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Figure 1: An example of using our Eulerian Video Magnification framework for visualizing the human pulse. (a) Four frames from the
original video sequence (face). (b) The same four frames with the subject’s pulse signal amplified. (c) A vertical scan line from the input (top)
and output (bottom) videos plotted over time shows how our method amplifies the periodic color variation. In the input sequence the signal
is imperceptible, but in the magnified sequence the variation is clear. The complete sequence is available in the supplemental video.

Abstract

Our goal is to reveal temporal variations in videos that are diffi-
cult or impossible to see with the naked eye and display them in
an indicative manner. Our method, which we call Eulerian Video
Magnification, takes a standard video sequence as input, and ap-
plies spatial decomposition, followed by temporal filtering to the
frames. The resulting signal is then amplified to reveal hidden in-
formation. Using our method, we are able to visualize the flow
of blood as it fills the face and also to amplify and reveal small
motions. Our technique can run in real time to show phenomena
occurring at temporal frequencies selected by the user.
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1 Introduction

The human visual system has limited spatio-temporal sensitivity,
but many signals that fall below this capacity can be informative.

For example, human skin color varies slightly with blood circu-
lation. This variation, while invisible to the naked eye, can be ex-
ploited to extract pulse rate [Verkruysse et al. 2008; Poh et al. 2010;
Philips 2011]. Similarly, motion with low spatial amplitude, while
hard or impossible for humans to see, can be magnified to reveal
interesting mechanical behavior [Liu et al. 2005]. The success of
these tools motivates the development of new techniques to reveal
invisible signals in videos. In this paper, we show that a combina-
tion of spatial and temporal processing of videos can amplify subtle
variations that reveal important aspects of the world around us.

Our basic approach is to consider the time series of color values at
any spatial location (pixel) and amplify variation in a given tempo-
ral frequency band of interest. For example, in Figure 1 we auto-
matically select, and then amplify, a band of temporal frequencies
that includes plausible human heart rates. The amplification reveals
the variation of redness as blood flows through the face. For this
application, temporal filtering needs to be applied to lower spatial
frequencies (spatial pooling) to allow such a subtle input signal to
rise above the camera sensor and quantization noise.

Our temporal filtering approach not only amplifies color variation,
but can also reveal low-amplitude motion. For example, in the sup-
plemental video, we show that we can enhance the subtle motions
around the chest of a breathing baby. We provide a mathematical
analysis that explains how temporal filtering interplays with spatial
motion in videos. Our analysis relies on a linear approximation re-
lated to the brightness constancy assumption used in optical flow
formulations. We also derive the conditions under which this ap-
proximation holds. This leads to a multiscale approach to magnify
motion without feature tracking or motion estimation.

Previous attempts have been made to unveil imperceptible motions
in videos. [Liu et al. 2005] analyze and amplify subtle motions and
visualize deformations that would otherwise be invisible. [Wang
et al. 2006] propose using the Cartoon Animation Filter to create
perceptually appealing motion exaggeration. These approaches fol-
low a Lagrangian perspective, in reference to fluid dynamics where
the trajectory of particles is tracked over time. As such, they rely
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Figure 2: Overview of the Eulerian video magnification framework. The system first decomposes the input video sequence into different
spatial frequency bands, and applies the same temporal filter to all bands. The filtered spatial bands are then amplified by a given factor α,
added back to the original signal, and collapsed to generate the output video. The choice of temporal filter and amplification factors can be
tuned to support different applications. For example, we use the system to reveal unseen motions of a Digital SLR camera, caused by the
flipping mirror during a photo burst (camera; full sequences are available in the supplemental video).

on accurate motion estimation, which is computationally expensive
and difficult to make artifact-free, especially at regions of occlusion
boundaries and complicated motions. Moreover, Liu et al. [2005]
have shown that additional techniques, including motion segmen-
tation and image in-painting, are required to produce good quality
synthesis. This increases the complexity of the algorithm further.

In contrast, we are inspired by the Eulerian perspective, where
properties of a voxel of fluid, such as pressure and velocity, evolve
over time. In our case, we study and amplify the variation of pixel
values over time, in a spatially-multiscale manner. In our Eulerian
approach to motion magnification, we do not explicitly estimate
motion, but rather exaggerate motion by amplifying temporal color
changes at fixed positions. We rely on the same differential approx-
imations that form the basis of optical flow algorithms [Lucas and
Kanade 1981; Horn and Schunck 1981].

Temporal processing has been used previously to extract invisible
signals [Poh et al. 2010] and to smooth motions [Fuchs et al. 2010].
For example, Poh et al. [2010] extract a heart rate from a video of a
face based on the temporal variation of the skin color, which is nor-
mally invisible to the human eye. They focus on extracting a single
number, whereas we use localized spatial pooling and bandpass fil-
tering to extract and reveal visually the signal corresponding to the
pulse. This primal domain analysis allows us to amplify and visu-
alize the pulse signal at each location on the face. This has impor-
tant potential monitoring and diagnostic applications to medicine,
where, for example, the asymmetry in facial blood flow can be a
symptom of arterial problems.

Fuchs et al. [2010] use per-pixel temporal filters to dampen tempo-
ral aliasing of motion in videos. They also discuss the high-pass
filtering of motion, but mostly for non-photorealistic effects and for
large motions (Figure 11 in their paper). In contrast, our method
strives to make imperceptible motions visible using a multiscale
approach. We analyze our method theoretically and show that it
applies only for small motions.

In this paper, we make several contributions. First, we demon-
strate that nearly invisible changes in a dynamic environment can be
revealed through Eulerian spatio-temporal processing of standard
monocular video sequences. Moreover, for a range of amplification
values that is suitable for various applications, explicit motion es-
timation is not required to amplify motion in natural videos. Our

approach is robust and runs in real time. Second, we provide an
analysis of the link between temporal filtering and spatial motion
and show that our method is best suited to small displacements and
lower spatial frequencies. Third, we present a single framework
that can be used to amplify both spatial motion and purely temporal
changes, e.g., the heart pulse, and can be adjusted to amplify par-
ticular temporal frequencies—a feature which is not supported by
Lagrangian methods. Finally, we analytically and empirically com-
pare Eulerian and Lagrangian motion magnification approaches un-
der different noisy conditions. To demonstrate our approach, we
present several examples where our method makes subtle variations
in a scene visible.

2 Space-time video processing

Our approach combines spatial and temporal processing to empha-
size subtle temporal changes in a video. The process is illustrated in
Figure 2. We first decompose the video sequence into different spa-
tial frequency bands. These bands might be magnified differently
because (a) they might exhibit different signal-to-noise ratios or (b)
they might contain spatial frequencies for which the linear approx-
imation used in our motion magnification does not hold (Sect. 3).
In the latter case, we reduce the amplification for these bands to
suppress artifacts. When the goal of spatial processing is simply to
increase temporal signal-to-noise ratio by pooling multiple pixels,
we spatially low-pass filter the frames of the video and downsample
them for computational efficiency. In the general case, however, we
compute a full Laplacian pyramid [Burt and Adelson 1983].

We then perform temporal processing on each spatial band. We
consider the time series corresponding to the value of a pixel in a
frequency band and apply a bandpass filter to extract the frequency
bands of interest. For example, we might select frequencies within
0.4-4Hz, corresponding to 24-240 beats per minute, if we wish to
magnify a pulse. If we are able to extract the pulse rate, we can use
a narrow band around that value. The temporal processing is uni-
form for all spatial levels, and for all pixels within each level. We
then multiply the extracted bandpassed signal by a magnification
factor α. This factor can be specified by the user, and may be atten-
uated automatically according to guidelines in Sect. 3.2. Possible
temporal filters are discussed in Sect. 4. Next, we add the magni-
fied signal to the original and collapse the spatial pyramid to obtain



the final output. Since natural videos are spatially and temporally
smooth, and since our filtering is performed uniformly over the pix-
els, our method implicitly maintains spatiotemporal coherency of
the results.

3 Eulerian motion magnification

Our processing can amplify small motion even though we do not
track motion as in Lagrangian methods [Liu et al. 2005; Wang et al.
2006]. In this section, we show how temporal processing produces
motion magnification using an analysis that relies on the first-order
Taylor series expansions common in optical flow analyses [Lucas
and Kanade 1981; Horn and Schunck 1981].

3.1 First-order motion

To explain the relationship between temporal processing and mo-
tion magnification, we consider the simple case of a 1D signal un-
dergoing translational motion. This analysis generalizes directly to
locally-translational motion in 2D.

Let I(x, t) denote the image intensity at position x and time t.
Since the image undergoes translational motion, we can express the
observed intensities with respect to a displacement function δ(t),
such that I(x, t) = f(x + δ(t)) and I(x, 0) = f(x). The goal of
motion magnification is to synthesize the signal

Î(x, t) = f(x+ (1 + α)δ(t)) (1)

for some amplification factor α.

Assuming the image can be approximated by a first-order Taylor
series expansion, we write the image at time t, f(x + δ(t)) in a
first-order Taylor expansion about x, as

I(x, t) ≈ f(x) + δ(t)
∂f(x)

∂x
. (2)

Let B(x, t) be the result of applying a broadband temporal band-
pass filter to I(x, t) at every position x (picking out everything ex-
cept f(x) in Eq. 2). For now, let us assume the motion signal, δ(t),
is within the passband of the temporal bandpass filter (we will relax
that assumption later). Then we have

B(x, t) = δ(t)
∂f(x)

∂x
. (3)

In our process, we then amplify that bandpass signal by α and add
it back to I(x, t), resulting in the processed signal

Ĩ(x, t) = I(x, t) + αB(x, t). (4)

Combining Eqs. 2, 3, and 4, we have

Ĩ(x, t) ≈ f(x) + (1 + α)δ(t)
∂f(x)

∂x
. (5)

Assuming the first-order Taylor expansion holds for the amplified
larger perturbation, (1 + α)δ(t), we can relate the amplification
of the temporally bandpassed signal to motion magnification. The
processed output is simply

Ĩ(x, t) ≈ f(x+ (1 + α)δ(t)). (6)

This shows that the processing magnifies motions—the spatial dis-
placement δ(t) of the local image f(x) at time t, has been amplified
to a magnitude of (1 + α).

This process is illustrated for a single sinusoid in Figure 3. For
a low frequency cosine wave and a relatively small displacement,
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Figure 3: Temporal filtering can approximate spatial translation.
This effect is demonstrated here on a 1D signal, but equally applies
to 2D. The input signal is shown at two time instants: I(x, t) =
f(x) at time t and I(x, t+ 1) = f(x+ δ) at time t+ 1. The first-
order Taylor series expansion of I(x, t+ 1) about x approximates
well the translated signal. The temporal bandpass is amplified and
added to the original signal to generate a larger translation. In this
example α = 1, magnifying the motion by 100%, and the temporal
filter is a finite difference filter, subtracting the two curves.

δ(t), the first-order Taylor series expansion serves as a good ap-
proximation for the translated signal at time t+ 1. When boosting
the temporal signal by α and adding it back to I(x, t), we approxi-
mate that wave translated by (1 + α)δ.

For completeness, let us return to the more general case where δ(t)
is not entirely within the passband of the temporal filter. In this case,
let δk(t), indexed by k, represent the different temporal spectral
components of δ(t). Each δk(t) will be attenuated by the temporal
filtering by a factor γk. This results in a bandpassed signal,

B(x, t) =
∑
k

γkδk(t)
∂f(x)

∂x
(7)

(compare with Eq. 3). Because of the multiplication in Eq. 4, this
temporal frequency dependent attenuation can equivalently be in-
terpreted as a frequency-dependent motion magnification factor,
αk = γkα, resulting in a motion magnified output,

Ĩ(x, t) ≈ f(x+
∑
k

(1 + αk)δk(t)) (8)

The result is as would be expected for a linear analysis: the modu-
lation of the spectral components of the motion signal becomes the
modulation factor in the motion amplification factor, αk, for each
temporal subband, δk, of the motion signal.

3.2 Bounds

In practice, the assumptions in Sect. 3.1 hold for smooth images
and small motions. For quickly changing image functions (i.e.,
high spatial frequencies), f(x), the first-order Taylor series ap-
proximations becomes inaccurate for large values of the perturba-
tion, 1 + αδ(t), which increases both with larger magnification α
and motion δ(t). Figures 4 and 5 demonstrate the effect of higher
frequencies, larger amplification factors and larger motions on the
motion-amplified signal of a sinusoid.

As a function of spatial frequency, ω, we can derive a guide for how
large the motion amplification factor, α, can be, given the observed
motion δ(t). For the processed signal, Ĩ(x, t) to be approximately
equal to the true magnified motion, Î(x, t), we seek the conditions
under which

Ĩ(x, t) ≈ Î(x, t)

⇒ f(x) + (1 + α)δ(t)
∂f(x)

∂x
≈ f(x+ (1 + α)δ(t)) (9)
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(a) True motion amplification: Î(x, t) = f(x+ (1 + α)δ(t)).
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(b) Motion amplification via temporal filtering:
Ĩ(x, t) = I(x, t) + αB(x, t).

Figure 4: Illustration of motion amplification on a 1D signal for
different spatial frequencies and α values. For the images on the
left side, λ = 2π and δ(1) = π

8
is the true translation. For the

images on the right side, λ = π and δ(1) = π
8

. (a) The true
displacement of I(x, 0) by (1 + α)δ(t) at time t = 1, colored from
blue (small amplification factor) to red (high amplification factor).
(b) The amplified displacement produced by our filter, with colors
corresponding to the correctly shifted signals in (a). Referencing
Eq. 14, the red (far right) curves of each plot correspond to (1 +
α)δ(t) = λ

4
for the left plot, and (1+α)δ(t) = λ

2
for the right plot,

showing the mild, then severe, artifacts introduced in the motion
magnification from exceeding the bound on (1 + α) by factors of 2
and 4, respectively.
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Figure 5: Motion magnification error, computed as the L1-norm
between the true motion-amplified signal (Figure 4(a)) and the
temporally-filtered result (Figure 4(b)), as function of wavelength,
for different values of δ(t) (a) and α (b). In (a), we fix α = 1, and
in (b), δ(t) = 2. The markers on each curve represent the derived
cutoff point (1 + α)δ(t) = λ

8
(Eq. 14).

Let f(x) = cos(ωx) for spatial frequency ω, and denote β = 1+α.
We require that

cos(ωx)− βωδ(t) sin(ωx) ≈ cos(ωx+ βωδ(t)) (10)

Using the addition law for cosines, we have

cos(ωx)− βωδ(t) sin(ωx) =
cos(ωx) cos(βωδ(t))− sin(ωx) sin(βωδ(t)) (11)

Hence, the following should approximately hold

cos(βωδ(t)) ≈ 1 (12)
sin(βωδ(t)) ≈ βδ(t)ω (13)

The small angle approximations of Eqs. (12) and (13) will hold
to within 10% for βωδ(t) ≤ π

4
(the sine term is the leading ap-
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Figure 6: Amplification factor, α, as function of spatial wavelength
λ, for amplifying motion. The amplification factor is fixed to α for
spatial bands that are within our derived bound (Eq. 14), and is
attenuated linearly for higher spatial frequencies.

proximation and we have sin(π
4
) = 0.9π

4
). In terms of the spatial

wavelength, λ = 2π
ω

, of the moving signal, this gives

(1 + α)δ(t) <
λ

8
. (14)

Eq. 14 above provides the guideline we seek, giving the largest mo-
tion amplification factor, α, compatible with accurate motion mag-
nification of a given video motion δ(t) and image structure spatial
wavelength, λ. Figure 4 (b) shows the motion magnification errors
for a sinusoid when we boost α beyond the limit in Eq. 14. In some
videos, violating the approximation limit can be perceptually pre-
ferred and we leave the λ cutoff as a user-modifiable parameter in
the multiscale processing.

3.3 Multiscale analysis

The analysis in Sect. 3.2 suggests a scale-varying process: use a
specified α magnification factor over some desired band of spa-
tial frequencies, then scale back for the high spatial frequencies
(found from Eq. 14 or specified by the user) where amplification
would give undesirable artifacts. Figure 6 shows such a modulation
scheme for α. Although areas of high spatial frequencies (sharp
edges) will be generally amplified less than lower frequencies, we
found the resulting videos to contain perceptually appealing mag-
nified motion. Such effect was also exploited in the earlier work
of Freeman et al. [1991] to create the illusion of motion from still
images.

4 Results

The results were generated using non-optimized MATLAB code on
a machine with a six-core processor and 32 GB RAM. The com-
putation time per video was on the order of a few minutes. We
used a separable binomial filter of size five to construct the video
pyramids. We also built a prototype application that allows users to
reveal subtle changes in real-time from live video feeds, essentially
serving as a microscope for temporal variations. It is implemented
in C++, is entirely CPU-based, and processes 640 × 480 videos at
45 frames per second on a standard laptop. It can be sped up fur-
ther by utilizing GPUs. A demo of the application is available in the
accompanying video. The code is available on the project webpage.

To process an input video by Eulerian video magnification, there
are four steps a user needs to take: (1) select a temporal bandpass
filter; (2) select an amplification factor, α; (3) select a spatial fre-
quency cutoff (specified by spatial wavelength, λc) beyond which
an attenuated version of α is used; and (4) select the form of the
attenuation for α—either force α to zero for all λ < λc, or linearly
scale α down to zero. The frequency band of interest can be cho-
sen automatically in some cases, but it is often important for users
to be able to control the frequency band corresponding to their ap-
plication. In our real-time application, the amplification factor and
cutoff frequencies are all customizable by the user.
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Figure 7: Eulerian video magnification used to amplify subtle motions of blood vessels arising from blood flow. For this video, we tuned the
temporal filter to a frequency band that includes the heart rate—0.88 Hz (53 bpm)—and set the amplification factor to α = 10. To reduce
motion magnification of irrelevant objects, we applied a user-given mask to amplify the area near the wrist only. Movement of the radial and
ulnar arteries can barely be seen in the input video (a) taken with a standard point-and-shoot camera, but is significantly more noticeable in
the motion-magnified output (b). The motion of the pulsing arteries is more visible when observing a spatio-temporal Y T slice of the wrist
(a) and (b). The full wrist sequence can be found in the supplemental video.

baby face2 guitar

subway baby2 shadow

Figure 8: Representative frames from additional videos demon-
strating our technique. The videos can be found in the accompany-
ing video and on the project webpage.

We first select the temporal bandpass filter to pull out the motions
or signals that we wish to be amplified (step 1 above). The choice of
filter is generally application dependent. For motion magnification,
a filter with a broad passband is preferred; for color amplification
of blood flow, a narrow passband produces a more noise-free result.
Figure 9 shows the frequency responses of some of the temporal
filters used in this paper. We use ideal bandpass filters for color am-
plification, since they have passbands with sharp cutoff frequencies.
Low-order IIR filters can be useful for both color amplification and
motion magnification and are convenient for a real-time implemen-
tation. In general, we used two first-order lowpass IIR filters with
cutoff frequencies ωl and ωh to construct an IIR bandpass filter.

Next, we select the desired magnification value, α, and spatial fre-
quency cutoff, λc (steps 2 and 3). While Eq. 14 can be used as a
guide, in practice, we may try various α and λc values to achieve a
desired result. Users can select a higher α that violates the bound to
exaggerate specific motions or color changes at the cost of increas-
ing noise or introducing more artifacts. In some cases, one can
account for color clipping artifacts by attenuating the chrominance
components of each frame. Our approach achieves this by doing all
the processing in the YIQ space. Users can attenuate the chromi-
nance components, I and Q, before conversion to the original color
space.

For human pulse color amplification, where we seek to emphasize
low spatial frequency changes, we may force α = 0 for spatial
wavelengths below λc. For motion magnification videos, we can
choose to use a linear ramp transition for α (step 4).
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(a) Ideal 0.8-1 Hz (face)
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(b) Ideal 175-225 Hz (guitar)
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(c) Butterworth 3.6-6.2 Hz (subway)
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(d) Second-order IIR (pulse detection)

Figure 9: Temporal filters used in the paper. The ideal filters (a)
and (b) are implemented using DCT. The Butterworth filter (c) is
used to convert a user-specified frequency band to a second-order
IIR structure and is used in our real-time application. The second-
order IIR filter (d) also allows user input. These second-order filters
have a broader passband than an ideal filter.

We evaluated our method for color amplification using a few
videos: two videos of adults with different skin colors and one of a
newborn baby. An adult subject with lighter complexion is shown
in face (Figure 1), while an individual with darker complexion is
shown in face2 (Figure 8). In both videos, our objective was to am-
plify the color change as the blood flows through the face. In both
face and face2, we applied a Laplacian pyramid and set α for the
finest two levels to 0. Essentially, we downsampled and applied a
spatial lowpass filter to each frame to reduce both quantization and
noise and to boost the subtle pulse signal that we are interested in.
For each video, we then passed each sequence of frames through an
ideal bandpass filter with a passband of 0.83 Hz to 1 Hz (50 bpm
to 60 bpm). Finally, a large value of α ≈ 100 and λc ≈ 1000 was
applied to the resulting spatially lowpass signal to emphasize the
color change as much as possible. The final video was formed by
adding this signal back to the original. We see periodic green to red
variations at the heart rate and how blood perfuses the face.

baby2 is a video of a newborn recorded in situ at the Nursery De-
partment at Winchester Hospital in Massachusetts. In addition to
the video, we obtained ground truth vital signs from a hospital-
grade monitor. We used this information to confirm the accuracy of
our heart rate estimate and to verify that the color amplification sig-
nal extracted from our method matches the photoplethysmogram,
an optically obtained measurement of the perfusion of blood to the
skin, as measured by the monitor.
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(a) Input (sim4) (b) Motion-amplified spatiotemporal slices

Figure 10: Selective motion amplification on a synthetic sequence
(sim4 on left). The video sequence contains blobs oscillating at dif-
ferent temporal frequencies as shown on the input frame. We apply
our method using an ideal temporal bandpass filter of 1-3 Hz to
amplify only the motions occurring within the specified passband.
In (b), we show the spatio-temporal slices from the resulting video
which show the different temporal frequencies and the amplified
motion of the blob oscillating at 2 Hz. We note that the space-time
processing is applied uniformly to all the pixels. The full sequence
and result can be found in the supplemental video.

To evaluate our method for motion magnification, we used several
different videos: face (Figure 1), sim4 (Figure 10), wrist (Figure 7),
camera (Figure 2), face2, guitar, baby, subway, shadow, and baby2
(Figure 8). For all videos, we used a standard Laplacian pyramid
for spatial filtering. For videos where we wanted to emphasize mo-
tions at specific temporal frequencies (e.g., in sim4 and guitar), we
used ideal bandpass filters. In sim4 and guitar, we were able to se-
lectively amplify the motion of a specific blob or guitar string by
using a bandpass filter tuned to the oscillation frequency of the ob-
ject of interest. These effects can be observed in the supplemental
video. The values used for α and λc for all of the videos discussed
in this paper are shown in Table 1.

For videos where we were interested in revealing broad, but subtle
motion, we used temporal filters with a broader passband. For ex-
ample, for the face2 video, we used a second-order IIR filter with
slow roll-off regions. By changing the temporal filter, we were able
to magnify the motion of the head rather than amplify the change
in the skin color. Accordingly, α = 20, λc = 80 were chosen to
magnify the motion.

By using broadband temporal filters and setting α and λc according
to Eq. 14, our method is able to reveal subtle motions, as in the cam-
era and wrist videos. For the camera video, we used a camera with
a sampling rate of 300 Hz to record a Digital SLR camera vibrat-
ing while capturing photos at about one exposure per second. The
vibration caused by the moving mirror in the SLR, though invisible
to the naked eye, was revealed by our approach. To verify that we
indeed amplified the vibrations caused by the flipping mirror, we
secured a laser pointer to the camera and recorded a video of the
laser light, appearing at a distance of about four meters from the
source. At that distance, the laser light visibly oscillated with each
exposure, with the oscillations in sync with the magnified motions.

Our method is also able to exaggerate visible, yet subtle motion, as
seen in the baby, face2, and subway videos. In the subway example
we deliberately amplified the motion beyond the derived bounds of
where the first-order approximation holds in order to increase the
effect and to demonstrate the algorithm’s artifacts. We note that
most of the examples in our paper contain oscillatory movements
because such motion generally has longer duration and smaller am-
plitudes. However, our method can be used to amplify non-periodic
motions as well, as long as they are within the passband of the tem-
poral bandpass filter. In shadow, for example, we process a video
of the sun’s shadow moving linearly yet imperceptibly over 15 sec-
onds. The magnified version makes it possible to see the change

Table 1: Table of α, λc, ωl, ωh values used to produce the vari-
ous output videos. For face2, two different sets of parameters are
used—one for amplifying pulse, another for amplifying motion. For
guitar, different cutoff frequencies and values for (α, λc) are used
to “select” the different oscillating guitar strings. fs is the frame
rate of the camera.

Video α λc ωl (Hz) ωh (Hz) fs (Hz)
baby 10 16 0.4 3 30

baby2 150 600 2.33 2.67 30
camera 120 20 45 100 300

face 100 1000 0.83 1 30
face2 motion 20 80 0.83 1 30
face2 pulse 120 960 0.83 1 30

guitar Low E 50 40 72 92 600
guitar A 100 40 100 120 600
shadow 5 48 0.5 10 30
subway 60 90 3.6 6.2 30
wrist 10 80 0.4 3 30

even within this short time period.

Finally, some videos may contain regions of temporal signals that
do not need amplification, or that, when amplified, are perceptually
unappealing. Due to our Eulerian processing, we can easly allow
the user to manually restrict magnification to particular areas by
marking them on the video (this was used for face and wrist).

5 Discussion

Sensitivity to Noise. The amplitude variation of the signal of
interest is often much smaller than the noise inherent in the video.
In such cases direct enhancement of the pixel values will not reveal
the desired signal. Spatial filtering can be used to enhance these
subtle signals. However, if the spatial filter applied is not large
enough, the signal of interest will not be revealed (Figure 11).

Assuming that the noise is zero-mean white and wide-sense sta-
tionary with respect to space, it can be shown that spatial low pass
filtering reduces the variance of the noise according to the area of
the low pass filter. In order to boost the power of a specific signal,
e.g., the pulse signal in the face, we can use the spatial characteris-
tics of the signal to estimate the spatial filter size.

Let the noise power level be σ2, and our prior on signal power over
spatial frequencies be S(λ). We want to find a spatial low pass
filter with radius r such that the signal power is greater than the
noise in the filtered frequency region. The wavelength cut off of
such a filter is proportional to its radius, r, so the signal prior can
be represented as S(r). The noise power σ2 can be estimated by
examining pixel values in a stable region of the scene, from a gray
card, or by using a technique as in [Liu et al. 2006]. Since the
filtered noise power level, σ′2, is inversely proportional to r2, we
can solve the following equation for r,

S(r) = σ′2 = k
σ2

r2
(15)

where k is a constant that depends on the shape of the low pass
filter. This equation gives an estimate for the size of the spatial
filter needed to reveal the signal at a certain noise power level.

Eulerian vs. Lagrangian Processing. Because the two meth-
ods take different approaches to motion—Lagrangian approaches
explicitly track motions, while our Eulerian approach does not—
they can be used for complementary motion domains. Lagrangian
approaches, e.g. [Liu et al. 2005], work better to enhance motions
of fine point features and support larger amplification factors, while
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Figure 11: Proper spatial pooling is imperative for revealing the
signal of interest. (a) A frame from the face video (Figure 1) with
white Gaussian noise (σ = 0.1 pixel) added. On the right are inten-
sity traces over time for the pixel marked blue on the input frame,
where (b) shows the trace obtained when the (noisy) sequence is
processed with the same spatial filter used to process the original
face sequence, a separable binomial filter of size 20, and (c) shows
the trace when using a filter tuned according to the estimated radius
in Eq. 15, a binomial filter of size 80. The pulse signal is not visi-
ble in (b), as the noise level is higher than the power of the signal,
while in (c) the pulse is clearly visible (the periodic peaks about
one second apart in the trace).

our Eulerian method is better suited to smoother structures and
small amplifications. We note that our technique does not assume
particular types of motions. The first-order Taylor series analysis
can hold for general small 2D motions along general paths.

In Appendix A, we further derive estimates of the accuracy of the
two approaches with respect to noise. Comparing the Lagrangian
error, εL (Eq. 29), and the Eulerian error, εE (Eq. 31), we see that
both methods are equally sensitive to the temporal characteristics
of the noise, nt, while the Lagrangian process has additional error
terms proportional to the spatial characteristics of the noise, nx, due
to the explicit estimation of motion (Eq. 27). The Eulerian error, on
the other hand, grows quadratically with α, and is more sensitive to
high spatial frequencies (Ixx). In general, this means that Eulerian
magnification would be preferable over Lagrangian magnification
for small amplifications and larger noise levels.

We validated this analysis on a synthetic sequence of a 2D co-
sine oscillating at 2 Hz temporally and 0.1 pixels spatially with
additive white spatiotemporal Gaussian noise of zero mean and
standard deviation σ (Figure 12). The results match the error-
to-noise and error-to-amplification relationships predicted by the
derivation (Figure 12(b)). The region where the Eulerian approach
outpeforms the Lagrangian results (Figure12(a)-left) is also as ex-
pected. The Lagrangian method is more sensitive to increases in
spatial noise, while the Eulerian error is hardly affected by it (Fig-
ure 12(c)). While different regularization schemes used for mo-
tion estimation (that are harder to analyze theoretically) may alle-
viate the Lagrangian error, they did not change the result signifi-
cantly (Figure 12(a)-right). In general, our experiments show that
for small amplifications the Eulerian approach strikes a better bal-
ance between performance and efficiency. Comparisons between
the methods on natural videos are available on the project webpage.

6 Conclusion

We described a straightforward method that takes a video as in-
put and exaggerates subtle color changes and imperceptible mo-
tions. To amplify motion, our method does not perform feature
tracking or optical flow computation, but merely magnifies tempo-
ral color changes using spatio-temporal processing. This Eulerian-
based method, which temporally processes pixels in a fixed spatial
region, successfully reveals informative signals and amplifies small
motions in real-world videos.
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A Eulerian and Lagrangian Error

We derive estimates of the error in the Eulerian and Lagrangian mo-
tion magnification with respect to spatial and temporal noise. The
derivation is done again in 1D for simplicity, and can be generalized
to 2D. We use the same setup as in Sect. 3.1.

Both methods approximate the true motion-amplified sequence,
Î(x, t), as shown in (1). Let us first analyze the error in those ap-
proximations on the clean signal, I(x, t).

Without noise. In the Lagrangian approach, the motion-
amplified sequence, ĨL(x, t), is achieved by directly amplifying the
estimated motion, δ̃(t), with respect to the reference frame, I(x, 0)

ĨL(x, t) = I(x+ (1 + α)δ̃(t), 0). (16)

In its simplest form, we can estimate δ(t) in a point-wise manner
(See Sect. 5 for discussion on spatial regularization)

δ̃(t) =
It(x, t)

Ix(x, t)
(17)

where Ix(x, t) = ∂I(x, t)/∂x and It(x, t) = I(x, t) − I(x, 0).
From now on, we will omit the space (x) and time (t) indices when
possible for brevity.

The error in in the Lagrangian solution is directly determined by
the error in the estimated motion, which we take to be second-order
term in the brightness constancy equation (although it is usually not
paid in optical flow formulations because of Newton iterations),

I(x, t) ≈ I(x, 0) + δ(t)Ix +
1

2
δ2(t)Ixx

⇒ It
Ix
≈ δ(t) + 1

2
δ2(t)Ixx. (18)

The estimated motion, δ̃(t), is related to the true motion, δ(t), by

δ̃(t) ≈ δ(t) + 1

2
δ2(t)Ixx. (19)

Plugging (19) in (16) and using a Taylor expansion of I about
x+ (1 + α)δ(t), we have

ĨL(x, t) ≈ I(x+ (1 + α)δ(t), 0) +
1

2
(1 + α)δ2(t)IxxIx. (20)

Subtracting (1) from (20), the error in the Lagrangian motion-
magnified sequence, εL, is

εL ≈
∣∣∣1
2
(1 + α)δ2(t)IxxIx

∣∣∣. (21)

In our Eulerian approach, the magnified sequence, ÎE(x, t), is

ĨE(x, t) = I(x, t) + αIt(x, t)

= I(x, 0) + (1 + α)It(x, t) (22)

similar to (4), using a two-tap temporal filter to compute It. Using a
Taylor expansion of the true motion-magnified sequence, Î defined



in (1), about x, we have

Î(x, t) ≈ I(x, 0) + (1 + α)δ(t)Ix +
1

2
(1 + α)2δ2(t)Ixx. (23)

Using (18) and subtracting (1) from (23), the error in the Eulerian
motion-magnified sequence, εE , is

εE ≈
∣∣∣1
2
(1 + α)2δ2(t)Ixx −

1

2
(1 + α)δ2(t)IxxIx

∣∣∣. (24)

With noise. Let I ′(x, t) be the noisy signal, such that

I ′(x, t) = I(x, t) + n(x, t) (25)

for additive noise n(x, t).

The estimated motion in the Lagrangian approach becomes

δ̃(t) =
I ′t
I ′x

=
It + nt
Ix + nx

(26)

where nx = ∂n/∂x and nt = n(x, t)− n(x, 0).
Using a Taylor Expansion on (nt, nx) about (0, 0) (zero noise), and
using (18), we have

δ̃(t) ≈ δ(t) + nt
Ix
− nx

It
I2x

+
1

2
δ2(t)Ixx. (27)

Plugging (27) into (16), and using a Taylor expansion of I about
x+ (1 + α)δ(t), we get

Ĩ ′L(x, t) ≈ I(x+ (1 + α)δ(t), 0)+

(1 + α)Ix(
nt
Ix
− nx

It
I2x

+
1

2
δ2(t)Ixx)) + n. (28)

Using (19) again and subtracting (1), the Lagrangian error as a func-
tion of noise, εL(n), is

εL(n) ≈
∣∣∣(1 + α)nt − (1 + α)nxδ(t)

− 1

2
(1 + α)δ2(t)Ixxnx +

1

2
(1 + α)δ2(t)IxxIx + n

∣∣∣. (29)

In the Eulerian approach, the noisy motion-magnified sequence be-
comes

Ĩ ′E(x, t) = I ′(x, 0) + (1 + α)I ′t
= I(x, 0) + (1 + α)(It + nt) + n. (30)

Using (24) and subtracting (1), the Eulerian error as a function of
noise, εE(n), is

εE(n) ≈
∣∣∣(1 + α)nt +

1

2
(1 + α)2δ2(t)Ixx

− 1

2
(1 + α)δ2(t)IxxIx + n

∣∣∣. (31)

If we set the noise to zero in (29) and (31), the resulting errors cor-
respond to those derived for the non-noisy signal as shown in (21)
and (24).
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