model (classifying
each pixel independently according to its visual signature), and gradually added the
other terms. The results are shown in Fig. 6(d) for varying values of rl. Each term
clearly assists in improving the result. It is also evident that image correspondences
play important role in improving automatic annotation performance. The effect of the
inference module of the algorithm on the results is demonstrated visually in Fig. 3 and
the supplemental material.

Comparison with state-of-the-art. We compared our tagging and labeling results with
state-of-the-art in semantic labeling – Semantic Texton Forests (STF) [4] and Label
Transfer [5] – and image annotation (Makadia et al. [1]). We used our own imple-
mentation of [1] and the publicly available implementations of [4] and [5]. We set the
parameters of all methods according to the authors’ recommendations, and used the
same tagged and labeled images selected automatically by our algorithm as training set
for the other methods (only tags are considered by [1]). The results of this comparison
are summarized in Table 1. On both datasets our algorithm shows clear improvement
in both labeling and tagging results. On LMO, r̄ is increased by 5 percent compared
to STF, and P̄ is increased by 8 percent over Makadia et al.’s baseline method. STF
recall is higher, but comes at the cost of lower precision as more tags are associated on
average with each image (Fig. 7). In [5], pixel recognition rate of 74.75% is obtained
on LMO at 92% training/test split with all the training images containing dense pixel
labels. However, in our more challenging (and realistic) setup, their pixel recognition
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rate is 53% and their tag precision and recall are also lower than ours. [5] also report
the recognition rate of TextonBoost [3], 52%, on the same 92% training/test split they
used in their paper, which is significantly lower than the recognition rate we achieve,
63%, while using only a fraction of the densely labeled images. The performance of all
methods drops significantly on the more challenging SUN dataset. Still, our algorithm
outperforms STF by 10 percent in both r̄ and P̄ , and achieves 3% increase in precision
over [1] with similar recall.

So
ur

ce
ST

F
[4

]

field

grass

mountain

plant

sea

sky

tree

arcade
balcony
basket
beam
bench
book
bread
ceiling
ceiling lamp
chair
column
countertop
cubicle
cupboard
decoration
desk lamp
drawer
dummy
extractor hood
fan

awning
boat
building
car
mountain
person
road
rock
sand
sea
sidewalk
sky
streetlight
tree

building

car

door

mountain

person

road

sidewalk

sky

tree

window

O
ur

s

building

mountain

sea

sky

tree

floor

wall

window

mountain

road

sky

tree

building

car

road

sidewalk

sky

Fig. 7. Comparison with [4] on SUN dataset.

We show qualitative com-
parison with STF in Fig. 7 and
the supplemental material. Our
algorithm generally assigns less
tags per image in comparison
to STF, for two reasons. First,
dense correspondences are used
to rule out improbable labels
due to ambiguities in local vi-
sual appearance. Second, we ex-
plicitly bias towards more fre-

quent words and word co-occurrences in Eq. 4, as those were shown to be key factors
for transferring annotations [1].

Results on ESP and IAPR. We also compared our tagging results with [1] on the
ESP image set and IAPR benchmark using the same training set and vocabulary they
used (rt = 0.9, rl = 0). Our precision (Table 2) is 2% better than [1] on ESP, and is
on par with their method on IAPR. IAPR contains many words that do not relate to
particular image regions (e.g. photo, front, range), which does not fit within our text-
to-image correspondence model. Moreover, many images are tagged with colors (e.g.
white), while the image correspondence algorithm we use emphasizes structure. [1]
assigns stronger contribution to color features, which seems more appropriate for this
dataset. Better handling of such abstract keywords, as well as improving the quality of
the image correspondence are both interesting directions for future work.

Limitations. Some failure cases are shown in Fig. 5 (bottom rows of (a) and (c)).
Occasionally the algorithm mixes words with similar visual properties (e.g. door and
window, tree and plant), or semantic overlap (e.g. building and balcony). We noticed
that street and indoor scenes are generally more challenging for the algorithm. Dense
alignment of arbitrary images is a challenging task, and incorrect correspondences can
adversely affect the solution. In Fig. 5(a) bottom row we show some examples of inac-
curate annotation due to incorrect correspondences. More failure cases are available in
the supplemental material.

Training set size. As we are able to efficiently propagate annotations between images
in our model, our method requires significantly less labeled data than previous methods
(typically rt = 0.9 in [1], rl = 0.5 in [4]). We further investigate the performance of
the system w.r.t the training set size on SUN dataset.
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Fig. 8. Performance (F ) as
function of human annotation
time of our method and [1] on
SUN dataset.

We ran our system with varying values of rt =
0.1, 0.2, . . . , 0.9 and rl = 0.1rt. To characterize the sys-
tem performance, we use the F1 measure, F (rt, rl) =
2PR
P+R , with P and R the precision and recall as defined
above. Following the user study by Vijayanarasimhan
and Grauman [20], fully labeling an image takes 50 sec-
onds on average, and we further assume that supplying
tags for an image takes 20 seconds. Thus, for example,
tagging 20% and labeling 2% of the images in SUN re-
quires 13.2 human hours. The result is shown in Fig. 8.
The best performance of [1], which requires roughly 42
hours of human effort, can be achieved with our system with less than 20 human hours.
Notice that our performance increases much more rapidly, and that both systems con-
verge, indicating that beyond a certain point adding more annotations does not introduce
new useful data to the algorithms.
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Fig. 9. Performance and
run time using sparse
inter-image edges.

Running time. While it was clearly shown that dense
correspondences facilitate annotation propagation, they are
also one of the main sources of complexity in our model.
For example, for 105 images, each 1 mega-pixel on av-
erage, and using K = 16, these add O(1012) edges to
the graph. This requires significant computation that may
be prohibitive for very large image databases. To address
these issues, we have experimented with using sparser
inter-image connections using a simple sampling scheme.
We partition each image Ii into small non-overlapping
patches, and for each patch and image j ∈ Ni we keep a single edge for the pixel
with best match in Ij according to the estimated correspondence wij . Fig. 9 shows
the performance and running time for varying sampling rates of the inter-image edges
(e.g. 0.06 corresponds to using 4× 4 patches for sampling, thus using 1

16 of the edges).
This plot clearly shows that the running time decreases much faster than performance.
For example, we achieve more than 30% speedup while sacrificing 2% accuracy by
using only 1

4 of the inter-image edges. Note that intra-image message passing is still
performed in full pixel resolution as before, while further speedup can be achieved by
running on sparser image grids.

6 Conclusion

In this paper we explored automatic annotation of large-scale image databases using
dense semantic labeling and image correspondences. We treat auto-annotation as a la-
beling problem, where the goal is to assign every pixel in the database with an appropri-
ate tag, using both tagged images and scarce, densely-labeled images. Our work differs
from prior art in three key aspects. First, we use dense image correspondences to explic-
itly enforce coherent labeling (and tagging) across images, allowing to resolve visual
ambiguities due to similar visual patterns. Second, we solve the problem jointly over the
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entire image database. Third, unlike previous approaches which rely on large training
sets of labeled or tagged images, our method makes principled use of both tag and label
information while also automatically choosing good images for humans to annotate so
as to optimize performance. Our experiments show that the proposed system produces
reasonable automatic annotations and outperforms state-of-the-art methods on several
large-scale image databases while requiring significantly less human annotations.
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