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Figure 1: An overview of the process of transforming 3D graphic interaction into comics .

Abstract

There are times when Computer Graphics is required to be succinct
and simple. Carefully chosen simplified and static images can por-
tray a narration of a story as effectively as 3D photo-realistic contin-
uous graphics. In this paper we present an automatic system which
transforms continuous graphics originating from real 3D virtual-
world interactions into a sequence of comics images. The system
traces events during the interaction and then analyzes and breaks
them into scenes. Based on user defined parameters of point-of-
view and story granularity it chooses specific time-frames to create
static images, renders them, and applies post-processing to reduce
their cluttering. The system utilizes the same principal of intelligent
reduction of details in both temporal and spatial domains for choos-
ing important events and depicting them visually. The end result is
a sequence of comics images which summarize the main happen-
ings and present them in a coherent, concise and visually pleasing
manner.

Keywords: Information Visualization, Non-Photorealistic Ren-
dering, Comics, Succinct Graphics

1 Introduction

One of the major ongoing efforts in computer graphics is the strive
for more elaborate, more complex and more realistic visual dis-
plays. This includes the strive for higher rendering quality and for
higher frame rates. Nevertheless, there are times when more suc-
cinct use of graphics is required. For example, when there is no
time to watch a whole movie, or to play a whole game; when it is
too expensive to transfer or store elaborate graphic data, or when the
target display device is crude or even static. In such situations, the
graphic complexity must be reduced both in terms of quantity and

in terms of quality, both temporally and spatially. Nevertheless, the
need to carry a message or deliver information calls for intelligent
techniques of reduction where significant information is preserved
and unimportant data is dismissed. This paper investigates this type
of graphics reduction, presenting a system for automatic creation of
comics from a full scenario 3D virtual game.

We define this problem as inverse graphics since it uses as in-
put the classic output of 3D graphics: we begin by obtaining a log
of events originating from the interactions of players inside a 3D
virtual world. This log is analyzed and processed based on para-
meters given by the user such as point-of-view and interest. Our
goal is to create a sequence of comics images which summarize
the main happenings and present them in a coherent, concise and
visually pleasing manner. This transformation creates a more suc-
cinct representation of graphics by reducing both the temporal and
the spatial complexity. Hence, the challenge is twofold:

1. In the temporal domain the challenge is to automatically de-
tect and choose the most important or most interesting events
in the interaction. The definition of interest depends on the
point-of-view specified by the viewer.

2. In the spatial domain the challenge is to depict these events
with one or more images that will convey their meaning faith-
fully. This includes choosing the points in time to portray an
event, selecting camera parameters to create descriptive im-
ages, and choosing a rendering style to reduce their complex-
ity while preserving their essence.

Screenplays, storyboards and scripts use comic-like frames to
narrate a story. Inversely, such displays can be created to summa-
rize the main events in a film, a video or a virtual world interac-
tion [Brand 1997]. Furthermore, defining comics as juxtaposed
pictorial and other images in deliberate sequence [McCloud 1994]
covers not only artistic and entertainment uses, but other possible
applications as well. For instance, in medical or scientific visual-
ization juxtaposition can be used to compare or illustrate data. In
education and training visual juxtaposition can be used for expla-
nation of structures, assemblies or other processes [Agrawala et al.
2003]. In fact, the “small multiples” idiom used for envisioning any
kind of information [Tufte 1990] can be interpreted as juxtaposed
pictorial elements.

Traditionally in comics , selecting or producing the right image
and text that communicate the right message is the work of an artist.



Indeed, we are still far from an artist’s capability and expressive-
ness. However, this work goes one step towards this goal by pre-
senting a system which is capable of extracting a sequence of im-
portant events from a continuous temporal storyline, and converting
them into a graphical representation automatically. An overview of
our system can be seen in Figure 1. While the user interacts with
a game or moves through a virtual world, a logger ‘listens’ to all
events and stores them in a log file (Section 4). The log file is cut
into logical units or ‘scenes’ by the scener using a model for charac-
ter interactions. Specific scenes and events are chosen according to
the user definition of interest (Section 5). These are then converted
to comics by an interaction between the director which chooses the
frames and positions the camera (Section 6) and the renderer which
is responsible for the style and abstraction of the images (Section 7).

The main contribution of this work is the creation of an au-
tomatic end-to-end system which transforms interactions in 3D
graphics into a succinct representation depicted by comics . The
system is capable of producing different comics sequences based
on different semantic parameters provided by the user such as point-
of-view and the level-of-details. To our knowledge it is first in
attempting to create comics automatically, and use the same re-
duction principal in parallel both in the temporal and the spatial
domains.

2 Related Work

Previous work has dealt with several aspects of our work. Ana-
lyzing a log of events is directly connected to story understand-
ing which has been studied from early days of Artificial Intelli-
gence [Charniak 1972; Schank and Abelson 1977], and is still an
active research area [Rimmon-Kenan 2002; Mueller 2002]. The
more thorough the understanding of the story, the better the selec-
tion of interesting and important events will be. Nevertheless, our
approach does not depend on deep story understanding [Mueller
2004]. Instead, we use a model of the interactions between entities
or characters in the world to recognize scenes and choose events.

Automatic creation of comics is also closely related to auto-
matic creation of animations or movies [Karp and Feiner 1993; He
et al. 1996; Amerson and Kime 2001; Halper and Masuch 2003;
Friedman et al. 2004]. In both cases, a series of given events must
be decomposed into scenes and visual display must be created. In
fact, the general outline of our system follows that of similar sys-
tems for movie creation by first segmenting the events into scenes,
then selecting specific scenes or scene parts, and then transforming
each one into visual depictions. Moreover, some cinematographic
rules must be followed also in comics sequences. For example, the
180◦ camera line rule applies also for comics images.

Two previous approaches have been suggested for the preserva-
tion of cinematographic constraints in movie creation. One is based
on rule-based constraint satisfaction [Friedman and Feldman 2002]
and the other uses idioms which are stereotypical ways to capture
some specific actions as a series of shots [Christianson et al. 1996].
Our approach for transforming events into comics follows the later,
but extends the notion of idioms to the creation of different types of
comics frame transitions. Although video summarization [Brand
1997; Hanjalic et al. 1999; Fern et al. 2002] is also related to our
work, most of the research in video has a somewhat different focus,
which is image analysis and understanding. Our input comes from
a 3D virtual world and its different nature includes more semantic
information.

The language of comics is different from the language of cin-
ematography. On the one hand it seems simpler since only static
images need to be chosen. On the other hand, the choices are more
critical and must convey movements or actions, which is more diffi-
cult to do using static images. Furthermore, the general approach of
automatic movie creation is inherently photo-realistic. In contrast,

we follow the same path of detail-reduction and abstraction in ren-
dering as in the temporal story extraction. Since we do not have full
geometric information for rendering, we create non photo-realistic
images by applying post-processing stylization on the rendered im-
ages with the intension of enhancing important details and reducing
cluttering.

Non-photo-realistic rendering (NPR) is an active field of re-
search in computer graphics [Gooch and Gooch 2001]. A major
trend in NPR is targeted towards the definition of stylized filters to
achieve certain painting or sketching effects. In our work, we do
not concentrate on artistic stylization but try and follow technique
for reduction in details in order to enhance the essence of the im-
age ([Herman and Duke 2001] used the term minimal-graphics). A
similar abstraction approach is presented in [DeCarlo and Santella
2002], using a perceptual model of eye movements. We use the
previous semantic knowledge from the virtual world and story ex-
traction to distinguish foreground from background, main subject
from superfluous details etc. Our stylization is based on two tech-
niques from image processing: edge detection and clustering. For
edge detection and enhancement we use anisotropic Laplacian op-
erator [Trucco and Verri 1998], while the clustering and filtering
are based on the k-means [Lloyd 1982] and mean-shift [Comaniciu
and Meer 2002] algorithms.

3 The Language of Comics

Comics carry a somewhat childish reputation and are often dis-
missed as un-serious. Images in comics are often simplified
and deliberately presented in a non photo-realistic manner. Still,
comics are capable of invoking strong and emotional reactions,
create identification and convey a story in an extremely effective
and appealing manner. In fact, the use of symbolism and abstrac-
tion in comics can promote identification since realistic images
resemble specific people or places whereas symbolic figures can
represent anyone or anywhere. For these reasons comics narration
can be leveraged to create effective and appealing succinct graphi-
cal depictions.

One of the primary principals of comics is the translation of
time into space. The images in comics are inherently static, but
they display dynamic information. The basic principal of depicting
a dynamic events using a sequence of still images is so natural to
human perception, that in most cases there is no need to explain
it at all. Still, when considering how to create a sequence of still
images to convey dynamic events, comics presents several possible
transitions of time between frames [McCloud 1994]:

1. Moment-to-moment: breaks the action or motion into im-
ages based on time intervals. The results may look like a se-
quence of frames from a movie.

2. Action-to-action: breaks the action or motion into images
based on the type or essence of the action happening. This
transition is mostly used in comics .

3. Subject-to-subject: images switch from one action to an-
other or from one character to another, but still remain within
the same scene.

4. Scene-to-scene: consecutive images leap in time or space,
usually signifying a change of scene.

Another leading principal in comics is the use of visual icons.
The meaning of icon here is taken in its general sense as any image
used to represent a person, place, thing or idea (see e.g. Figure 1).
The use of abstract icons as opposed to realism focuses our atten-
tion through simplification, by eliminating superfluous features and
creates higher identification and involvement.

We use these two principals to create a succinct depiction of 3D
interaction. First by transforming a continuous sequence of events



into a discrete set of static images which portray them (Figure 4),
and second by using abstraction in the visual depiction instead of
realism.

4 Logging Events in a 3D World

The logger is responsible for tracing all events in an interaction
and storing them in a log file. In order to apply our techniques in
a real 3D-virtual interaction, the logger must be incorporated in-
side the engine of the 3D world. After examining several options
we resolved into using a 3D game as the basis for the 3D inter-
action input. Not many open-source games allow modifications
to the core engine (and it seems that this situation is not going to
change anytime soon [Geitgey 2004]). For our experiments we use
Doom [ZDOOM 2004], a simple 3D shooting game. Although we
use the multi-player version of the game, the possible events and in-
teractions in such a game are somewhat limited. Nevertheless, our
system is general in a sense that new types of events and interac-
tions can easily be defined, recognized and supported for any type
of virtual interaction.

Each entity in the virtual world has a set of attributes which de-
fine its state. this can include its position, its possessions (e.g. tools
or weapons), its current action and some given measures such as vi-
tality or strength or hunger. An event in the virtual world is defined
as any change-of-state of any of the entities in the world. Events are
usually actions carried out by characters such as moving, picking
up an object, sitting down, opening a door etc. Since many changes
can happen simultaneously we measure the change-of-state of the
world at some atomic time-unit called a tick. We store in the log
all changes that occur to all entities between each two consecutive
ticks. All of the event’s related parameters are stored in the log
such as the entity identifier, its positions, and the action type. The
log also holds all the initial information regarding the geometry and
entities of the world at time (tick) 0. Thus, at any tick t, we can re-
construct the state of the world based on the accumulated informa-
tion from tick 0 to tick t. Some filtering out of ‘unimportant’ events
is already done at this stage to prevent the log from exploding. Sim-
ilarly, even though an action may last several ticks, only its outset
is logged. This logging scheme was chosen since a large number of
characters and events are involved in each scenario, and the log can
grow considerably. Incremental logging needs significantly smaller
storage compared to storing the full state-of-the-world at each tick.

5 Recognizing Scenes: The iHood Model

Following many narrational art forms such as theater and motion
pictures, we decompose a story into a sequence of scenes. Hence,
one of the first steps in transforming a log of events into a coher-
ent story is to separate it into scenes. The scener is responsible for
segmenting the log into scenes. The notion of a scene is difficult to
define precisely. In general, a set of related actions or events that oc-
cur in one place at one time can be specified as a scene. Hence, the
two main parameters defining a scene are usually time and space,
and we can separate the events according to their location and time.
Nevertheless, there may be many events occurring simultaneously
at the same location, but only some of them are relevant to a specific
story. Similarly, some events may occur in different locations but
belong to the same scene (such as in a car chasing scene). Clearly, a
simple model of time and space separation would not be sufficient,
and some level of event understanding and classification should be
performed.

Separating events into scenes also depends on the point-of-view.
Before transforming a sequence of events into a story there is a
need to select a point-of-view or narrator. story understanding is
an extremely difficult problem, therefore, we approximate it with a

Figure 2: Two example of interaction neighborhoods (iHoods) of
two entities the orange and the blue. The image shows a top view
of a 3D game environments where each entity is represented by a
circle. Entities are part of an iHood of another entity either if they
are within its vicinity (large orange or blue circles) or they interact
with it (dotted lines).

simpler scheme for modeling interest or importance of events. We
model the interactions between entities in the virtual world in order
to recognize the scenes. We analyze interactions which involve two
entities instead of examining events which are actions of a single
entity. Furthermore, the interaction importance is factored by the
importance of the entities and actions, enabling the creation of a
bias toward a specific point-of-view or a specific type of events.

An interaction is defined as a relation between two entities in the
world, for example ‘see’, ‘shoot’, ‘pick’, ‘hold’ can be interactions,
but also spatial proximity can be defined as a feeble type of inter-
action. Let E be the set of all entities in the world, F the set of
all possible interactions, and N the natural numbers (representing
ticks). An interaction R is a function R : N×F×E×E → {0, 1}.
If two entities e1 and e2 interact at tick t in an event of type f then
R(t, f, e1, e2) = 1, else it is 0.

An interaction-neighborhood or iHood for short, of entity e is
the set of all active interactions at tick t of entity e with any other
entity in the world:

I(e, t) = {R|∃e′ ∈ E,∃f ∈ F, R(t, f, e, e′) = 1}

Each entity e in the virtual world owns an iHood which lists all
entities it is currently interacting with and in what manner. These
iHoods are updated each tick using two procedures. The first is con-
tinuously simulating all events of the log to find events that involve
the entity e. The second is by examining the vicinity of entity e for
the entrance or departure of other entities. The vicinity of an entity
is a sphere S centered at the entity position and with a given radius
r (see Figure 2).

For each interaction type f ∈ F we define a weight wf which
is a real value number configured by the user. The weights denote
the importance of these interactions in a specific story, e.g. from
a specific point-of-view. Hence, different choices of weights for
different interactions eventually govern if an action will appear in a
story or not.

At any tick t we define the level of interaction of an entity e as:

l(e, t) =
X

e′∈E

X

f∈F

wfR(t, f, e, e′) =
X

R(t,f,e,e′)∈I(e,t)

wf

For a specific entity e we can graph l(e, t) as a function of the
tick t (see Figure 3a). We find that the level of interaction has sev-
eral peaks and valleys during the course of interaction. Further-
more, we can change the shape of this function by changing the
weights of specific interaction types. Our key assumption is that
high level of interaction reflects significance in the story and vice



(a)

(b)

(c)

Figure 3: An example of the interaction level l(e, t) over time of
the sequence shown in Figure 11 is shown in (a). The smoother
version h(e, t) including also changes in location is shown in (b),
and the scene partitioning based on it. Note, that scene 3 could
have been separated to two scenes using slightly higher threshold.
Choosing interesting scenes and events is based on a threshold on
the smoothed l(e, t) shown in (c). Note that scenes 4 and 5 would
be cut-out since no interesting event occurred inside them.

Figure 4: A schematic view of the visual conversion process from
log to comics frames, and the places where different types of
comics transitions are used.

verse. Hence, we would want to include the events around the peaks
of l(e, t) in any story involving entity e, and skip the events when
l(e, t) is low. This can be done using a simple threshold over the
value of l(e, t). Nevertheless, this simple scheme does not create
a good partitioning of the story into scenes and is sensible to local
fluctuations in l(e, t). The interaction level l(e, t) is an indication
only for one of the parameters defining a scene - the time of the
events. There is a needs to augment it with the second parameter -
the location of the events.

We define a change-of-location function s(e, t) which is 0 al-
most always apart from a finite number of times k where it is de-
fined as a uniform spike with maximum height ck > 0 (s(e, t) is
similar to a series of k approximated delta functions). The times
when s(e, t) 6= 0 are the times the entity e has moved from one
physical location to another and the constant ck depends on the
type of location change. This can include moving from one room
to another, exiting or entering a building, or going up or down stairs.
We subtract this function from the interaction level: l(e, t)−s(e, t)
since the separation of scenes should occur when both the interac-
tions are low and there was a change of location. However, we also
smooth the result using a gaussian G() with local support to gain
an ease-in and ease-out effect in scenes and events:

h(e, t) = G(t) ∗ (l(e, t)− s(e, t))

h(e, t) is a smoother version of l(e, t) which also incorporates
the change of location information (Figure 3b). We now use h(e, t)
to segment the log of events into scenes. The beginning of a scene
is signified by a transition from a period of low h(e, t) to a pe-
riod of high h(e, t) i.e. ∂h(e,t)

∂t
> 0, and conversely and end of

scene is signified by h(e, t) going down, i.e. ∂h(e,t)
∂t

< 0. Inside
each scene, we still recognize interesting events by times when a
smoothed version of l(e, t) > T for some threshold T (Figure 3c).
An interesting-scene would be one that has at least one interesting
event. Non-interesting scenes, such as periods when the character is
waiting, will not be shown since no interesting interaction has hap-
pened to the character, and hence l(e, t) would be low all through
this period.

Choosing a specific character as the main character and using
this mechanism will result in a specific segmentation of the log into
scenes. These scenes will represent a story from the point-of-view
of this specific character. Changing the main character will create a
different segmentation and a different story. Hence, this mechanism
is a type of parametric temporal detail reduction, which is capable
of emphasizing important information and removing insignificant
data depending on the specific point-of-view.

6 Converting to Visual Depiction

Once the interesting scenes have been selected from the log file,
there is a need to convert them into visual display. This is the main
responsibility of the director. The director currently examines each
scene independently, although inter-scene relations are certainly of
importance and might be used in the future, for example, to change
the order of scenes. Our goal is to transform each scene into a se-
quence of images which depict its main happenings visually (Fig-
ure 4). This transformation includes three major steps:

1. Choosing the specific events within the scene that should be
portrayed.

2. Using one of the possible comics temporal transitions of
frames (Section 3) to portray the events.

3. Choosing the camera parameters for each specific frame im-
age: position, direction, zoom, etc.



Each scene is opened with one exposition frame which repre-
sents the scene-to-scene transition and creates continuity in the sto-
ryline. This frame is usually a wide angle image of the scene which
gives the exposition of the scene. Next, the main events in the scene
are recognized using a threshold on a smoothed version of l(e, t)
within the scene (Figure 3c). If more than one event is recog-
nized, a subject-to-subject transition must be used. Nevertheless,
by depicting each event separately, a subject-to-subject transition
will emerge implicitly between the frames of the different events
(Figure 5).

Each specific event can be displayed using moment-to-moment
transition or action-to-action. Moment-to-moment transition is sim-
ple to create as the event is shown with k frames of equal intervals
in time. Nevertheless, it is rarely used in comics and mainly to
stress very important actions or to build tension by prolonging the
perception of time (Figure 5(d)). A more appropriate and useful
type of transition is the action-to-action transition. This transition
depicts an event using fewer frames presenting significant move-
ments in the event. Although even the same action performed by
the same entity on different occasions may differ in the choice of
significant frames, in most cases the frames depend on the type of
action and its interval in time. Therefore, to depict an event using
an action-to-action transition of frames we use pre-defined idioms
depending on the type of event.

In general, an idiom is a mapping between a specific pattern
of events in the scene to a specific sequence of time-frames. We
can use the same idiom for different types of events, or, depending
on the state of entities, choose different idioms to depict the same
event. For instance, for a firing sequence the director uses an idiom
which displays two frames in an action-to-action transition manner:
one just before the peak of the action (the peak in l(e, t)) and one a
little after the outcome (see Figure 5). A single peak in l(e, t) con-
taining interactions with many entities, is depicted by an idiom of
a single wide-shot frame (such as frame 10 in Figure 11). Another
example is when a player is shielded. In this case, it is important
to stress its personal point-of-view and the director uses an idiom
which defines a first-person point of view shots (frames 12,15 in
Figure 11). Idioms can also define higher level mappings between
otherwise individual events. In a conversation scene many single
events of interactions are replaced by one prolonged idiom which
later enables the insertion of text-balloons (Figure 9). Although in
this specific game the types of interactions are limited, the idiom
mechanism is versatile and easily extendible to other fields includ-
ing other types of interactions.

7 Rendering: Visual Abstractions

As a result of the director’s process, the happenings of a specific
player or entity in the virtual world are portrayed using discrete
points in time defined by idioms or the times when the interaction
level is high. However, there is still a need to convert the 3D scene
at these points in times into 2D images. This is done by the ren-
derer, which is responsible for positioning cameras and choosing
its parameters (Figure 6).

The director uses idioms which define high level directives. This
includes the main entity in the scene, or a point in space at the cen-
ter of the scene, and a list of secondary entities, if they exist, that
should be portrayed if possible. It can also include the desired type
of shot: close-up, medium, long, or wide shot, the height of cam-
era, the roll, pitch, and yaw of the camera etc., although these last
parameters are not used in practice. All these directives are trans-
lated by the renderer to explicit camera parameters. For example,
a central point or entity is translated into a direction and the type
of shot to a distance, creating a circle around the point of possible
camera positions pointing towards the center. A number of cam-
era positions are sampled around the circle uniformly and shots are

(a) A firing sequence of the green player is depicted using an idiom com-
posed of two action-to-action transitions and one subject-to-subject.

(b) The view of the snapshots from (a) as seen in the game, without using
our system cameras.

(c) The same type of idiom depicting a similar event from the blue player’s
story, only this time the player is getting hit.

(d) An example of a moment-to-moment transition, which is not used in
practice.

Figure 5: For firing sequences the director uses an idiom which is
composed of two sets of action-to-action transitions: one for the
firing entity and one for the entity being hit. This creates a subject-
to-subject transition implicitly between the two sets.

taken. If there is an obstacle such as a wall or a pillar, the camera
is advanced towards the center until it is visible. Factoring in other
constraints (such as the 180◦ rule) eliminates some of the images.
The remaining images are weighted first based on the visibility of
the primary entity and then based on secondary entities, and the
best one is chosen (Figure 7).

To create the actual comics images, the style of shading follows
the same principal as the temporal selection: intelligent reduction
in details. There are two options for achieving a certain style while
rendering 3D graphics. The first is to use a specific shading style
during rendering, and the second is to apply post-processing on the
images. There are several 3D rendering engines and techniques
which give the objects a cartoon-like form. Unfortunately in our
case, the game engine supports only the original gloomy type of
shading of DOOM. Furthermore, the game itself has very low qual-
ity graphics and is based primarily on sprites and textures. There-
fore, instead of full 3D data, we can acquire only fixed resolution
2 1

2
D data from the game. We use the original game rendering-

style image, extract the foreground and background masks, and
use the texture stencils to gain 2D information on the background
geometry. Using all these we stylize the image in post processing.
Our goal for the visual end-results is to create the look-an-feel of
comics , reduce the cluttering of the original images, and enhance
the main characters and events in the images.

Several image processing techniques are combined to achieve the
desired results. Color clustering based on mean-shift is used for the
background and k-means clustering for the foreground. Edge en-
hancement is achieved by applying an anisotropic Laplacian kernel



Figure 6: A plot of the full path of the green player during the
interaction. At different points in time and space, and based on the
interaction level, the director chooses a snapshot. In this example,
the granularity is high and many shots were taken. The renderer
is responsible for positioning cameras (green pyramids) to shoot
the comics frame. Some examples of images taken from different
cameras are shown closer-up at the top. Some cameras take two
shots from the same position, for example, to create an action-to-
action transition.

Figure 7: For each specific point in time 18 camera positions are
sampled around the event’s central point (only 9 are shown). In this
top view of a scene, the point is between the two main entities - the
blue player and a yellow monster. The best resulting image from
the 18 is chosen for use in the comics . In this case it is the lower
right image.

Figure 8: The 2 1
2
D image data extracted from the game engine and

the different image processing techniques used to create the image
stylization for our comics . There are two different styles, one
is cartoon-like and one enhances the entities in the foreground by
removing all color from the background.

on the image creating stroke-like edges. Combining all these to-
gether creates the resulting images (Figure 8). The renderer is also
responsible for creating text balloons when a conversation takes
place in the log. Currently, the idiom used for conversation is a
simple alteration of images in front view of the speakers. Depend-
ing on the length of each image text, the renderer chooses the size
of the balloon, and positions it to the left or right of the head, al-
ternating between the speakers. The position takes into account the
foreground mask of the speaker, the masks of other entities and the
borders of the image. If the text does not fit into one balloon, it is
distributed into several consecutive equivalent images (Figure 9).

8 Comics Layout

The last stage in the comics creation is the page-layout stage. After
rendering and stylization, all images are in the same size and can be
displayed consecutively one next to the other similar to the layout
of Figure 9. Nevertheless, many comics pages do not look like
a sequence of uniform images, often they present variations in the
size, aspect ratio and positioning of the images to create effects
such as stressing or prolonging. Although imitating the full skills
of a comics artist is still a desire, we devise a layout algorithm for
images that breaks the symmetry and creates the look-and-feel of
comics .

To simplify the problem, we constrain all rows in our comics
to be in the same height, which is often true in many real comics
sequences. This means that our layout algorithm is transformed
into a one dimensional problem of choosing the horizontal length
of images in each row. Next, we separate the images to four basic
classes based on semantics, e.g. the idiom or event they portray.
Type B (big) images are those that can be expanded. These include
images where maximum interaction of many entities is depicted, or
exposition images of a new scene. Type S (small) images are those
that should be condensed. These are usually a part of a sequence
of images such as an action-to-action sequence. Type F (fixed) im-
ages are those that must remain in fixed size. In our sequences any
image that includes text balloons is defined as fixed to protect the
balloons layout. Any other image is defined as N (neutral) and can
be expanded or condensed.

The layout process takes as input the fixed-length of all rows.
We always choose a whole multiple of the length of a regular image



Figure 9: An example of the output of the layout algorithm for placing text balloons in our comics . The direction of the balloons alternate
between entities and the text is broken if it exceeds a certain size.

(usually k=4). The layout proceeds in a greedy manner by fitting
sets of up-to k images, one row at a time beginning from the first
image until the last. At the beginning of each row it examines the
next k images. If this set does not includes any B-type image than
k images are put in the row with fixed size. Otherwise, the first
B-type image is put aside as a ‘filler’-image. For all other images,
the layout tries to comply their constraints based on their types.
Every B-type image is assigned a random expansion ratio between
1.2 and 2.0. Every S-type image is assigned a random condensing
ratio between 0.7 and 1.0. Lastly, the ‘filler’-image is expanded to
compensate for all other images. If this is not sufficient, other N-
type images are expanded. If no solution is found, the layout tries
another round with different random values. If after a few tries it
still fails, it inserts the images in their original sizes and proceeds to
the next row. This basic algorithm is further enhanced for specific
situations, for instance, when two consecutive B-type images are
found and more.

Once the expansion and condensing factors are set for a row
of images, the images are pruned at the fringes either horizon-
tally (mostly for expansion) or vertically (mostly for squeezing) to
achieve the right aspect ratio. Pruning is done in a symmetric man-
ner from the top and bottom, or left and right, respectively with as
little damage to the foreground as possible.

9 Results

We present results created from 3D world interactions of a two-
player episode of the DOOM game. We denote the two players as
the ‘green’ player and the ‘blue’ player. The original interaction
takes 160 seconds and can be seen from the green player’s point of
view in the attached video (see regularInteraction.avi). All exam-
ples were created on an Intel pentium-4 2.8GHZ 500MB.

The log created from the interaction is 6.3 MB large in XML
format and includes 5574 ticks. The scener first runs on the log to
compose an interaction-script which includes all the iHoods for all
entities. This takes 392 seconds, creating a script size of 683KB.
This enables subsequent calls to the scener to be optimized and
take only a few seconds. Hence, given a specific entity (point-of-
view) and a threshold for scene cutting (granularity), the scener uses
the interaction-script and log to create a scened-log. This takes 3
seconds for the blue and green players. The log is larger in size
(8.68MB) since it is now segmented into scenes, and at the start of
each scene it contains a synchronization point for all entities in the

world. Later, this enables each scene to be portrayed independently
and may be used to change the order of scenes in the future.

The director uses the level-of-detail threshold and converts the
scened-log into a directing-script based on this threshold. This
script includes the high-level directives used for creating snapshots
of the story over time. In our example it is 60.4KB large. We used
several different thresholds to create several level-of-details of the
story for both the green and the blue players (see attached HTML
pages).

Next, the directing script is used to create the comics images.
Since we do not hold the full geometry, we use the game engine
itself to render the basic images, and extract all the masks for styl-
ization. Stylization is done by filtering all images in a post-process.
The filtering of each image is the most expensive task and currently
takes between 90 seconds for focused-style (Black and White back-
ground) to 150 seconds for Cartoon-style images.

Assuming E is the number of entities in the world, T is the num-
ber of ticks and V is the number of events, the most costly action in
the process beside rendering is the update and creation of the iHood
for each entity which is O(T ·E2 ·V ). However, the rendering styl-
ization process is in fact the major bottleneck since its complexity
is dependent on the number of pixels and not entities or timesteps.

In Figures 11 we present the results of the green player story
using the largest granularity. This means only highlights of the in-
teraction are shown. Lowering the threshold will yield more frames
automatically as can be seen in the attached HTML files. We used
four different level of details for each of the two players: the blue
and the green players. We also present all these comics in the sec-
ond rendering style and an example can be seen in Figure 10.

10 Conclusion

This paper describes an end-to-end system for the automatic cre-
ation of comics from 3D graphics interaction. The major challenge
met by this system is the transformation of elaborate and continuous
graphic data into a discrete and succinct representation. In both the
temporal and the visual domains we follow the same principal of
abstraction by reducing details, focusing on major events and main
characters. The system is built on top of a real 3D game engine and
is able to trace and log the happenings in a multi-user world, and
transform them into comics automatically.

There are many possible extension for this work and many en-
hancements need to be addressed. In terms of story understanding,



Figure 10: An extract from the green player Comics sequence created in the rendering style stressing the foreground. A larger portion with
the cartoon-style rendering can be seen in Figure 11.

causality between events can be utilized to create better scene par-
titioning and to identify important events. In terms of directing, the
current system for choosing transitions based on idioms is almost
memoryless. Remembering the history of frames and idioms used
may create a smoother and more interesting flow in the story. In
terms of rendering and stylization, the use of 3D rendering instead
of 2D image processing will open new possibilities. Lastly, in terms
of layout, algorithms for combining text and images automatically
to create effective displays, and algorithms for automatic page lay-
out are still in their infancy and should be investigated further.

As mentioned earlier, the creation of comics and movies have
much in common. In fact, the current system can also support the
creation of simple movies instead of comics frames. Nevertheless,
additional research is needed for the creation of camera movements
and dynamic flow of display to support the automatic creation of
high-quality movies as well as better comics .
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Figure 11: The beginning of the Comics page from the point of view of the green player. The full sequence and more examples can be found
in the attached HTML materials.


