Tracking

with focus on the particle filter

Michael Rubinstein
IDC

Problem overview

* |nput
— (Noisy) Sensor measurements
* Goal
— Estimate most probable measurement at time k using
measurement up to time k’
k’<k: prediction
k‘>k: smoothing

e Many problems require estimation of the state of
systems that change over time using noisy
measurements on the system
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Applications

e Ballistics

Robotics
— Robot localization
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Econometrics
— Stock prediction

Navigation

e Many more... LT
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Challenges

* Measurements

— Noise

— Errors

Detection specific

— Full/partial occlusions

— False positives/false negatives

— Entering/leaving the scene

Efficiency

Multiple models and switching dynamics
Multiple targets,
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Talk overview

e Background

— Model setup
¢ Markovian-stochastic processes
* The state-space model
* Dynamic systems

— The Bayesian approach

— Recursive filters

— Restrictive cases + pros and cons
¢ The Kalman filter
* The Grid-based filter

* Particle filtering

e Multiple target tracking - BraMBLe
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> Lecture 1

Lecture 2

Stochastic Processes

* Deterministic process
— Only one possible ‘reality’
* Random process

— Several possible evolutions (starting point might be

known)

— Characterized by probability distributions

* Time series modeling

— Sequence of random states/variables

— Measurements available at discrete times
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State space

* The state vector contains all available
information to describe the investigated system

— usually multidimensional: X (k) e R™

* The measurement vector represents
observations related to the state vector z(k)eR™

— Generally (but not necessarily) of lower dimension
than the state vector
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State space

Econometrics:
Monetary flow
Interest rates
Inflation
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(First-order) Markov process

e The Markov property — the likelihood of a
future state depends on present state only

PrIX(k+h)=y| X(s) =x(s),Vs<k]=
PrIX(k+h)=y]| X(k)=x(k)],vh>0

e Markov chain — A stochastic process with
Markov property

k-1 +1 time

k k
OO — O -
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Hidden Markov Model (HMM)

e the state is not directly visible, but output
dependent on the state is visible

k+1 time

k
- _’®_'@___" States

______ ,Ii‘h'dde”)

Measurements
(observed)

© Michael Rubinstein




Dynamic System
e ) — ) — ) -+
el

Zy1
State equation: x = f, (x_{,v,)

Stochastic diffusion

X, state vector at time instant k
f, state transition function, f_:R™ xR™
Vv, i.i.d process noise

Observation equation: z, =h, (x,|w,)

Z, observations at time instant k
h, observation function, h, :R™ xR — R™
W, i.i.d measurement noise
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A simple dynamic system

o X=[xV,v,v] (4-dimensional state space)

e Constant velocity motion:
f(X,v) =[x+At-v,,y+At-v,,v,,v ]+V

0
0

2

q
0 2

o O o

v~N(0,Q) o=

o O o o
o O o o

o

e Only position is observed:
z=h(X,w)=[x,y]+w

w~ N(O,R) R:{foz :’J
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Gaussian distribution

&

Yacov Hel-Or

P() ~N(x %) =exp {—%(X—#)T z—l(x—u)}
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The Bayesian approach

e Construct the posterior probability Thomas Bayes

density function p(x, | z,,) of the state based
on all available information

Posterior

L A~

* By knowing the posterior many kinds of
estimates for x, can be derived
— mean (expectation), mode, median, ...

— Can also give estimation of the accuracy (e.g.
covariance)

Sample space
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Recursive filters

* For many problems, estimate is required each time a
new measurement arrives

* Batch processing
— Requires all available data
e Sequential processing
— New data is processed upon arrival
— Need not store the complete dataset
— Need not reprocess all data for each new measurement

— Assume no out-of-sequence measurements (solutions for
this exist as well...)
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Recursive Bayes filters

* Given:
— System models in probabilistic forms

Xk — fk (Xk—l’vk) PEN p(Xk |Xk—1) [ Markovian process ]
Measurements are ]
t

Z, = hk (Xk , Wk) > p(Zk | Xk) conditionally independen

given the state

(known statistics of v,, w,)
— Initial state p(x,|z,) = p(x,) also known as the prior

— Measurements z,...,z,
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Recursive Bayes filters

* Prediction step (a-priori)

P(Xy | 2y 1) = P(X | 2y 4)

— Uses the system model to predict forward
— Deforms/translates/spreads state pdf due to random noise

e Update step (a-posteriori)

p(xk | Zl:k—l) - p(xk | Z1:k)

— Update the prediction in light of new data
— Tightens the state pdf
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General prediction-update framework

e Assume p(X,,|Zz,,) isgiven at time k-1
* Prediction:

System model

p(Xk | Zl:k—l) = Ip(xk | x, Dp(x, | 2,4 |)dxk—1 @

* Using Chapman-Kolmogorov identity + Markov
property
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General prediction-update framework

e Update ste
P P01 2) = PO | 240 Zus 1)

o(A|B.c)— PBIACIPAIO)] P(Zy | X Zaga) PO | Zige1)
PBIC) P(Z | 2y 4)
Mea;uorggllent Cgrrir;m
likelihood x prior _ PG x) Py | 21 1) "
evidence Pz | 24)

Normalization constant

Where p(zk | Zl:k—l) :_[ p(zk | Xk) p(xk | Zl:k—l)dxk
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Generating estimates

e Knowledge of p(x, |z.,) enables to
compute optimal estimate with respect to
any criterion. e.g.

— Minimum mean-square error (MMSE)

o MMSE

R =E[x 12,]= _[Xk P(X | Zy, )dx,

— Maximum a-posteriori

Rk =arg max pP(x 1Z,)
k

© Michael Rubinstein
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General prediction-update framework

=>»So (1) and (2) give optimal solution for the
recursive estimation problem!

e Unfortunately no... only conceptual
solution

— integrals are intractable...
— Can only implement the pdf to finite representation!

e However, optimal solution does exist for
several restrictive cases

© Michael Rubinstein

Restrictive case #1

e Posterior at each time step is Gaussian
— Completely described by mean and covariance

e If p(x_|z..,) is Gaussian it can be shown

that p(x |z,) isalso Gaussian provided that:

— v,,w, are Gaussian
f,,h, arelinear

© Michael Rubinstein
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Restrictive case #1

e Why Linear?

Yacov Hel-Or

y=Ax+B= p(y)~ N(Au+B,AZA")
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Restrictive case #1

e Why Linear?

o 4 :
0 0204 06 03 0 0.5 1

Yacov Hel-Or

y=9(x)= p(y)~N()

© Michael Rubinstein
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Restrictive case #1

* Linear system with additive noise
X = P it W)
z, = R (X, )
Vk~N(O!Qk)
w,~N(O,R,)

* Simple example again

f(X,V) =[Xx+At-v,,y+At-v,,v, v, ]+V z=h(X,w) =[x, y]+w

X 10 At 0)( % X
010 At 1000
Y| Ye +N(0,Q,) s | . +NQOR)
Vx,k 0 0 1 0 x,k—1 yobs 0100 VX’k
Vy,k 0 0 0 1 Vy,kfl H Vy,k
F © Michael Rubinstein

The Kalman filter

P(X g | 2y g) = N (X, 45 ):(k—1|k—1’ P k1)
P(X, | 2y 1) = N(X; X|A<|k—17 Pek1)
P(X, [ 2y ) = N (%5 X » P

N (G u,2) =| 275 |2 exp(—%(x—u)Tzl(x—u)]

e Substituting into (1) and (2) yields the predict and
update equations

© Michael Rubinstein
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The Kalman filter

Predict:

Xgk-1 = Fk Xy k-1

P = Fi Pk71|klekT +Q,
Update:

Sk = Hk qulelI +Rk

Kk = P|<||<—1H|IS|<_l

)A(k|k = )2k|k—1 + Kk 4 — Hk)zk|k—1)
qu :[I _Kka Pk|k—1

Intuition via 1D example

* Lost at sea
— Night
— No idea of location
— For simplicity — let’s
assume 1D

* Example and plots by Maybeck, “Stochastic models, estimation and control, volume 1”
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Example — cont’d

e Time t1: Star Sighting
— Denote x(t1)=z1

e Uncertainty (inaccuracies, human error, etc)
— Denote o1 (normal)

e Can establish the conditional probability of
x(t1) given measurement z1

© Michael Rubinstein

Example — cont’d

‘fhx(,])lz(,])( \":|)

s \

* Probability for any location, based on measurement
* For Gaussian density — 68.3% within o1
* Best estimate of position: Mean/Mode/Median

A1) =z, oiy) = nfl

© Michael Rubinstein
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Example — cont’d

e Time t2=t1: friend (more trained)
—X(t2)=z2, o(t2)=02
— Since she has higher skill: 62<c1

Y .\lr_-l|:la_‘]:" |‘-2 )

b ———————

© Michael Rubinstein

Example — cont’d

e f(x(t2)|z1,z2) also Gaussian

w = [07 /(02 +02)]z +[02 /(02 + 02 )]z,

-'r.\tﬂ_:}|:_i-r|J..'.lf_ll"‘l'_I <)

1/0% = (l/ofl)+(l/of__)

© Michael Rubinstein
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Example — cont’d

u = [”:;./(”:;, +02 )]z, + [(sgl/((ifl +02)]z,

1/0% = (1/u§|)+(1/o§1)

* o less than both o1 and 62
* ol=0c2: average

* 01> 02: more weight to z2
* Rewrite:

X(15)

7+ [0_}1/(0_% + 0_::)][:.2 -z]

© Michael Rubinstein

[02 /(02 +02)]z +[02 /(02 +07)]z,

Example — cont’d

e The Kalman update rule:

Best estimate —
Given z2
(a poseteriori)

/

Best Prediction prior to z2 Optimal Weighting
(a priori) (Kalman Gain)

© Michael Rubinstein

Residual
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The Kalman fil#~=— -

Predict:
X, . =F X

Kk -1 k Xkt il
Facs = RPyaFi
Update:

S, =HRyaHy +5 LTI
Ky = Pk|k He S

(73 /"("03 + 03 )

Xk|k_Xk|k Kz - Hk)’ik|k—1) X(1,) = X(2)) + K(1 [m—

Py =11 —KH Py

© Michael Rubinstein

D]

Kalman gain

S = Hkpklk—lHlI +R
Te-d
Kk = Pk|k—1Hk Sk

)2k|k = )A(k|k—1 +Kilz - Hk)’zklk—l)
qu :[I _Kka R<|k—1

¢ Small measurement error:

- _ -1 - A _ -1
limg, (K,=H, = limy X, =H,z

e Small prediction error:

limp o K =0=1img o X = Xy

© Michael Rubinstein
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The Kalman filter

* Pros

— Optimal closed-form solution to the tracking problem
(under the assumptions)

¢ No algorithm can do better in a linear-Gaussian
environment!

— All ‘logical’ estimations collapse to a unique solution
— Simple to implement
— Fast to execute

* Cons

— If either the system or measurement model is non-
linear = the posterior will be non-Gaussian

© Michael Rubinstein

Restrictive case #2

e The state space (domain) is discrete and finite

e Assume the state space at time k-1 consists of
states x,_,,i=1..N,

e Let Pr(x.; =% lZy4) =Wy, bethe conditional
probability of the state at time k-1, given
measurements up to k-1

© Michael Rubinstein
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The Grid-based filter

e The posterior pdf at k-1 can be expressed as
sum of delta functions

N . .
P(Xy1 | Zyyes) = ZWII(—]Jk—lé‘(Xk—l —X1)
i1

e Again, substitution into (1) and (2) yields the
predict and update equations

© Michael Rubinstein

The Grid-based filter

e Prediction
P(X | Zyyy) = _[ P(X [ X ) Py | 2y )X, @

N, N, o _ _
P(Xy | 2y 1) = z z P(X | XkJ—l)WkJ—l|k—15(Xk—1 —X1)

i=1 j=1

N, _
= Z Wll<|k—15(xk—1 - X||<-1)
i=1

NS

WII<|k—1 = Z ij—1|k71 P(X | X(y)
=t

* New prior is also weighted sum of delta functions

* New prior weights are reweighting of old posterior weights using state
transition probabilities

© Michael Rubinstein

20



The Grid-based filter

* Update

P(X, |2y ) = Pz [ %) P(X | Ze )

p(zk | Z1:k—1)

@

N, . )
P(X |2y ) = ZWLwé‘(Xk—l — X 4)
=

i Wi P(Z [ %)
Kk = N

z Wy 1 P(Z, [ %)
1

e Posterior weights are reweighting of prior weights using likelihoods (+
normalization)

© Michael Rubinstein

The Grid-based filter

* Pros:

— p(X% I X1) P(Z | %) assumed known, but no
constraint on their (discrete) shapes

— Easy extension to varying number of states
— Optimal solution for the discrete-finite environment!
* Cons:

— Curse of dimensionality
« Inefficient if the state space is large

— Statically considers all possible hypotheses

© Michael Rubinstein
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Suboptimal solutions

* In many cases these assumptions do not hold

— Practical environments are nonlinear, non-Gaussian,
continuous

=>» Approximations are necessary...

— Extended Kalman filter (EKF) Analytic approximations
— Approximate grid-based methods Numerical methods

— Multiple-model estimators

— Unscented Kalman filter (UKF)
— Particle filters (PF)

Gaussian-sum filters

Sampling approaches

© Michael Rubinstein

The extended Kalman filter

e The idea: local linearization of the dynamic
system might be sufficient description of the
nonlinearity

e The model: nonlinear system with additive
noise

X = Fk K%—M—ie\"ivk
z,, = AP W,
W, ~N(0,Q,)

Wy ~N(O0,R,)

© Michael Rubinstein
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The extended Kalman filter

e f, h are approximated using a first-order Taylor
series expansion (eval at state estimations)
Predict:

Xk = fk(xk—l|k—1)
-~ =T
Pac1 = FePoya R + Qy

= r: of [i]
Update: o Flis 1= 507 % =5ue
S, =H,P, H+ I 6 i1 = 2hlil
k k k||’<\—$ El Rk Hk[l’ J] o[ | Xk =R
Ky = Pk|k—1HkSk

)A(k|k = ),Zk|k—l + Kk Z — hk()?k|k—1 ))
Pk|k :[I _Kka Pk|k—1
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The extended Kalman filter

Function gix)

-4 -4
0 02040608 0 0.5 1

plx)
(=1 ~n ELY 2]

n nE
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The extended Kalman filter

* Pros
— Good approximation when models are near-linear
— Efficient to calculate
(de facto method for navigation systems and GPS)
* Cons
— Only approximation (optimality not proven)
— Still a single Gaussian approximations
* Nonlinearity = non-Gaussianity (e.g. bimodal)

— If we have multimodal hypothesis, and choose
incorrectly — can be difficult to recover

— Inapplicable when f,h discontinuous

© Michael Rubinstein

Particle filtering

e Family of techniques
— Condensation algorithms (MacCormick&Blake, ‘99)
— Bootstrap filtering (Gordon et al., ‘93)
— Particle filtering (Carpenter et al., ‘99)
— Interacting particle approximations (Moral ‘98)
— Survival of the fittest (Kanazawa et al., ‘95)
— Sequential Monte Carlo methods (SMC,SMCM)
— SIS, SIR, ASIR, RPF, ....

* Statistics introduced in 1950s. Incorporated in
vision in Last decade

© Michael Rubinstein
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Particle filtering

e Many variations, one general concept:

Represent the posterior pdf by a set of randomly chosen
weighted samples (particles)

Posterior

TR

Sample space

¢ Randomly Chosen = Monte Carlo (MC)

* Asthe number of samples become very large — the
characterization becomes an equivalent representation of the
true pdf

© Michael Rubinstein

Particle filtering

e Compared to previous methods
— Can represent any arbitrary distribution

— multimodal support

— Keep track of many hypotheses as there are particles

— Approximate representation of complex model
rather than exact representation of simplified model

* The basic building-block: Importance Sampling

© Michael Rubinstein
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