

Talk overview

- Background
 - Model setup
 - Markovian-stochastic processes
 - The state-space model
 - Dynamic systems
 - The Bayesian approach
 - Recursive filters
 - Restrictive cases + pros and cons
 - The Kalman filter
 - The Grid-based filter
- Particle filters
 - Monte Carlo integration
 - Importance sampling
- Multiple target tracking BraMBLe ICCV 2001 (?)

The Grid-based filter

- Pros:
 - $p(x_k | x_{k-1}), p(z_k | x_k)$ assumed known, but no constraint on their (discrete) shapes
 - Easy extension to varying number of states
 - Optimal solution for the discrete-finite environment!
- Cons:
 - Curse of dimensionality
 - Inefficient if the state space is large
 - Statically considers all possible hypotheses

Parameters	5							
$\begin{array}{lll} {\rm symbol} & {\rm meaning} \\ \lambda_r & {\rm object \ survival \ prod} \\ \lambda_i & {\rm new \ object \ arrival} \\ \lambda_d & {\rm object \ display \ three} \\ \delta_e & {\rm minimum \ physica} \\ \delta_B & {\rm background \ likelil} \\ \tau_B & {\rm background \ likelil} \\ \tau_F & {\rm foreground \ likelil} \\ b_X & {\rm translation \ process} \end{array}$	meaning object survival probability new object arrival probability object display threshold minimum physical separation between distinct objects (m) background likelihood additional covariance factor (grey-levels ²) background likelihood cutoff (grey-levels ⁻⁶) foreground likelihood cutoff (grey-levels ⁻⁶) translation process noise (m)					value 0.99 0.02 0.8 0.5 100 2.0×10^{-14} 3.0×10^{-13} 0.11		
mean μ_i steady-state standard deviation σ_i process noise ρ_i	w _f 0.20m 0.03m 0.003m	w _w 0.22m 0.04m 0.002m	w _s 0.25m 0.04m 0.002m	w _h 0.08m 0.02m 0.002m	h 1.80m 0.05m 0.003m	θ 0.75 0.25 0.05	$lpha_w$ 0.60 0.02 0.001	$lpha_{s} \\ 0.83 \\ 0.02 \\ 0.001$

In practice

- 1. State (object) model
- 2. System (evolution) model
- 3. Measurement (likelihood) model
- 4. Initial (prior) state
- 5. State estimate (given the pdf)
- 6. PF specifics
 - 1. Proposal density
 - 2. Resampling method
- Configurations for specific problems can be found in literature

Generic PF

- Resampling reduces degeneracy, but new problems arise...
- 1. Limits parallelization
- 2. Sample impoverishment: particles with high weights are selected many times which leads to loss of diversity
 - if process noise is small all particles tend to collapse to single point within few interations
 - Methods exist to counter this as well...