Introduction to recursive
Bayesian filtering

Michael Rubinstein
IDC

Problem overview

* |nput
— (Noisy) Sensor measurements
* Goal

— Estimate most probable measurement at time k using
measurements up to time k'’

k’<k: prediction
k‘>k: smoothing
k’=k: filtering

* Many problems require estimation of the state of
systems that change over time using noisy
measurements on the system
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Applications

e Ballistics

Robotics
— Robot localization
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Econometrics
— Stock prediction

Navigation

e Many more... LT
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Challenges (why is it a hard problem?)

* Measurements
— Noise
— Errors
e Detection specific
— Full/partial occlusions
— Deformable objects
— Entering/leaving the scene
— Lighting variations
e Efficiency
e Multiple models and switching dynamics
e Multiple targets,
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Talk overview

¢ Background

— Model setup
¢ Markovian-stochastic processes
¢ The state-space model
* Dynamic systems

— The Bayesian approach
— Recursive filters

— Restrictive cases + pros and cons
¢ The Kalman filter
e The Grid-based filter

¢ Particle filters
— Monte Carlo integration
— Importance sampling
e Multiple target tracking — BraMBLe ICCV 2001 (?)
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Stochastic Processes

* Deterministic process
— Only one possible ‘reality’
* Random process

— Several possible evolutions (starting point might be
known)

— Characterized by probability distributions

* Time series modeling
— Sequence of random states/variables
— Measurements available at discrete times
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State space

* The state vector contains all available
information to describe the investigated system

— usually multidimensional: X (k) e R™

* The measurement vector represents
observations related to the state vector z(k)eR™

— Generally (but not necessarily) of lower dimension
than the state vector

© Michael Rubinstein

State space

Econometrics:
Monetary flow
Interest rates
Inflation
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(First-order) Markov process

e The Markov property — the likelihood of a
future state depends on present state only

PrIX(k+h)=y| X(s) =x(s),Vs<k]=
PrIX(k+h)=y]| X(k)=x(k)],vh>0

e Markov chain — A stochastic process with
Markov property

k-1 +1 time

k k
OO — O -
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Hidden Markov Model (HMM)

e the state is not directly visible, but output
dependent on the state is visible

k+1 time

k
- _’®_'@___" States

______ ,Ii‘h'dde”)

Measurements
(observed)
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Dynamic System
e ) — ) — ) -+
el

Zy1
State equation: x = f, (x_{,v,)

Stochastic diffusion

X, state vector at time instant k
f, state transition function, f_:R™ xR™
Vv, i.i.d process noise

Observation equation: z, =h, (x,|w,)

Z, observations at time instant k
h, observation function, h, :R™ xR — R™
W, i.i.d measurement noise
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A simple dynamic system

o X=[xV,v,v] (4-dimensional state space)

e Constant velocity motion:
f(X,v) =[x+At-v,,y+At-v,,v,,v ]+V

0
0

2

q
0 2

o O o

v~N(0,Q) o=

o O o o
o O o o

o

e Only position is observed:
z=h(X,w)=[x,y]+w

w~ N(O,R) R:{foz :’J
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The Bayesian approach

e Construct the posterior probability

Thomas Bayes

density function p(x, | z,,) of the state based
on all available information

Posterior

L A~

Sample space

* By knowing the posterior many kinds of
estimates for x, can be derived
— mean (expectation), mode, median, ...

— Can also give estimation of the accuracy (e.g.
covariance)

© Michael Rubinstein

Recursive filters

* For many problems, estimate is required each time a
new measurement arrives

* Batch processing
— Requires all available data
* Sequential processing
— New data is processed upon arrival
— Need not store the complete dataset
— Need not reprocess all data for each new measurement

— Assume no out-of-sequence measurements (solutions for
this exist as well...)

© Michael Rubinstein




Recursive Bayes filters

e Given:

— System models in probabilistic forms

Xk — fk (Xk—l’vk) PEN p(Xk |Xk—1) [ Markovian process ]
Measurements are ]
t

Z, = hk (Xk , Wk) > p(Zk | Xk) conditionally independen

given the state

(known statistics of v,, w,)
— Initial state p(x,|z,) = p(x,) also known as the prior
— Measurements z,...,z,

© Michael Rubinstein

Recursive Bayes filters

* Prediction step (a-priori)

P(Xy | 2y 1) = P(X | 2y 4)

— Uses the system model to predict forward
— Deforms/translates/spreads state pdf due to random noise

* Update step (a-posteriori)

p(xk | Zl:k—l) - p(xk | Zl:k)

— Update the prediction in light of new data
— Tightens the state pdf

© Michael Rubinstein




General prediction-update framework

e Assume p(X,,]|Zz,,) isgiven at time k-1
* Prediction:

System model

p(xk | Zl:k—l) = I p(x; [ %) p(x, | :I:.{-—I:)dxk—l @

* Using Chapman-Kolmogorov identity + Markov
property

© Michael Rubinstein

General prediction-update framework

e Update ste
P P 0 1 2) = POX | 240 Zus 1)

o(A|B,c) = PBIACIPAIC) | P(Zy | X Zoga) PO | Zuge1)
PBIC) P(Z | 2y 4)
Mea;]uorgglwent Cgrrir;m
likelihood < prior _ p(z, | x,) p(x, | 2, (2)
evidence p(z | 22 4)

Normalization constant

Where p(z, | 21) = [ P(zc 1% PO | 24 1),
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Generating estimates

e Knowledge of p(x, |z.,) enables to
compute optimal estimate with respect to
any criterion. e.g.

— Minimum mean-square error (MMSE)
e =E[x | 2u]= _[Xk P(X | Zy, )dx,
— Maximum a-posteriori

R =argmax p(x, |7,
k

MAP MMSE

© Michael Rubinstein

General prediction-update framework

=>»So (1) and (2) give optimal solution for the
recursive estimation problem!

e Unfortunately no... only conceptual
solution

— integrals are intractable...
— Can only implement the pdf to finite representation!

e However, optimal solution does exist for
several restrictive cases

© Michael Rubinstein
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Restrictive case #1

e Posterior at each time step is Gaussian
— Completely described by mean and covariance

e If p(x_|z..,) is Gaussian it can be shown
that p(x |z,) isalso Gaussian provided that:
— v,,w, are Gaussian

f,,h, arelinear

© Michael Rubinstein

Restrictive case #1

[ ] Why Linear? |_ R‘E;"ancfp.;,-:.| T)'M:aanx;b
N
— P
/’,_

Byl

Yacov Hel-Or

y=Ax+B= p(y)~ N(Au+B,AZA")

© Michael Rubinstein

11



Restrictive case #1

e Why Linear? a

— e am
8
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y=9(x)= p(y)~N()
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Yacov Hel-Or

Restrictive case #1

* Linear system with additive noise

X = Bt
z, = R (%, )
Vk~N(O!Qk)
W, ~N(O,Ry)
* Simple example again
f(X,V) =[X+At-v,,y+At-v, v, v J+V
x ) (1 0 At 0)( X
Vel |01 0 Atl]y,

Vx,k 0 0 1 O Vx,k—l
Vo) 00 0 1)(v,
D e —

F
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z=h(X,w) =[x, y]+w
X

) (10 0 0)| Y%
- +N(0,Q,) @ j{o Lo oj 3/ +NQOR)
obs Xk

H Vi
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The Kalman filter

Rudolf E. Kalman

P(X 4 | 2y g) = N (X, 45 ):(k—1|k—1’ P k1)
P(X, | 2y 1) = N(X; X|A<|k—17 Pek1)
P(X, [ 23 ) = N (%5 X » Pogi)

N (G u,2) =| 275 |2 exp(—%(x—u)Tzl(x—u)]

e Substituting into (1) and (2) yields the predict and
update equations

© Michael Rubinstein

The Kalman filter

Predict:

)A(k|k—1 = Fk )A(k—1|k—1

P = Fi Pk71|klekT +Q,
Update:

Sk = Hk qulelI +Rk

Kk = P|<||<—1H|IS|<_1

)A(k|k = )2k|k—1 + Kk 4 — Hk)zk|k—1)
qu :[I _Kka Pk|k—1

© Michael Rubinstein
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Intuition via 1D example

* Lost at sea
— Night
— No idea of location
— For simplicity — let’s
assume 1D

* Example and plots by Maybeck, “Stochastic models, estimation and control, volume 1”

Example — cont’d

e Time t1: Star Sighting
— Denote x(t1)=z1

e Uncertainty (inaccuracies, human error, etc)
— Denote o1 (nhormal)

e Can establish the conditional probability of
x(t1) given measurement z1

14



Example — cont’d

‘fhx(,])lz(,])( \":|)

s \

* Probability for any location, based on measurement
* For Gaussian density — 68.3% within o1
* Best estimate of position: Mean/Mode/Median

A1) =z, oiy) = nfl

© Michael Rubinstein

Example — cont’d

e Time t2=t1: friend (more trained)
—X(t2)=22, o(t2)=02
— Since she has higher skill: 62<c1

!

. .\lr_-l|:ia_-J:" |‘-2 )

© Michael Rubinstein
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Example — cont’d

e f(x(t2)|z1,z2) also Gaussian

w = [07 /(02 +02)]z +[02 /(02 + 02 )]z,

-'r.\tﬂ_:}|:_i-r|J..'.lf_ll"‘l'_I <)

1/0% = (l/ofl)+(l/of__)

© Michael Rubinstein

Example — cont’d
u = [nf__/((rfl + ”:':)]:I + [(sgl/((ifl + 05_‘)]:3
1/0% = (1/u§|)+(1/o_33)

* o less than both o1 and 62
* ol=0c2:average

* o1>02: more weight to z2
* Rewrite:

X(15)

[02 /(02 +02)]z +[02 /(02 +07)]z,

7+ [0_}1/(0_% + 0_::)][:.2 -z]

© Michael Rubinstein
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Example — cont’d

e The Kalman update rule:

Best estimate —
Given z2
(a poseteriori)

/

Best Prediction prior to z2 Optimal Weighting Residual
(a priori) (Kalman Gain)

© Michael Rubinstein

The Kalman filt~= -

Predict: i ; -_::f_:::__-.:::-_:;: ::'.I:::;:::: covariance forward

~ N :
X1 = F Xggk-1
u

Pk|k—1 =F, Pk—1|k—1 Fez
15
1A T Tpedate el imale i e
Update: :: N.Fk - Tkl + F*{Th-x.H*Tk1) ;
1= . -

Sy =HPye. lHT AP
K= PkIk Hy S_l K(t,) = (7'_3 /(0? + 0}‘)
X =Rger + Kz, - kxk|k—1) (1) = X(1)) + K(15)[ 2, - &(
le_[l KiH IR oo (1 62 J 2
— 5, —|iT /7= o
ol +o?

© Michael Rubinstein
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Kalman gain

S = Hkpklk—lHlI +R,
Te-d
Kk = H<|k—1Hk Sk

)2k|k = )A(k|k—1 +Kilz - Hk)’zklk—l)
qu :[I _Kka R<|k—1

¢ Small measurement error:

. . -1 . A . -1
limg, o Ky =H"=1limg X =H, "z,

e Small prediction error:

limp o K =0=1img o X = Xy

© Michael Rubinstein

The Kalman filter

* Pros

— Optimal closed-form solution to the tracking problem
(under the assumptions)

¢ No algorithm can do better in a linear-Gaussian
environment!

— All ‘logical’ estimations collapse to a unique solution
— Simple to implement
— Fast to execute

* Cons

— If either the system or measurement model is non-
linear = the posterior will be non-Gaussian

© Michael Rubinstein
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Restrictive case #2

e The state space (domain) is discrete and finite

e Assume the state space at time k-1 consists of
states x,_,,i=1..N,

e Let Pr(x. =X lZy4) =Wy, bethe conditional
probability of the state at time k-1, given
measurements up to k-1

© Michael Rubinstein

The Grid-based filter

e The posterior pdf at k-1 can be expressed as
sum of delta functions

N . .
P(X 1 |2y ) = ZWII(—]Jk—lé‘(Xk—l — Xy 1)
i1

e Again, substitution into (1) and (2) yields the
predict and update equations

© Michael Rubinstein
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The Grid-based filter

e Prediction
P(X | Zyyy) = I P(X [ X ) P(X oy | 2y )X, @

N, N, o _ _
P(Xy | 2y 1) = Z z P(X | XkJ—l)WkJ—l|k—15(Xk—1 —X1)
il j-1
Ne _
= Z Wll<|k—15(xk—1 - X||<-1)
i-1
. Ns . . .
WII<|k—1 = ij—1|k71 P(X [ X{_1)
=t

* New prior is also weighted sum of delta functions

* New prior weights are reweighting of old posterior weights using state
transition probabilities

© Michael Rubinstein

The Grid-based filter

* Update

P(X, |2y ) = Pz [ %) P(X | Ze )

p(zk | Z1:k—1)

@

NS . .
P(X |2y ) = ZWLwé‘(Xk—l — X 1)
=

i Wi P(Z 1 %)
Kk = N

z WI<J|k—1 P(z, | %)
-1

e Posterior weights are reweighting of prior weights using likelihoods (+
normalization)

© Michael Rubinstein
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The Grid-based filter

* Pros:

— p(X% I X%1) P(Z | %) assumed known, but no
constraint on their (discrete) shapes

— Easy extension to varying number of states
— Optimal solution for the discrete-finite environment!
* Cons:

— Curse of dimensionality
« Inefficient if the state space is large

— Statically considers all possible hypotheses

© Michael Rubinstein

Suboptimal solutions

* In many cases these assumptions do not hold

— Practical environments are nonlinear, non-Gaussian,
continuous

=>» Approximations are necessary...

— Extended Kalman filter (EKF) Analytic approximations
— Approximate grid-based methods Numerical methods
— Multiple-model estimators Gaussian-sum filters

— Unscented Kalman filter (UKF)
— Particle filters (PF)

Sampling approaches

© Michael Rubinstein
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The extended Kalman filter

e The idea: local linearization of the dynamic
system might be sufficient description of the
nonlinearity

e The model: nonlinear system with additive
noise

X = R i 1) i Vic
z, = R(xpww,

w,~N(0,Q,)
w;~N(O.R,)

© Michael Rubinstein

The extended Kalman filter

e f, h are approximated using a first-order Taylor
series expansion (eval at state estimations)

Predict: i
Xik-1 = tk(xk—l|k—1)

=T
Pk|k—1 =F Pk—l|k—1Fk +Qy of [i]

L1= 500
]

Update: X =Ryt
oh[i]

Wl )= 5

S = HquI,(\—lHI-(r +R,

Xk = Xklk-1

'Kk = E?qk-lHlISl;l R
Xk = Xqea T lfk Z. —hXgs ))
qu =[I- Kka R<|k—l

© Michael Rubinstein
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The extended Kalman filter

— Function i)
— Tavlor appros.

4 &
_ 2
H
0 0
2 2
-4 -4
0 02040608 0 0.5 1

plx)
~n ELY

0

n AR 1 Yacov Hel-Or
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The extended Kalman filter

* Pros
— Good approximation when models are near-linear
— Efficient to calculate
(de facto method for navigation systems and GPS)
* Cons
— Only approximation (optimality not proven)
— Still a single Gaussian approximations
* Nonlinearity = non-Gaussianity (e.g. bimodal)

— If we have multimodal hypothesis, and choose
incorrectly — can be difficult to recover

— Inapplicable when f,h discontinuous

© Michael Rubinstein
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Intermission

Questions?

© Michael Rubinstein

Particle filtering

e Family of techniques
— Condensation algorithms (MacCormick&Blake, ‘99)
— Bootstrap filtering (Gordon et al., ‘93)
— Particle filtering (Carpenter et al., ‘99)
— Interacting particle approximations (Moral ‘98)
— Survival of the fittest (Kanazawa et al., ‘95)
— Sequential Monte Carlo methods (SMC,SMCM)
— SIS, SIR, ASIR, RPF, ....

* Statistics introduced in 1950s. Incorporated in
vision in Last decade

© Michael Rubinstein
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Particle filtering

e Many variations, one general concept:

Represent the posterior pdf by a set of randomly chosen
weighted samples (particles)

Posterior

TR

Sample space

¢ Randomly Chosen = Monte Carlo (MC)

* Asthe number of samples become very large — the
characterization becomes an equivalent representation of the
true pdf

© Michael Rubinstein

Particle filtering

e Compared to previous methods

— Can represent any arbitrary distribution
— multimodal support
— Keep track several hypotheses simultaneously

— Approximate representation of complex model
rather than exact representation of simplified
model

e The basic building-block: Importance Sampling

© Michael Rubinstein

25



Monte Carlo integration

e Evaluate complex integrals using probabilistic
techniques

* Assume we are trying to estimate a
complicated integral of a function f over some

domain D:
F = jD f (X)dX

e Also assume there exists some PDF p defined
over D

© Michael Rubinstein

Monte Carlo integration

* Then
~ e F(R) o
F = jD f (X)dX = jD —ei p(X)dx
e But
f (X) qd#:E{f(z)} ~
Jo ey PO = B[y [ P

e This is true for any PDF p over D!

© Michael Rubinstein
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Monte Carlo integration

* Now, if we have i.i.d random samples X,,..., X
sampled from p, then we can approximate

f (X)
El—22| b
p(X) Y

><l

1 N
_WZ;

e Guaranteed by law of large numbers:

><l

N — oo, F —>E{f( )} F
(%)

© Michael Rubinstein

Importance Sampling (IS)

e What about p(X)=07?

* If pisverysmall, f/p can be arbitrarily large,
‘damaging’ the average
* Design p such that f/p is bounded

* Rule of thumb: take p similar to f as possible
Importance or proposal
density

* The effect: get more samples in ‘important’
areas of f, i.e. where f is large

© Michael Rubinstein
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Convergence of MC

integration
e Chebyshev’s inequality: let X be a

Pafnuty Lvovich

random variable with expected value p "¢l ehov
and std o. For any real number k>0,

1
Pr{| X —u |~ kG}SF

e For example, for k =+/2, it shows that at least

half the values lie in interval (u—+20,u++/20)
F(x) . . 1Y
e Let y,=——"=, then MC estimatoris F,=—>y,
p(X;) § Nizzl:y

© Michael Rubinstein

Convergence of MC integration
* By Chebyshev’s,
VIR Y
Pr{I Fy —ER | —5* | }<0 (k =1//5)

1 N
V[FN]:V|:WZ Yi

i=1

i=1

JNU &

* Hence, for a fixed threshold, the error decreases
at rate 1/\/N

%
>  PF, -F |zi(mj }<s

© Michael Rubinstein
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Convergence of MC integration

* Meaning
1. To cut the errorin half, it is necessary to
evaluate 4 times as many samples

2. Convergence rate is independent of the
integrand dimension!

*  On contrast, the convergence rate of grid-based
approximations decreases as N, increases

© Michael Rubinstein

IS for Bayesian estimation
E(F (X)) = [ f (%) POy | )Xoy

p(XO:k | Z1:k)
= | f (X ) ———(Xy | Z;,, )AX,.
;[ ( O.k) q(x0:k | Zl:k) ( 0:k | ]_k) 0:k

* We characterize the posterior pdf using a set of
samples (particles) and their weights

{X(i):k ! WL}ll\il
* Then the joint posterior density at time k is
approximated by

N . -
p(XO:k | Z1:k) ~ ZWL5(XO:k - X(IJ:k)
i=1

© Michael Rubinstein
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IS for Bayesian estimation

e We draw the samples from the importance
density q(x,, |z,) withimportance weights

Wi oc p(XO:k | Z1:k)
q(XO:k | Z1:k)

e Sequential update (after some calculation...)

Particle update Weight update

Xe ~ 0(X [ X1, Z4) P(z | %) p(X | X )

i
W, =W,

A0 | X1, 24)

Sequential Importance Sampling (SIS)

o wi Y, |= sisfod w1 2]
e FORi=1:N
— Draw Xli< ~ q(x, |X|i<—1’zk) ) o
P(zi 1 %) (X | Xics)
a(X | X1, 24)

— Update weights w, =w; ,
* END
* Normalize weights

30



State estimates

e Any function f(x,) can be calculated by
discrete pdf approximation

ELf (x)]= 3w f ()

Robust mean
* Example:
— Mean (simple average)
— MAP estimate: particle with
largest weight

— Robust mean: mean within
window around MAP estimate

MAP Mean

© Michael Rubinstein

Choice of importance density

 State Space ~ oo oTTTETmETmEEEEmmmT
Sample from prior belief q(x) (for instance, the uniform

distribution) /mmmwmlmmw Mmmmmnm“ .........

State ‘mm

Compute importance weights, w(x) = p(x) /q(x)
Hsiao et al.

© Michael Rubinstein
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Choice of importance density

¢ Most common (suboptimal): the transitional
prior

Q(Xk | X|i<—1! Zk) = p(Xk | X|i<—1)

P(z | %) POy | Xic )

ol =W, p(z | X;)
A(Xy [ X0 24) e

i
SW, =W,

Wi 1 P(Z, | %)
NS

2 Wi P(z 1 X))
j=1

Grid filter weight update: Wli<|k =

© Michael Rubinstein

The degeneracy phenomenon

e Unavoidable problem with SIS: after a few
iterations most particles have negligible
weights
— Large computational effort for updating particles

with very small contribution to p(X, | Z,,)

* Measure of degeneracy - the effective sample

size:

1
Nt = v 7
Zi:l(wk)

— Uniform: N = N, severe degeneracy: N, =1

© Michael Rubinstein
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Resampling

e The idea: when degeneracy is above some
threshold, eliminate particles with low
importance weights and multiply particles
with high importance weights

{Xe Wi =% s
* The new set is generated by sampling with

replacement from the discrete representation
of p(x1z,) suchthat Pr{x" = x/}=w|

© Michael Rubinstein

Resampling

[ w3, |= RESAMPLE!, wi3Y, |
e Generate N i.i.d variables u, ~U[0,]]
e Sort them in ascending order

e Compare them with the cumulative sum of
normalized weights

lu_J i B

0 — - T o Risticetal
& 3y © Michael Rubinstein
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Resampling

e Complexity: O(NlogN)
— O(N) sampling algorithms exist

y -y -

State Space

B A

State Space
Hsiao et al.
© Michael Rubinstein

Generic PF

[{Xli , Wli< }i'\il] = PFkX&_l, W|i<—1}iN=1v Z, ]
e Apply SIS filtering [{XL,Wf(}iNﬂ]=S|5kXLl'Wik71}iN=1, zk]

* Calculate Ny

* IF Nef‘f<Nthr
o loxi w3y, |= RESAMPLE)X w3, |
*« END

© Michael Rubinstein
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Generic PF

i=1,...,N=10 particles

i -1
Uniformly weighted measure T ° °ee ° i {Xka N }
Approximates P(X, | Z;, ;)

Compute for each particle Ty i , 'R ; 1‘. .
its importance weight to ° L] ° {X;( , Wk}
Approximate  P(X, | Z,, ) i g £
i* -1
(Resample if needed) . S {Xk N }
Project ahead to approximate 1 l\) A\ Z\ i Z i -1
R {Xk+l’ N }

p(xk+l | Z].'k )

p(xk1|zl'k1) vy ““di ' i
’ ! oVt rDRe e @ {Xk+l’ Wk+l}

Van der Merwe et al.

-

PF variants

e Sampling Importance Resampling (SIR)

e Auxiliary Sampling Importance Resampling
(ASIR)

Regularized Particle Filter (RPF)
Local-linearization particle filters

Multiple models particle filters (maneuvering
targets)

© Michael Rubinstein
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Sampling Importance Resampling (SIR)

e A.K.A Bootstrap filter, Condensation

* Initialize {x}, W, }'; from prior distribution X,
e Fork>0do
e Resample {x, ,,w, }", into {x‘k*_l,%}i“_l
e Predict x. ~ p(X, | X, =X ,)
* Reweight w, = p(z, | X, = X)
* Normalize weights
* Estimate X _(for display)

© Michael Rubinstein

Red pill or blue pill?

1. We had enough — show us some videos!

2. 15 minute walk through a multiple-target-
tracking system

© Michael Rubinstein
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Multiple Targets (MTT/MOT)

* Previous challenges
— Full/partial occlusions
— Entering/leaving the scene
* And in addition
— Estimating the number of objects

— Computationally tractable for multiple simultaneous
targets
— Interaction between objects

— Many works on multiple single-target filters

© Michael Rubinstein

BraMBLe A Bayesian Multlple-
Blob Tracker R

M. Isard and J. MacCormick &

Compaq Systems Research Center

ICCV 2001

Some slides taken from Qi Zhao
Some images taken from Isard and MacCormick
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BraMBLE

 First rigorous particle filter implementation with
variable number of targets

* Posterior distribution is constructed over possible
object configurations and number

» Sensor: single static camera
» Tracking: SIR particle filter

e Performance: real-time for 1-2 simultaneous
objects

© Michael Rubinstein

The BraMBLe posterior

p(Xk | Z1:k)
N

State at frame k Image Sequence

Number,
Positions,
Shapes,

\elocities,

© Michael Rubinstein
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State space

* Hypothesis configuration:
X, = (M, Xe, X2, X1
* Object configuration: N, =1+13M .

X = (f Xii Vi, Sy)

identifier shape
S=(wW;, W, W, w,,h,6,a,, )
velocit
V=(v,.v,)
position

X=(x,2)

© Michael Rubinstein

Object model

e A person is modeled as a generalized-
cylinder with vertical axis in the world
coords

S=(We, W, W, W, 6.0y, )
(%) =1 .0).(W.8 a0, (W6, ach) (wg, ) }

Calibrated
Camera

© Michael Rubinstein
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Observation likelihood p(z, | X,)

* Image overlaid with rectangular Grid (e.g. 5
pixels)

Mexican Hat
(second deriv of G)

© Michael Rubinstein

Observation likelihood p(z, | X,)

e The response values are assumed
conditionally independent given X

p(Z1X)=T], p(z, 1) =TT, Pz, I1,)

(Q_LQ_ (Q_LQ_
wnN o

© Michael Rubinstein
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Appearance models

* GMMs for background and foreground are
trained using kmeans

V

1
p(zg||g:O):?ZkN(yS,EE+AB)+rB K=4

p(zg||g¢0)=%ZkN(y,E,2kF)+rF K=16

© Michael Rubinstein

Observation likelihood

°g(p(zg D =0)J

© Michael Rubinstein
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System (prediction) model p(x, | X,,)

* The number of objects can change:

— Each object has a constant probability 4, to remain in
the scene.

— At each time step, there is constant probability A,
that a new object will enter the scene.

* xtn—ll = (mtril’ Xtrl'ill"') - th = (mtn' itmla---)

1. set )’ := (.

— 2. fori=1to m}’;]:
Predlc.tlon (a) generate r distributed as [7[0, 1).
function () if r < A, set m)' == m} + 1 and e = Initialization
F(i :rlil ) function

3. generate r distributed as U/[0. 1).
4, il < A; setmy =y + 1 and set F = g(t)

Figure 6: The multi-object prediction algorithm

Prediction function

* Motion evolution: damped constant velocity

* Shape evolution: 1%t order auto-regressive process
model (ARP)

J(@, (X V.8)T) = (o, (x",V,8)7)

(1)’ =4+ »\,-V T !J_\' Wy
V" = /\:-L‘ + b_\' WX

o Q——O—F
S" = _-lh-f.s - (._"? - BH..‘J_‘-.'
S -3) X, V.,
S=(pg..... fts)
B = diag(p1. . ...ps) X +08V,
Ag = diag(ay. . ... ag)

© Michael Rubinstein
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Particles
Xl 2 XN—l

.

N

N Weights: ﬂtl xl T,

N Points:

© Michael Rubinstein

Estimate X,

e Denote M, ={®,,..,®,} the set of existing
unique identifiers

Total probability that (particle,target)
object @, exists for i = 1 to M,
(ar-compute-Ade’ = {(n. j) b= @, ).
qr, -
(b) compiite IT,"| = an._r]*.:.\fl, n

" i ; .
(c) ifII" > Ay estimate W e
o7 IR )

(n.gyemy

Figure 7: The estimation algorithm

© Michael Rubinstein
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Results

* N=1000 particles
* initialization samples always generated

© Michael Rubinstein

Results

e Single foreground model cannot distinguish
between overlapping objects — causes id
switches

© Michael Rubinstein
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Parameters

symbol  meaning value

Ar object survival probability 0.99

A new object arrival probability 0.02

A object display threshold 0.8

8 minimum physical separation between distinct objects (m) 0.5

dp backeround likelihood additional covariance factor (grey-levels?) 100

i5:] background likelihood cutoff (grey-levels—%) 2.0 x 1071

TF foreground likelihood cutoff (grey-levels—9) 3.0 x10-18

bx translation process noise (m) 0.11

wy Wy w, wy h 4 oy, g

mean jt; 0.20m  0.22m 0.25m  0.08m 1.80m 0.75 0.60 0.83
steady-state standard deviation ; 0.03m  0.04m  0.04m  0.02m  0.05m 025 0.02 0.02
process noise p; 0.003m 0.002m 0.002Zm 0.002m 0.003m 0.05 0.001 0.001

© Michael Rubinstein

Summary

* Particle filters were shown to produce good
approximations under relatively weak
assumptions
— can deal with nonlinearities
— can deal with non-Gaussian noise
— Multiple hypotheses
— can be implemented in O(N)

— Relatively “simple”

— Adaptive focus on more probable regions of the
state-space

© Michael Rubinstein
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In practice

e e

State (object) model

System (evolution) model
Measurement (likelihood) model
Initial (prior) state

State estimate (given the pdf)

PF specifics
1. Proposal density
2. Resampling method

Configurations for specific problems can be found in
literature

© Michael Rubinstein

Isard&Blake CONDENSATION- conditional
density propagation for visual tracking 1JCV 98

© Michael Rubinstein
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Isard&Blake CONDENSATION- conditional
density propagation for visual tracking 1JCV 98

© Michael Rubinstein

Isard&Blake CONDENSATION- conditional
density propagation for visual tracking 1JCV 98

“bush blowing i wind” — 1200 particles

“girl dancing vigorously to a Scottish reel” — 100 particles

© Michael Rubinstein
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Okuma el al. Boosted Particle Filter ECCV 2004

* Goal: track hockey players
* Idea: AdaBoost + PF

gt Nﬂf AV CARIA
1 bt L.m.[e ! m'ﬂ.!ﬂ"

AT .F.uf'lﬂl”,\uufﬂ

O AT Ty

Key (Haar) features:

HMBHH

Okuma el al. Boosted Particle Filter ECCV 2004
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Bibby&Reid Tracking using Pixel-Wise Posteriors (ECCV08)

Partial(@cclusions

© Michael Rubinstein

Bibby&Reid Tracking using Pixel-Wise Posteriors (ECCV08)

Tfackmg Agile Monon

© Michael Rubinstein
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Thank you!

© Michael Rubinstein
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Sequential derivation 1

e Suppose at time k-1, {Xé):k_l,wik_l}iN:1 characterize

p(xo:k—l | Z1:k—1)
* We receive new measurement Z, and need to
approximate p(x,, |z, ) using new set of samples

* We choose g such that

A% | Zx) = A(X [ Xoge 11 Ziy ) AKX 1 | Zie 1)

And we can generate new particles

X|I< - q(Xk | X(I):k—u Zl:k)

© Michael Rubinstein

Sequential derivation 2

e For the weight update equation, it can be
shown that

P(Xox | Zux) = Pz [ %) PO | %)

p(XO:k—l | Zl:k—l)

P(Zy | 2y 1)
o P(Z, | %) PX [ X 1) PCoe s | 23 4)
And so
Wi = P(Xgu | Z15) _ P(zi | %) P(xi | X1) P(Xose s | Zisa)
A(Xox | Z1x) A% | Xox-1s Zu ) A Koxe 1 | Zue 1)

_wi P@AX)POG %)
T k-l i i
q(xk | XO:k—l’ Z1:k)

© Michael Rubinstein
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Sequential derivation 3

o Further, if a0 | Xox1r Zu) = A(X, | X1, 24)

* Then the weights update rule becomes

o —w, PEIX) PO IX)
q(xk | Xk—l’ Zk)

©)

(and need not store entire particle paths and full history of
observations)

e Finally, the (filtered) posteriomdensity is
approximated by p(x, | z,) > ws(x - )

i=1

© Michael Rubinstein

Choice of importance density

e Choose g to minimize variance of weights
* Optimal choice: q(x, | Xli—l’_zk)opt = p_(xk |X|i<—1’ Z,)
= W o W, P(Z, [ X )
— Usually cannot sample from g, or solve for w,
(in some specific cases is works)
¢ Most commonly used (suboptimal)
alternative: A4 | X1 2o = P | %)
= W o W1 P(Z, [ %)

— i.e. the transitional prior

© Michael Rubinstein
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Generic PF

e Resampling reduces degeneracy, but new
problems arise...

1. Limits parallelization

2. Sample impoverishment: particles with high
weights are selected many times which leads
to loss of diversity

— if process noise is small — all particles tend to
collapse to single point within few interations

— Methods exist to counter this as well...

© Michael Rubinstein
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