
A Comparative Study Of Image Retargeting: Supplemental

Here we give more details on the retargeting methods and compu-
tational measures used in our study. This document is designed
to accompany the paper in order to make the work more self-
contained, and is supplied mainly for the convenience of the reader.
We strongly encourage the interested reader to additionally refer to
the relevant papers for more background on the retargeting opera-
tors and measures.

1 Retargeting Methods

Scaling [SCL]: uses simple non-uniform scaling and bi-cubic inter-
polation to retarget the image.

Cropping [CR]: uses cropping by manually choosing an optimal
window of the target size from the original image.

Seam Carving [SC]: uses seam carving “forward energy” as de-
fined in [Rubinstein et al. 2008]. The importance map is simply the
intensity gradient magnitude in L1 metric. Seam carving removes
or duplicates contiguous chains of pixels that pass through the re-
gions of least importance in the image; the seams are computed by
dynamic programming. No manual intervention was used to create
the results.

Shift-maps [SM]: uses graph cut as described in [Pritch et al. 2009]
to remove entire objects at a time, rather than single seams. The
smoothness term is defined as the importance map that uses both
differences in color and gradients between pixels. Several configu-
rations of the algorithm were tested, varying the shift map direction,
the saliency map used, and boundary conditions. The most appeal-
ing result for each image was chosen manually.

Nonhomogeneous warping [WARP]: uses warping as defined
in [Wolf et al. 2007]. To reduce the image width, its columns
are non-homogeneously squeezed by optimizing a one-directional
warping function. The objective functional in the optimization is
weighted by the importance map, such that the amount of allowed
deformation is proportional to the importance. The importance map
is using L2 gradient magnitude along with face detectors. No man-
ual intervention was used to create the results.

Scale-and-stretch [SNS]: uses warping as defined in [Wang et al.
2008]. The warping operates on both image dimensions at once,
optimizing an objective functional that allows important regions to
uniformly scale in order to preserve their shape. The importance
map is a combination of L2 gradient magnitude and saliency as
defined by [Itti et al. 1998]. No manual intervention was used to
create the results.

Energy-based deformation [LG]: uses warping as defined
in [Karni et al. 2009]; similarly to SNS, salient regions are allowed
to uniformly scale, and the particular local deformations introduced
are granularly controlled according to the importance map (L2 gra-
dient magnitude). No manual intervention was used to create the
results.

Multi-operator [MULTIOP]: uses a combination of seam carving,
scaling and cropping as defined in [Rubinstein et al. 2009]. The
importance map for seam carving is again L1 gradient magnitude
with “forward energy”. Being a multi-operator method, MULTIOP
uses the Bi-Directional Warping measure (see Section 2) to choose
between the three operators in a step-wise manner. The size change

in each step was 5 pixels. No manual intervention was used to
create the results.

Streaming Video [SV]: uses the warping method defined
in [Krähenbühl et al. 2009], applying it on images. The importance
map is defined by a combination of saliency based on [Guo et al.
2008], line detection and user markings of lines and other impor-
tant objects. The energy optimized by the warp is a combination of
SNS (but fixing the scaling factor for the entire image, whereas SNS
allows the scaling to vary), WARP and additional constraints. The
latter allow taking special care of lines and curves preservation, and
positional constraints for marked regions are possible. Some results
(10 in total, 6 in the user study) involved a small amount of manual
intervention for protecting objects and straight lines.

There is great diversity in the complexity of both the importance
map computation and operators of these methods. Moreover, we
also allowed some degree of manual intervention as our primary
goal was not to declare a winning operator, but rather to investi-
gate human reaction to different retargeting effects. Note that for
reasons of scheduling (we received the retargeting results after the
user study began) we did not use the LG method in our analysis,
but the results are still included in the benchmark.

2 Computational Measures

Here we add more detailed formulations of the objective image sim-
ilarity metrics 1 we used. We denote the source and target images
by S and T , respectively.

Bidirectional Similarity [BDS]. Simakov et al. [2008] formulate
similarity between two images as a bidirectional mapping between
them. For every patch in one image a well-matching patch is sought
in the other image and vice versa. The distance between the images
is then defined as the mean distance in color space between corre-
sponding patches:
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α
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(1)
where NS , NT are the numbers of patches in S and T respectively,
and D is the patch distance function. The parameter α controls the
balance between completeness (S → T ) and coherency (T → S)
of the result. In order to capture both local and global similarity,
BDS is computed on multiple image scales within a Gaussian Pyra-
mid. For each pyramid level, the objective function in Eq. (1) is
optimized using nearest neighbor search.

Barnes et al. [2009] recently proposed PatchMatch to accelerate
nearest neighbor search, and demonstrated its effectiveness with
BDS for retargeting. The metric is defined similarly, only that the
patch correspondence is computed using a randomized algorithm
based on an iterative process of random guess and refinement, and is
more efficient to compute. We compared the original BDS method
with one using PatchMatch-based correspondences [BDS-PM] us-
ing our own (CPU) implementation. Our experiments show that
BDS and BDS-PM produce very similar results (see Section 4 and

1We use the terms “measure” and “metric” interchangeably, as com-
monly done in the related literature. We do not imply, nor rely on, metric
properties for any of the distance measures we discuss.



Table 7 in the paper), regardless of this approximation. We choose
to focus on BDS in the paper, while further results using BDS-PM
can be found in accompanying material.

Bidirectional Warping [BDW]. Rubinstein et al. [2009] define
a similar objective function, with the exception that the mapping
M : (i, j) 7→ (i′, j′) between the images is constrained to be
monotonic. That is, for every two patches P1, P2 ∈ S,

i(P1) < i(P2) → i
′
(P1) ≤ i′(P2)

j(P1) < j(P2) → j
′
(P1) ≤ j′(P2) (2)

where i(·), i′(·) and j(·), j′(·) are used to indicate the correspond-
ing patch position under the mapping M . The definition is similar
for the direction T → S. The resulting mapping will thus main-
tain the order of patches in the image, which is essential for prop-
erly estimating the quality of a retargeted result [Rubinstein et al.
2009]. The optimal order-preserving mapping is found using iter-
ative evaluations of an asymmetric variation of the dynamic time
warp algorithm, and the distance BDW (S, T ) is taken to be the
mean or maximal distance between corresponding patches in color
space.

Dong et al. [2009] define an image similarity measure that com-
bines BDS, dominant color and a so-called “seam carving dis-
tance”; they then retarget images by trying to find a combination
of linear scaling and seam carving that optimizes this measure. We
do not use their measure in this experiment, since the seam carving
distance component is specifically tailored to their retargeting op-
erator; we do experiment with BDS, as well as a color descriptor,
both of which are prominent ingredients in their measure.

SIFT Flow [SIFTflow]. Liu et al. [2008] propose an algorithm for
registering a query image with its neighbors in a large image col-
lection. Although applying this algorithm for a retargeting appli-
cation has not been attempted yet, this method is attractive for two
reasons. First, it uses SIFT descriptors which were shown to cap-
ture well invariant local structure information in the image [Lowe
2004]. Second, the flow field is regularized to encourage both sharp
discontinuities and small displacements, which should be resilient
to reasonable image operations performed by retargeting operators.
The SIFTflow algorithm searches for a (dense) displacement field
w(p) = (u(p), v(p)) between T and S, which minimizes the fol-
lowing energy

E(w) =
∑
p
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1
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where ψS , ψT are the dense SIFT fields over each image, and ε is
the spatial 4-neighborhood of a pixel. Belief Propagation is used
for the optimization. σ, α and d are parameters of the algorithm.
We then define the distance between the images to be the resulting
energy value itself: SIFTflow(S, T ) = E(w).

Earth Mover’s Distance [EMD]. The Earth Mover’s Distance is
a measure of dissimilarity between two distributions. The definition
involves the notion of a ground distance, a cost of transforming a
unit of mass between the distributions. The EMD is then defined
as the minimal cost that must be paid to transform one distribu-
tion into the other. In the discrete case, EMD can be cast as the
well known transportation problem on a corresponding flow net-
work, and solved by a min-flow algorithm. Pele and Werman [2009]
have recently proposed EMDs with thresholded ground distances.
Such saturated distances correspond to the way humans perceive
distance, and are more robust to outlier noise [Pele and Werman
2009]. They demonstrate good results for image retrieval. We use

their ̂EMD definition for non-normalized histograms. For two his-
tograms P,Q,
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where fij denotes the flow from the ith supply to the jth demand.
For images S and T of size NS and NT pixels respectively, we
construct histograms of length (NS +NT ) as

PS = [

NS︷ ︸︸ ︷
1, 1, . . . , 1,

NT︷ ︸︸ ︷
0, 0, . . . , 0]

QT = [0, 0, . . . , 0, 1, 1, . . . , 1]

and use their definition of thresholded ground distance with the
CIEDE2000 color distance ∆00 in L*a*b colorspace. Each pixel
i in the histograms has its spatial position and color attributes
(xi, yi, Li, ai, bi), and the ground distance between two pixels i
and j is defined as

dij = min
(
‖(xi, yi)− (xj , yj)‖2 + (5)

+ ∆00((Li, ai, bi), (Lj , aj , bj)), T
)

(6)

where the threshold T , and α (Equation 4) are parameters of the
algorithm. Since the size of the histograms can be huge, we work
on a scaled-down version of the images.

All the above measures search for high-level semantic correlation
between images. In contrast, many image similarity measures
which examine lower level features were also proposed, and it is
important to analyze how well “simpler” methods compare with hu-
man resizing perception as well. The MPEG-7 standard [MPEG-7
2002; Manjunath et al. 2001] gathers several well-defined descrip-
tors for visual content similarity, which are widely incorporated in
Content-Based Image Retrieval (CBIR) systems. Such descriptors
can be used for retargeting analysis as well, as the length of their
representation is fixed regardless of the image size. These descrip-
tors do not explicitly search for correspondence between the im-
ages, yet are still able to capture differences in local features such
as color or gradients, which can show useful for quantifying retar-
geting results. We focus on two such descriptors. Their computa-
tion is fairly straightforward, and a quick review of their extraction
is detailed next.

Edge Histogram [EH]. The Edge Histogram Descriptor [Man-
junath et al. 2001] captures the spatial distribution of edges in the
image. To represent localized edge distributions, the given image is
subdivided into 4× 4 sub-images, each of which is examined for 5
different edge orientations: vertical, horizontal, two diagonals, and
isotropic (non-directional). For each sub-image, a normalized 5-bin
histogram is obtained by classifying apparent edges to these five
categories. The descriptor is then defined to be the combination of
these histograms, which results in 4×4×5 = 80 length description
(and this length is fixed over all image sizes). The image intensity
component (Y component in YUV colorspace) is used for edge ex-
traction. Commonly, L1 is used to measure distance between two
EHDs. We therefore define EH(S, T ) = ‖EHD(S)− EHD(T )‖1.

Color Layout Descriptor [CL] . The Color Layout Descrip-
tor [Kasutani and Yamada 2001] represents the spatial distribution
of color in the image, and is similar in nature to JPEG compression.
Again, the image is first partitioned into 64 non-overlapping blocks
in an 8 × 8 grid. The average color in YUV colorspace is used as
the color representative for each block. Each component of these



Algorithm Parameter Description

BDS

patchSize = 7 Size of square patches
nLevels = 4 Number of pyramid levels
α = 0.5 Equation 1
D = ‖L*a*b‖2 Patch distance.

BDW
patchSizes={8,16,32,64} Size of square patches
D = ‖L*a*b‖2 Patch distance
Daggr = mean Distance aggregation

SIFTflow

patchSizes = 8 Size of square patches
σ = 300 Equation 3
α = 2 Equation 3
d = 40 Equation 3
nLevels = 4 Number of pyramid levels
nIterations = 60 Number of BP iterations

PatchMatch
nIterations = 5 Number of iterations
α = 0.5 decreasing factor

EMD
T = 10 Equation 6
α = 0.5 Equation 4

Table 1: Selected parameter sets for each metric, and the Patch-
Match algorithm. Note that not all parameters are explicitly re-
ferred to in this paper, but are given here for completeness. We
refer to the corresponding publications for further details on the pa-
rameters and implementation. The notation ‖L*a*b‖2 abbreviates
L2-norm in L*a*b color space. In general, we found that distances
in L*a*b colorspace produce better results than RGB distances. It
was also clear that using multiple image (or patch) scales produces
better results than using single scale.

derived colors is then transformed by an 8 × 8 DCT, and the first
few low-frequency coefficients of each channel are zigzag-scanned
and quantized to form the descriptor. Typically, 6 Y coefficients
are used together with 3 coefficients of both U and V channels,
resulting in a descriptor of length 12. The color layout distance be-
tween two CLDs, CLD(S) = (Y,U, V ),CLD(T ) = (Y ′, U ′, V ′)
is defined as a weighted distance between their corresponding co-
efficients:

CL =

√∑
i∈Y

αi(Yi−Y ′
i )

2 +

√∑
i∈U

βi(Ui−U′
i)

2 +

√∑
i∈V

γi(Vi−V ′
i )

2

(7)
where Yi, Ui, Vi denote the ith coefficient of each channel, and α,
β and γ are weights, decreased along the coefficient scan order.

The data we collected in this experiment is the distance of every re-
targeted result to its source image under each one of the above mea-
sures. It should be noted that tuning the objective metrics is a labo-
rious task. First, most of the algorithms contain numerous parame-
ters which span a large configuration space that should be searched
in a principled manner. Second, these algorithms are typically com-
putationally expensive, and between 5 and 32 hours were required
to calculate the results of a single metric on our entire dataset on a 2
quad-core 16 GB computer. We therefore choose to rely mainly on
parameter settings proposed and used by the methods’ authors, and
applied some basic parameter optimization to improve the agree-
ment between the objective measure rankings and the results of the
subjective test (agreement is measured by Kendall’s τ distance de-
scribed in the next section). We investigated the difference in per-
formance between different color spaces, image scales, patch sizes
and regularization parameters. For the low-level descriptors, we do
not perform further parameter optimization, as those measures have
already undergone extensive evaluation (albeit not for a retargeting
application). We leave further experiments with such descriptor for
future work. Table 1 summarizes the best parameter settings for
each algorithm, consequently used in our analysis.
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