Tracking with focus on the particle filter (part II)

Michael Rubinstein IDC

Last time...

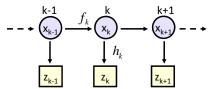
- Background
 - State space
 - Dynamic systems
 - Recursive Bayesian filters
 - Restrictive cases
 - Kalman filter
 - Grid-based filter
 - Suboptimal approximations
 - Extended Kalman filter

This talk

- Particle filtering
 - MC integration
 - Sequential Importance Sampling (SIS)
 - Resampling
 - PF variants
- Multiple-target tracking
 - BraMBLe: A Bayesian Multiple-Blob Tracker/ Isard, MacCormick

© Michael Rubinstein

Dynamic System



Stochastic diffusion

State equation:

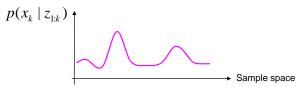
$$x_k = f_k(x_{k-1}, v_k)$$

- x_k state vector at time instant k
- $\hat{f_k}$ state transition function, $f_k: R^{N_x} \times R^{N_v} \rightarrow R^{N_x}$
- v_{k} i.i.d process noise

Observation equation: $z_k = h_k(x_k | w_k)$

- z_k observations at time instant k
- h_k observation function, $h_k: R^{N_x} \times R^{N_w} \to R^{N_z}$
- $w_{k}^{'}$ i.i.d measurement noise

Recursive Bayes filter



Prediction:

$$p(x_k \mid z_{1:k-1}) = \int p(x_k \mid x_{k-1}) p(x_{k-1} \mid z_{1:k-1}) dx_{k-1}$$
 (1)

• Update:

$$p(x_k \mid z_{1:k}) = \frac{p(z_k \mid x_k) p(x_k \mid z_{1:k-1})}{p(z_k \mid z_{1:k-1})}$$
(2)

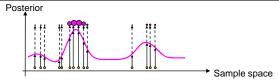
$$p(z_k \mid z_{1:k-1}) = \int p(z_k \mid x_k) p(x_k \mid z_{1:k-1}) dx_k$$

© Michael Rubinstein

Particle filtering

Many variations, one general concept:

Represent the posterior pdf by a set of randomly chosen weighted samples (particles)



- Randomly Chosen = Monte Carlo (MC)
- As the number of samples become very large the characterization becomes an equivalent representation of the true pdf

Particle filtering

- Compared to methods we've mentioned last time
 - Can represent any arbitrary distribution
 - multimodal support
 - Keep track of many hypotheses as there are particles
 - Approximate representation of complex model rather than exact representation of simplified model
- The basic building-block: Importance Sampling

© Michael Rubinstein

Monte Carlo integration

- Evaluate complex integrals using probabilistic techniques
- Assume we are trying to estimate a complicated integral of a function f over some domain D:

$$F = \int_{D} f(\vec{x}) d\vec{x}$$

 Also assume there exists some PDF p defined over D

Monte Carlo integration

• Then

$$F = \int_{D} f(\vec{x}) d\vec{x} = \int_{D} \frac{f(\vec{x})}{p(\vec{x})} p(\vec{x}) d\vec{x}$$

• But

$$\int_{D} \frac{f(\vec{x})}{p(\vec{x})} p(\vec{x}) d\vec{x} = E \left[\frac{f(\vec{x})}{p(\vec{x})} \right], x \sim p$$

• This is true for <u>any</u> PDF p over D!

© Michael Rubinstein

Monte Carlo integration

• Now, if we have i.i.d random samples $\vec{x}_1,...,\vec{x}_N$ sampled from p, then we can approximate $E\left[\frac{f(\vec{x})}{n(\vec{x})}\right]$ by

$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\vec{x}_i)}{p(\vec{x}_i)}$$

• Guaranteed by law of large numbers:

$$N \to \infty, F_N \stackrel{a.s}{\to} E \left[\frac{f(\vec{x})}{p(\vec{x})} \right] = F$$

Importance Sampling (IS)

- What about $p(\vec{x}) = 0$?
- If p is very small, f/p can be arbitrarily large,
 'damaging' the average

 Importance weights
 - Design p such that f/p is bounded
 - Rule of thumb: take p similar to f as possible

Importance or proposal density

 The effect: get more samples in 'important' areas of f, i.e. where f is large

© Michael Rubinstein

Convergence of MC integration

 Chebyshev's inequality: let X be a random variable with expected value μ and std σ. For any real number k>0,

Pafnuty Lvovich Chebyshev

$$\Pr\{|X - \mu| \ge k\sigma\} \le \frac{1}{k^2}$$

- For example, for $k = \sqrt{2}$, it shows that at least half the values lie in interval $(\mu \sqrt{2}\sigma, \mu + \sqrt{2}\sigma)$
- Let $y_i = \frac{f(x_i)}{p(x_i)}$, then MC estimator is $F_N = \frac{1}{N} \sum_{i=1}^{N} y_i$

Convergence of MC integration

• By Chebyshev's,

$$\Pr\{|F_{N} - E[F_{N}]| \ge \left(\frac{V[F_{N}]}{\delta}\right)^{1/2}\} \le \delta \qquad (k = 1/\sqrt{\delta})$$

$$V[F_{N}] = V\left[\frac{1}{N}\sum_{i=1}^{N}y_{i}\right] = \frac{1}{N^{2}}V\left[\sum_{i=1}^{N}y_{i}\right] = \frac{1}{N^{2}}\sum_{i=1}^{N}V[y_{i}] = \frac{1}{N}V[y]$$

- $\Rightarrow \quad \Pr\{|F_N F| \ge \frac{1}{\sqrt{N}} \left(\frac{V[y]}{\delta}\right)^{\frac{1}{2}}\} \le \delta$
- Hence, for a fixed threshold, the error decreases at rate $1/\sqrt{N}$

© Michael Rubinstein

Convergence of MC integration

- Meaning
 - 1. To cut the error in half, it is necessary to evaluate 4 times as many samples
 - 2. Convergence rate is independent of the integrand dimension!
 - On contrast, the convergence rate of grid-based approximations decreases as $N_{\scriptscriptstyle x}$ increases

IS for Bayesian estimation

$$E(f(X)) = \int_{X} f(x_{0:k}) p(x_{0:k} \mid z_{1:k}) dx_{0:k}$$

$$= \int_{X} f(x_{0:k}) \frac{p(x_{0:k} \mid z_{1:k})}{q(x_{0:k} \mid z_{1:k})} q(x_{0:k} \mid z_{1:k}) dx_{0:k}$$

We characterize the posterior pdf using a set of samples (particles) and their weights

$$\{x_{0:k}^i, w_k^i\}_{i=1}^N$$

Then the joint posterior density at time k is approximated by

$$p(x_{0:k} \mid z_{1:k}) \approx \sum_{i=1}^{N} w_k^i \delta(x_{0:k} - x_{0:k}^i)$$

IS for Bayesian estimation

• We draw the samples from the importance density $q(x_{0:k} | z_{1:k})$ with importance weights

$$w_k^i \propto \frac{p(x_{0:k} \mid z_{1:k})}{q(x_{0:k} \mid z_{1:k})}$$

Sequential update (after some calculation...)

$$\frac{\left[x_{k}^{i} \sim q(x_{k} \mid x_{k-1}^{i}, z_{k})\right]}{w_{k}^{i} = w_{k-1}^{i} \frac{p(z_{k} \mid x_{k}^{i}) p(x_{k}^{i} \mid x_{k-1}^{i})}{q(x_{k}^{i} \mid x_{k-1}^{i}, z_{k})}$$

Sequential Importance Sampling (SIS)

$$[\{x_k^i, w_k^i\}_{i=1}^N] = SIS[\{x_{k-1}^i, w_{k-1}^i\}_{i=1}^N, z_k]$$
• FOR i=1:N

- - $\begin{array}{ll} \ \mathsf{Draw} & x_k^i \sim q(x_k \mid x_{k-1}^i, z_k) \\ \ \mathsf{Update} \ \mathsf{weights} & w_k^i = w_{k-1}^i \frac{p(z_k \mid x_k^i) p(x_k^i \mid x_{k-1}^i)}{q(x_k^i \mid x_{k-1}^i, z_k)} \end{array}$
- END
- Normalize weights

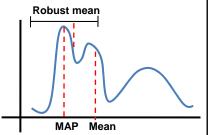
© Michael Rubinstein

State estimates

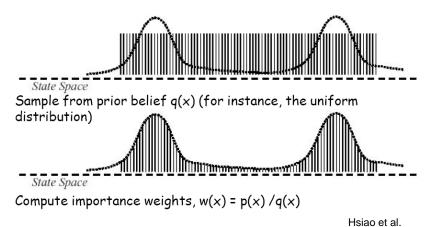
• Any function $f(x_k)$ can be calculated by discrete pdf approximation

$$E[f(x_k)] = \frac{1}{N} \sum_{i=1}^{N} w_k^i f(x_k^i)$$

- Example:
 - Mean (simple average)
 - MAP estimate: particle with largest weight
 - Robust mean: mean within window around MAP estimate



Choice of importance density



nsiao et a

© Michael Rubinstein

Choice of importance density

Most common (suboptimal): the transitional prior

$$q(x_{k} \mid x_{k-1}^{i}, z_{k}) = p(x_{k} \mid x_{k-1}^{i})$$

$$\Rightarrow w_{k}^{i} = w_{k-1}^{i} \frac{p(z_{k} \mid x_{k}^{i}) p(x_{k}^{i} \mid x_{k-1}^{i})}{q(x_{k}^{i} \mid x_{k-1}^{i}, z_{k})} = w_{k-1}^{i} p(z_{k} \mid x_{k}^{i})$$

Grid filter weight update:
$$w_{k|k}^i = \frac{w_{k|k-1}^i p(z_k \mid x_k^i)}{\sum\limits_{j=1}^{N_s} w_{k|k-1}^j p(z_k \mid x_k^j)}$$

The degeneracy phenomenon

- Unavoidable problem with SIS: after a few iterations most particles have negligible weights
 - Large computational effort for updating particles with very small contribution to $p(x_k \mid z_{1:k})$
- Measure of degeneracy the effective sample size:

Michael Pubinetair

Resampling

 The idea: when degeneracy is above some threshold, eliminate particles with low importance weights and multiply particles with high importance weights

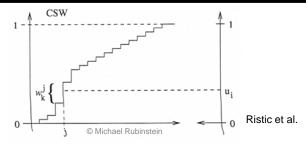
$$\{x_k^i, w_k^i\}_{i=1}^N \longrightarrow \{x_k^{i*}, \frac{1}{N}\}_{i=1}^N$$

• The new set is generated by sampling with replacement from the discrete representation of $p(x_k | z_{1:k})$ such that $\Pr\{x_k^{i^*} = x_k^j\} = w_k^j$

Resampling

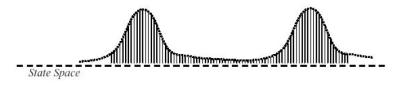
$$[\{x_k^{i*}, w_k^i\}_{i=1}^N] = \text{RESAMPLE}[\{x_k^i, w_k^i\}_{i=1}^N]$$

- Generate N i.i.d variables $u_i \sim U[0,1]$
- Sort them in ascending order
- Compare them with the cumulative sum of normalized weights



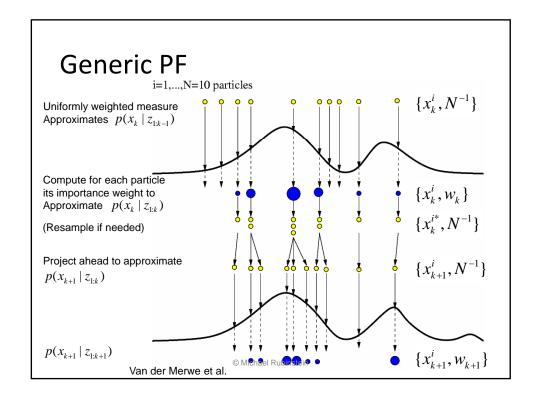
Resampling

- Complexity: O(NlogN)
 - O(N) sampling algorithms exist



Generic PF

- Calculate N_{eff}
- IF $N_{eff} < N_{thr}$
 - $[\{x_k^i, w_k^i\}_{i=1}^N]$ = RESAMPLE $[\{x_k^i, w_k^i\}_{i=1}^N]$
- END



PF variants

- Sampling Importance Resampling (SIR)
- Auxiliary Sampling Importance Resampling (ASIR)
- Regularized Particle Filter (RPF)
- Local-linearization particle filters
- Multiple models particle filters (maneuvering targets)
- ...

© Michael Rubinstein

Sampling Importance Resampling (SIR)

- A.K.A Bootstrap filter, Condensation
- Initialize $\{x_0^i, w_0^i\}_{i=1}^N$ from prior distribution X_0
- For k > 0 do
 - **Resample** $\{x_{k-1}^i, w_{k-1}^i\}_{i=1}^N$ into $\{x_{k-1}^{i*}, \frac{1}{N}\}_{i=1}^N$
 - **Predict** $x_k^i \sim p(x_k \mid x_{k-1} = x_{k-1}^{i*})$
 - Reweight $w_k^i = p(z_k \mid x_k = x_k^i)$
 - Normalize weights
 - Estimate \hat{x}_k (for display)

Intermission

Questions?

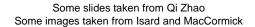
© Michael Rubinstein

Multiple Targets (MTT/MOT)

- Previous challenges
 - Full/partial occlusions
 - Entering/leaving the scene
 - **–** ...
- And in addition
 - Estimating the number of objects
 - Computationally tractable for multiple simultaneous targets
 - Interaction between objects
 - Many works on multiple single-target filters

BraMBLe: A Bayesian Multiple-Blob Tracker

M. Isard and J. MacCormick
Compaq Systems Research Center
ICCV 2001



BraMBLE

- First rigorous particle filter implementation with variable number of targets
- Posterior distribution is constructed over possible object configurations <u>and</u> number
- Sensor: single static camera
- Tracking: SIR particle filter
- <u>Performance</u>: real-time for 1-2 simultaneous objects

The BraMBLe posterior

$$p(x_k \mid z_{1:k})$$

State at frame k Image Sequence

© Michael Rubinstein

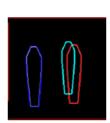
State space

• Hypothesis configuration:

$$X_k = (m_k, x_k^1, x_k^2, ..., x_k^m)$$

• Object configuration:

$$N_x = 1 + 13M_{\text{max}}$$



$$\begin{aligned} \boldsymbol{x}_{k}^{i} &= (\boldsymbol{\phi}_{k}^{i}, \boldsymbol{X}_{k}^{i}, \boldsymbol{V}_{k}^{i}, \boldsymbol{S}_{k}^{i}) \\ \downarrow & \downarrow & \downarrow \\ \text{identifier} & \downarrow & \boldsymbol{S}_{k}^{i}, \boldsymbol{V}_{k}^{i}, \boldsymbol{S}_{k}^{i}) \\ \downarrow & \downarrow & \boldsymbol{S}_{k}^{\text{hape}} \\ \boldsymbol{S} &= (w_{f}, w_{w}, w_{s}, w_{h}, h, \theta, \alpha_{w}, \alpha_{s}) \\ \boldsymbol{V} &= (v_{x}, v_{z}) \\ \boldsymbol{X} &= (x, z) \end{aligned}$$

Object model

 A person is modeled as a generalizedcylinder with vertical axis in the world coords

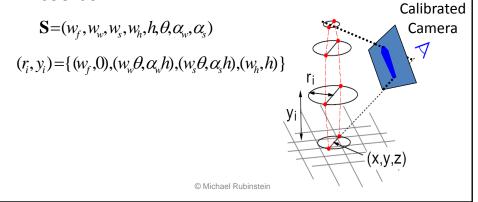
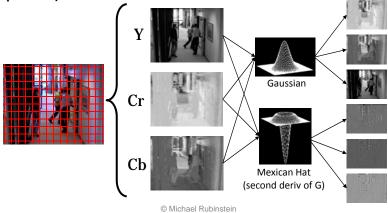


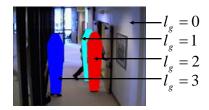
Image overlaid with rectangular Grid (e.g. 5 pixels)



Observation likelihood $p(\mathbf{Z}_t | \mathbf{X}_t)$

 The response values are assumed conditionally independent given X

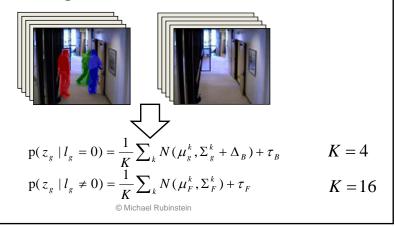
$$p(\mathbf{Z} \mid \mathbf{X}) = \prod_{g} p(z_g \mid \mathbf{X}) = \prod_{g} p(z_g \mid l_g)$$



© Michael Rubinstein

Appearance models

 GMMs for background and foreground are trained using kmeans



Observation likelihood



$$\log \left(\frac{p(z_g \mid l_g \neq 0)}{p(z_g \mid l_g = 0)} \right)$$

© Michael Rubinstein

System (prediction) model $p(X_t | X_{t-1})$

- The number of objects can change:
 - Each object has a constant probability λ_r to remain in the scene.
 - At each time step, there is constant probability $\,\lambda_{i}\,$ that a new object will enter the scene.
- $X_{t-1}^{n'} = (m_{t-1}^{n'}, \widetilde{x}_{t-1}^{n',1}, ...) \to X_{t}^{n} = (m_{t}^{n}, \widetilde{x}_{t}^{n,1}, ...)$

Prediction function

1. set $m_t^n := 0$. 2. for i = 1 to $m_{t-1}^{n'}$:

(a) generate r distributed as U[0,1).

(b) if $r < \lambda_r$ set $m_t^n := m_t^n + 1$ and $\tilde{x}^{n,m_t^n} := f(\tilde{x}_{t-1}^{n,i})$

3. generate r distributed as U[0,1).

4. if $r < \lambda_i$ set $m_t^n := m_t^n + 1$ and set $\tilde{x}^{n,m_t^n} := g(t)$

Figure 6: The multi-object prediction algorithm

Initialization function

Prediction function

- Motion evolution: damped constant velocity
- Shape evolution: 1st order auto-regressive process model (ARP)

$$f(\phi, (\mathcal{X}, \mathcal{V}, \mathcal{S})^T) = (\phi, (\mathcal{X}', \mathcal{V}', \mathcal{S}')^T)$$

$$\mathcal{X}' = \mathcal{X} + \lambda_v \mathcal{V} + b_X \omega_X$$

$$\mathcal{V}' = \lambda_v \mathcal{V} + b_X \omega_X$$

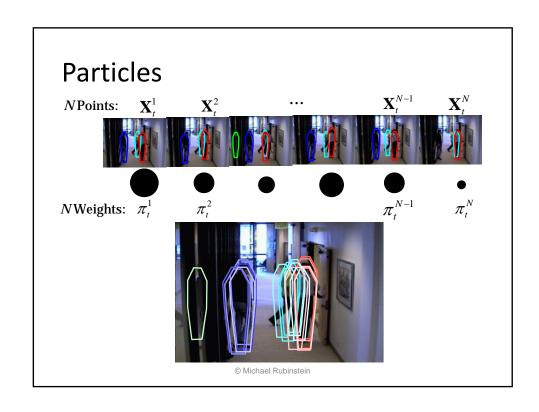
$$\mathcal{S}' = A_S(\mathcal{S} - \overline{\mathcal{S}}) + B_S \omega_S$$

$$\overline{\mathcal{S}} = (\mu_1, \dots, \mu_8)$$

$$B_S = \operatorname{diag}(\rho_1, \dots, \rho_8)$$

$$A_S = \operatorname{diag}(a_1, \dots, a_8)$$

$$\mathbf{X}_{t-1} + 0.8\mathbf{V}_{t-1}$$



Estimate \hat{X}_t

• Denote $\mathbf{M}_{t} = \{\Phi_{1},...,\Phi_{M}\}$ the set of existing unique identifiers

Total probability that object Φ_i exists

$$\begin{aligned} &\text{for } i=1 \text{ to } M_t \\ &\text{(a) compute } \mathcal{M}_t^{\Phi_i} = \{ (n,j) \mid \phi_t^{n-j} = \Phi_i \}. \\ &\text{(b) compute } \Pi_t^{\Phi_i} = \sum_{(n,j) \in \mathcal{M}_t^{\Phi_i}} \pi_t^n. \\ &\text{(c) if } \Pi_t^{\Phi_i} > \underset{\hat{x}_t^{\Phi_i}}{\text{destimate}} & \pi_t^n s_t^{(n,j)} \, / \, \Pi_t^{\Phi_i}. \end{aligned}$$

(particle,target)

Figure 7: The estimation algorithm

© Michael Rubinstein

Results

- N=1000 particles
- initialization samples always generated

Results

 Single foreground model cannot distinguish between overlapping objects – causes id switches

© Michael Rubinstein

Parameters

symbol	meaning						value		
λ_r	object survival probability						0.99		
λ_i	new object arrival probability						0.02		
λ_d	object display threshold						0.8		
δ_e	minimum physical separation between distinct objects (m)						0.5		
δ_B	background likelihood additional covariance factor (grey-levels ²)						100		
τ_B	background likelihood cutoff (grey-levels ⁻⁶)						2.0×10^{-14}		
τ_F	foreground likelihood cutoff (grey-levels ⁻⁶)						3.0×10^{-13}		
b_X	translation process noise (m)						0.11		
		w_f	w_w	w_s	w_h	h	θ	α_w	α_s
$\ln \mu_i$		0.20m	0.22m	0.25m	0.08m	1.80m	0.75	0.60	0.83
dy-state standard deviation σ_i		0.03 m	0.04m	0.04m	0.02m	0.05 m	0.25	0.02	0.02
ocess noise a	ess noise ρ_i		0.002m	0.002m	0.002m	0.003 m	0.05	0.001	0.001

Summary

- The particle filters were shown to produce good approximations under relatively weak assumptions
 - can deal with nonlinearities
 - can deal with non-Gaussian noise
 - Multiple hypotheses
 - can be implemented in O(N)
 - easy to implement
 - Adaptive focus on more probable regions of the state-space

© Michael Rubinstein

In practice

- 1. State (object) model
- 2. System (evolution) model
- 3. Measurement (likelihood) model
- 4. Initial (prior) state
- 5. State estimate (given the pdf)
- 6. PF specifics
 - 1. Importance density
 - 2. Resampling method
- Configurations for specific problems can be found in literature

References

- Beyond the Kalman filter/ Ristic, Arulamplam, Gordon
 - Online tutorial: A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking/ Arulampalam et al 2002
- Stochastic models, estimation and control/ Peter
 S. Maybeck
- An Introduction to the Kalman Filter/ Greg Welch, Gary Bishop
- Particle filters an overview/ Matthias Muhlich

Sequential derivation 1

- Suppose at time k-1, $\{x_{0:k-1}^i, w_{k-1}^i\}_{i=1}^N$ characterize $p(x_{0:k-1} \mid z_{1:k-1})$
- We receive new measurement z_k and need to approximate $p(x_{0:k} \mid z_{1:k})$ using new set of samples
- We choose g such that

$$q(x_{0:k} \mid z_{1:k}) = q(x_k \mid x_{0:k-1}, z_{1:k}) q(x_{0:k-1} \mid z_{1:k-1})$$

And we can generate new particles

$$x_k^i \sim q(x_k \mid x_{0:k-1}^i, z_{1:k})$$

© Michael Rubinsteir

Sequential derivation 2

 For the weight update equation, it can be shown that

$$p(x_{0:k} \mid z_{1:k}) = \frac{p(z_k \mid x_k) p(x_k \mid x_{k-1})}{p(z_k \mid z_{1:k-1})} p(x_{0:k-1} \mid z_{1:k-1})$$

$$\propto p(z_k \mid x_k) p(x_k \mid x_{k-1}) p(x_{0:k-1} \mid z_{1:k-1})$$

And so

$$w_{k}^{i} = \frac{p(x_{0:k} \mid z_{1:k})}{q(x_{0:k} \mid z_{1:k})} = \frac{p(z_{k} \mid x_{k})p(x_{k} \mid x_{k-1})p(x_{0:k-1} \mid z_{1:k-1})}{q(x_{k} \mid x_{0:k-1}, z_{1:k})q(x_{0:k-1} \mid z_{1:k-1})}$$

$$= w_{k-1}^{i} \frac{p(z_{k} \mid x_{k}^{i})p(x_{k}^{i} \mid x_{k-1}^{i})}{q(x_{k}^{i} \mid x_{0:k-1}^{i}, z_{1:k})}$$

Sequential derivation 3

- Further, if $q(x_k | x_{0:k-1}, z_{1:k}) = q(x_k | x_{k-1}, z_k)$
- Then the weights update rule becomes

$$w_{k}^{i} = w_{k-1}^{i} \frac{p(z_{k} \mid x_{k}^{i}) p(x_{k}^{i} \mid x_{k-1}^{i})}{q(x_{k}^{i} \mid x_{k-1}^{i}, z_{k})}$$
(3)

(and need not store entire particle paths and full history of observations)

• Finally, the (filtered) posterior density is approximated by $p(x_k \mid z_{1:k}) \approx \sum_{i=1}^{N} w_k^i \delta(x_k - x_k^i)$

© Michael Rubinstein

Choice of importance density

- Choose q to minimize variance of weights
- Optimal choice: $q(x_k \mid x_{k-1}^i, z_k)_{opt} = p(x_k \mid x_{k-1}^i, z_k)$ $\Rightarrow w_k^i \propto w_{k-1}^i p(z_k \mid x_{k-1}^i)$
 - Usually cannot sample from q_{opt} or solve for w_k^i (in some specific cases is works)
- Most commonly used (suboptimal) alternative: $q(x_k \mid x_{k-1}^i, z_k)_{opt} = p(x_k \mid x_{k-1}^i)$ $\Rightarrow w_k^i \propto w_{k-1}^i p(z_k \mid x_k^i)$
 - i.e. the transitional prior

Generic PF

- Resampling reduces degeneracy, but new problems arise...
- 1. Limits parallelization
- 2. Sample impoverishment: particles with high weights are selected many times which leads to loss of diversity
 - if process noise is small all particles tend to collapse to single point within few interations
 - Methods exist to counter this as well...