

Visual Vibrometry: Using Cameras as Displacement Sensors

Miki Rubinstein Google Research, Cambridge MA

(Work done while I was at MIT, Microsoft, Google)

Google Cambridge MA

Google Cambridge (~1000 people)

MIT Stata Center (CSAIL)

Google Cambridge Vision Group

- Started 2015, working at the intersection of computer vision and computer graphics.
- Group members:

Bill Freeman (MIT), Ce Liu (MIT), Miki Rubinstein (MIT), Dilip Krishnan (NYU), Forrester Cole (Princeton), Inbar Mosseri, Aaron Sarna

• Hiring student summer interns

What is the area weight and elasticity of this dress?

Tiny Motions in Videos

The "Motion Microscope"

Not Just for Visualization

This talk

Extracting modal frequencies, mode shapes

Vibrometry, Non-Destructive Testing

Common Vibrometry Tools

Contact Sensors, accelerometers

Laser Vibrometers

Vibrometry with Cameras

• Small motions in videos: hard to see, easier to analyze

- <u>Constraints</u>:
 - Textured surface,
 - Sufficient lighting,
 - Need high-speed camera for high-frequency motion

Advantages:

- Passive,
- Non-contact,
- Often more accessible / cheaper,
- Spatial resolution!

Phase-based Motion Processing (SIGGRAPH 2013)

Complex steerable pyramid [Simoncelli and Freeman 1995]

Complex Steerable Pyramid [Simoncelli and Freeman 1995]

• Basis functions are wavelets with even (cosine) and odd (sine) components which give local amplitude and phase

Local Phase

Local phase shift ↔ Local translation

• In a single subband, image is coefficients times translated copies of basis functions

Phase-based Motion Processing (SIGGRAPH 2013)

Eulerian vs. Lagrangian processing (Fluid Dynamics)

Joseph Louis Lagrange

Leonhard Euler

Track particles

Measure changes within fixed voxels in space

Motion Magnification

Amplification

Motion Magnification: Physiological Signals

Motion Magnification: Vibration Modes

Sound and Visual Motion

90-110Hz (male voice pitch)

Sound and Visual Motion

Riesz Pyramids for Fast Phase-Based Video Magnification (ICCP'14) With Neal Wadhwa, Fredo Durand, William T. Freeman

Section 2014 Best Demo Award

Sound-related Vibrations

Can We Recover Sound from Video?

Sound Recovered from Video

Source sound in the room

Recovered sound

15

Time (sec)

5

Amplitude

2200Hz (silent) video

Motion-magnified Chip Bag

Sound Recovered from Video

Source sound in the room

⁶ ⁸ ¹⁰ Time (sec)

2200Hz video

Remote Sound Acquisition

- *Active* techniques
 - Laser Microphone
 - Video + speckle pattern [Zalevsky et al. 2009]

The Visual Microphone

• Active Passive technique to recover sound

The Visual Microphone

Assumption: Camera and object are static (any motion is due to sound)

Physical Analysis

greenteabox

afoil

crabchips

tissue

foiltogo

kitkat

rose

foamcup

teapot

Analysis

300 Hz at **90 dB** → **0.1 micrometers motion** (0.0001 millimeters!) → **<0.01 pixel displacement**

Video to Audio

Average local motions

Combining Local Motions

Itsy Bitsy Spider

Candy wrapper (6420 fps)

Testing Visual Microphones

https://www.flickr.com/photos/sorenragsdale/3904937619/ http://www.flickr.com/photos/boo66/5730668979/

• Slow 2D camera \rightarrow Fast 1D camera!

Input video (60 fps) <u>Regular SLR</u>

Input video (60 fps)

400Hz (>6 times the frame rate!)

Range of Operation

l

4kHz, 400 x 480 video

Range of Operation

Wait Wait.. Don't Tell Me! (Aug 30 2014)

Vibration Depends on Object Properties

Estimating Material Properties with Sound and Cameras

Problem: Hard to Disambiguate Geometry and Material

• Motion spectra reflects a combination of material properties AND shape

Experiments

Estimating Material Properties from Small Motions in Video Davis, Bouman, et al., CVPR 2015

Known Geometry

Unknown but *Similar* Geometry

Material Estimation Pipeline

Processing

Decomposition High-pass residual Object **Motion spectrum** o o Orientation 1 (Quadrature pair) Temporal filtering Integration Power Orientation 2 Input Frequency Orientation 1 Orientation 2 Amplitude Phase (b) (c) (a) Low-pass residual

Average local motion spectra

Recovered Resonant Frequencies

Verifying Recovered Modes: Phase Visualization

Material Properties from Recovered Frequencies

2 points for each rod, for two lengths we tired:

Compute diameter, length, density (mass/volume) with ruler and scale, solve for elasticity

Good for Objects with Known (Simple) Geometry

Motion Signals in Fabrics

with lab measurements of area weight and stiffness

Identifying Trends in the Power Spectra

Identifying Trends in the Power Spectra

Learning Material Properties from Spectra

Estimated Fabric Properties

Abe Davis, Justin Chen, Fredo Durand Image-Space Modal Bases for Plausible Manipulation of Objects in Video SIGGRAPH Asia 2015

Justin Chen, MIT Civil Engineering, with UNH and NHDOT http://memorialbridgeproject.com/

Memorial Bridge, Portsmouth, NH

1184 x 700 pixels at 30 fps ~80 meters from bridge

By Justin Chen with UNH and NHDOT http://memorialbridgeproject.com/

0

10

5

Frequency (Hz)

By Justin Chen with UNH and NHDOT http://memorialbridgeproject.com/

Second vibrational mode, 2.4 Hz – 2.6 Hz, x400

Summary: Visual Vibrometry

Frequency (Hz)

Miki Rubinstein, <u>mrub@google.com</u> Google Research, Cambridge MA (Work done while I was at MIT, Microsoft, Google)

Joint work with: Bill Freeman, Fredo Durand, Neal Wadhwa, Abe Davis, Katie Bouman, Justin Chen, Gautham Mysore

Project pages, code, demos:

Video magnification portal:http://people.csail.mit.edu/mrub/vidmag/Phase-based processing:http://people.csail.mit.edu/mwadhwa/phase-video/The Visual Microphone:http://people.csail.mit.edu/mrub/VisualMic/Material properties:http://visualvibrometry.com

TED talks by Abe Davis, Miki Rubinstein