Tracking
with focus on the particle filter
(part 11)

Michael Rubinstein
IDC

Last time...

e Background
— State space
— Dynamic systems
— Recursive Bayesian filters

— Restrictive cases
¢ Kalman filter
* Grid-based filter

— Suboptimal approximations
* Extended Kalman filter
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This talk

e Particle filtering
— MC integration
— Sequential Importance Sampling (SIS)
— Resampling
— PF variants
e Multiple-target tracking

— BraMBLe: A Bayesian Multiple-Blob Tracker/ Isard,
MacCormick
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Dynamic System
e ) — ) — ) -+
el

Zyi1
State equation: x, = f, (x_,

Stochastic diffusion

Vi)
X, state vector at time instant k

f, state transition function, f_:R™ xR™
Vv, i.i.d process noise

Observation equation: z, =h, (x,|w,)

Z, observations at time instant k
h, observation function, h, :R™ xR — R™
W, i.i.d measurement noise
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Recursive Bayes filter

P(X [ Z4)

Sample space

e Prediction:
P(Xy | Zyyr) :I PO [ X ) Py | Zy)AX | @
e Update:

P(Z, [ %) P(X | 24 4) @
p(zk | Zl:k—l)

p(zk | Zl:K—l) :I p(zk | Xk) p(Xk | Zl:k—l)dxk

P(X | 2) =
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Particle filtering

e Many variations, one general concept:

Represent the posterior pdf by a set of randomly chosen
weighted samples (particles)

Posterior

TR

Sample space

¢ Randomly Chosen = Monte Carlo (MC)

* Asthe number of samples become very large — the
characterization becomes an equivalent representation of the
true pdf
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Particle filtering

e Compared to methods we’ve mentioned last time

— Can represent any arbitrary distribution
— multimodal support
— Keep track of many hypotheses as there are particles

— Approximate representation of complex model
rather than exact representation of simplified model

* The basic building-block: Importance Sampling
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Monte Carlo integration

e Evaluate complex integrals using probabilistic
techniques

* Assume we are trying to estimate a
complicated integral of a function f over some

domain D:
F = jD f (X)d%

e Also assume there exists some PDF p defined
over D
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Monte Carlo integration

e Then
F=[ f(xdx=]

e But
f(x) . (%)
dX = E
by oz PO {()}X i
e This is true for any PDF p over D!
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Monte Carlo integration

* Now, if we have i.i.d random samples X,,..., X
sampled from p, then we can approximate

f (X)
El 22| b
p(X) y

><l

1 N
_WZ;

e Guaranteed by law of large numbers:

><l

N — oo, F —>E{f( )} F
(%)

© Michael Rubinstein




Importance Sampling (IS)

* What about p(x)=07?

* If pisverysmall, f/p can be arbitrarily large,
‘damaging’ the average
* Design p such that f/p is bounded

* Rule of thumb: take p similar to f as possible

Importance or proposal
density

e The effect: get more samples in ‘important’
areas of f, i.e. where f is large
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Convergence of MC

integration
e Chebyshev’s inequality: let X be a

Pafnuty Lvovich

random variable with expected value p "Cicl ehov
and std o. For any real number k>0,

1
Pr{| X —u |~ kG}SF

e For example, for k =+/2, it shows that at least

half the values lie in interval (u—+20,u++/20)
f(X) . . 1 &
e Let y,=——=, then MC estimatoris F,=—>y,
p(x) Ny
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Convergence of MC integration
* By Chebyshev’s,
VIR Y
Pr{l Fy —ER | —5* | }<0 (k =1/5)

%
> Pr{|F,-F |2%(%) }<o

* Hence, for a fixed threshold, the error decreases
at rate 1/\/N
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Convergence of MC integration

* Meaning
1. To cut the errorin half, it is necessary to
evaluate 4 times as many samples

2. Convergence rate is independent of the
integrand dimension!

*  On contrast, the convergence rate of grid-based
approximations decreases as N, increases
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IS for Bayesian estimation
ECF(X)) = [ f (X )P0y | 221 Ay

p(XO:k | Z1:k)
= | f (X ) ———(Xy | Z,,, )AX,.
;[ ( O.k) q(x0:k | Zl:k) ( 0:k | ]_k) 0:k

* We characterize the posterior pdf using a set of
samples (particles) and their weights

{X(i):k ! WL}ll\il
* Then the joint posterior density at time k is
approximated by

N . .
p(XO:k | Z1:k) ~ ZWL5(XO:k - X(IJ:k)
i=1
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IS for Bayesian estimation

e We draw the samples from the importance
density q(x., |z,) withimportance weights
Wi oc p(XO:k | Z1:k)
q(XO:k | Z1:k)

e Sequential update (after some calculation...)

Particle update Weight update
X ~ A% | %10 Z) p(z, |X1I<) p(XL | X.1)
9% | X1 Z4)

i
W, =W,
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Sequential Importance Sampling (SIS)

kXL 1 Wll(}llil] - SIS[{XIi(—l’ W|i<—1}i’11' Zy ]
e FORi=1:N
— Draw Xli< ~ q(x, |X|i<—1’zk) ) o
P(zi 1 %) (X | Xict)
a(Xy [ X0 24)

— Update weights w, =w; ,
* END
* Normalize weights
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State estimates

e Any function f(x,) can be calculated by
discrete pdf approximation

Elf ()] 2w f (x)

Robust mean
* Example:

— Mean (simple average)
— MAP estimate: particle with
largest weight

— Robust mean: mean within
window around MAP estimate

MAP Mean
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Choice of importance density

..... IR

State Space
Sample from prior belief q(x) (for instance, the uniform

distribution) /Wﬂ“m“ mmmmmm"
e “lTT'l‘I‘I'f'I'I'I'I'H'IHmuH ”“"m -------

State Space

Compute importance weights, w(x) = p(x) /q(x)

Hsiao et al.
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Choice of importance density

¢ Most common (suboptimal): the transitional
prior

Q(Xk | X|i<—1! Zk) = p(Xk | X|i<—1)

P(z | %) POy | Xic )

ol =W, p(z | X;)
A(Xy [ X0 24) e

i
SW, =W,

Wi 1 P(Z, | %)
NS

D Wil P(Z 1K)
=

Grid filter weight update: Wli<|k =
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The degeneracy phenomenon

e Unavoidable problem with SIS: after a few
iterations most particles have negligible
weights
— Large computational effort for updating particles

with very small contribution to p(X, | Z,,)

* Measure of degeneracy - the effective sample

size:

1
Nt = v 7
Zi:l(wk)

— Uniform: N = N, severe degeneracy: N, =1
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Resampling

e The idea: when degeneracy is above some
threshold, eliminate particles with low
importance weights and multiply particles

with high importance weights

{0 W >4

* The new set is generated by sampling with
replacement from the discrete representation
of p(x1z,) suchthat Pr{x" = x/}=w|

© Michael Rubinstein
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Resampling

", wid, |= RESAMPLEX, wi 3, |
* Generate N i.i.d variables u, ~U[0,]]
e Sort them in ascending order

e Compare them with the cumulative sum of
normalized weights

- T o Risticetal
3 © Michael Rubinstein

Resampling

e Complexity: O(NlogN)
— O(N) sampling algorithms exist

Py - -

State Space

L

State Space

Hsiao et al.
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Generic PF

[{Xli , Wli< }i'\il] = PF[{XfH, W|i<—1}iN=1v Z, ]
* Apply SIS filtering x;, w3, |= SIS w1, 2, |

* Calculate Ny

* IF Nef‘f<Nthr
o loxiwidY, |= RESAMPLE)X w3, |
« END
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Generic PF

i=1,...,N=10 particles
i -1
o o oo o coo o o {Xk,N }

Uniformly weighted measure
Approximates P(X, | Z;, ;)

Compute for each particle Ty i ; 1‘. .
its importance weight to ° L] ° {X;( , Wk}
Approximate  P(X, | Z,, ) i g £
i* -1
(Resample if needed) S {Xk N }
Project ahead to approximate 1 l\) A\ Z\ i Z i -1
R {Xk+l’ N }

p(xk+l | Z].'k )

X Z, & !
p( k+1| :Lk+1) L {XII(+1’ Wk+l}

Van der Merwe et al.
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PF variants

Sampling Importance Resampling (SIR)
Auxiliary Sampling Importance Resampling

(ASIR)

Regularized Particle Filter (RPF)
Local-linearization particle filters
Multiple models particle filters (maneuvering

targets)

Sampling Importance Resampling (SIR)

e A.K.A Bootstrap filter, Condensation

* Initialize {x}, W, }'; from prior distribution X,
* Fork>0do

Resample {x. ,,w. ,}", into {x‘:_l,ﬁ}?_l

Predict x, ~ p(X | X _, =X ,)
Reweight w, = p(z, | X, = X.)
Normalize weights
Estimate X _(for display)
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Intermission

Questions?

© Michael Rubinstein

Multiple Targets (MTT/MOT)

* Previous challenges
— Full/partial occlusions
— Entering/leaving the scene
* And in addition
— Estimating the number of objects

— Computationally tractable for multiple simultaneous
targets

— Interaction between objects

— Many works on multiple single-target filters

© Michael Rubinstein
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BraMBLe A Bayesian Multlple-
Blob Tracker E

M. Isard and J. MacCormick s

Compaq Systems Research Center

ICCV 2001

Some slides taken from Qi Zhao
Some images taken from Isard and MacCormick

BraMBLE

 First rigorous particle filter implementation with
variable number of targets

* Posterior distribution is constructed over possible
object configurations and number

» Sensor: single static camera
» Tracking: SIR particle filter

e Performance: real-time for 1-2 simultaneous
objects

© Michael Rubinstein
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The BraMBLe posterior

p(Xklzrk)
N

State at frame k Image Sequence

Number,
Positions,
Shapes,

\elocities,
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State space

* Hypothesis configuration:
X, = (M, Xe, X2, X1
* Object configuration: N, =1+13M .
X = (e, Xic Vi, Sy)

identifier shape
S=(w,,w,,w,W,,h,6,a, )
velocit
V=(v,.v,)
position

X=(x,2)

© Michael Rubinstein
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Object model

e A person is modeled as a generalized-

cylinder with vertical axis in the world
coords

Calibrated
S=(wW, W, W, W, h6a, ) P Camera
> WA 7
(6, y,) ={W; .0),(W,0,a,0), (W6, ach),(w, ) } |

© Michael Rubinstein

Observation likelihood p(z, | X,)

* Image overlaid with rectangular Grid (e.g. 5

© Michael Rubinstein
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Observation likelihood p(z, | X,)

e The response values are assumed
conditionally independent given X

p(Z1X)=T], p(z, 1) =TT, Pz, I1,)

i
wnN o

Q a @ «
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Appearance models

* GMMs for background and foreground are
trained using kmeans

V

1
p(z, 1, ZO)ZKZkN(yg,zg +AL)+ 1

1
P(zq [, io):?ZkN(ﬂEvzi)"‘TF

© Michael Rubinstein

K=4
K =16
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Observation likelihood

) p(zg|lg=0)J
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System (prediction) model p(x, | X,,)

* The number of objects can change:

— Each object has a constant probability 4, to remain in
the scene.

— At each time step, there is constant probability A,
that a new object will enter the scene.

¢ th—ll = (mtrili itr1111) - th = (mtn' itr]’li---)

1. set )’ := (.
— 2. fori=1tom:
Predlc_tlon (a) generate r distributed as I7[0, 1).
function (b) if r < A, set i)' = m; + 1 and Fremy = Initialization
Fi ;T_‘l ) function

3. generate r distributed as U/[0. 1).
4. if v < A; setmny =y + 1 and set g = glt)

Figure 6: The multi-object prediction algorithm
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Prediction function

* Motion evolution: damped constant velocity

* Shape evolution: 1%t order auto-regressive process
model (ARP)

[ (X V. 8T) = (o.(X. V.87
(1” =X + A l-V + b_\' Wy
V= AV +bywy
Q——O—F

§' = Ag(S - 8) + Bsws
s( ) Sws X, l V.,
S=(jry..... i)
Bg = diag(py.. ... s) Xt 1 +0'8V1 1
_'1_\_-.' = (1iag(nl ..... f!g)
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Particles

N Points: Xl X2 X

:;{w" B T _. ni»-1

N Weights: ﬂtl 7Z'tz 7z'tN -+ ﬂ'tN

© Michael Rubinstein
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Estimate X,

e Denote M, ={®,,..,®,} the set of existing
unique identifiers

Total probability that
object @, exists =

fori =1 to M,

(ay-computeAdr = {(n. ) o= P,).
(b) computel]}"* =3 1

(njyemfi it -

" i ; .
(c) ifII" > Ay estimate W e
o7 IR )

(n.gyemy

Figure 7: The estimation algorithm
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(particle,target)

Results

* N=1000 particles
* initialization samples always generated

© Michael Rubinstein
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Results

e Single foreground model cannot distinguish
between overlapping objects — causes id

switches

© Michael Rubinstein

Parameters

symbol  meaning
Ar object survival probability
A new object arrival probability
A object display threshold

8 minimum physical separation between distinct objects (m)

dp backeround likelihood additional covariance factor (grey-levels?)

i5:] background likelihood cutoff (grey-levels—%)

" foreground likelihood cutoff (grey-levels—9)

bx translation process noise (m)

wy Wy w, wy, h

mean jt; 0.20m 0.22m 0.25m 0.08m 1.80m
steady-state standard deviation ; 0.03m  0.04m  0.04m  0.02m  0.05m
process noise p; 0.003m 0.002m 0.002m 0.002m 0.003m

© Michael Rubinstein

value
0.99
0.02
0.8
0.5
100
2.0 x 1071
3.0 x10-18
0.11
2 Oy,
0.75 0.60
0.25 0.02
0.05 0.001

g
0.83
0.02

0.001
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Summary

* The particle filters were shown to produce good
approximations under relatively weak
assumptions
— can deal with nonlinearities
— can deal with non-Gaussian noise
— Multiple hypotheses
— can be implemented in O(N)

— easy to implement

— Adaptive focus on more probable regions of the
state-space

© Michael Rubinstein

In practice

State (object) model

System (evolution) model
Measurement (likelihood) model
Initial (prior) state

State estimate (given the pdf)

e e

6. PF specifics
1. Importance density
2. Resampling method

Configurations for specific problems can be found in
literature

© Michael Rubinstein

24



Thank you!
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Sequential derivation 1

e Suppose at time k-1, {Xé):k_l,wik_l}iN:1 characterize

p(xo:k—l | Z1:k—1)
* We receive new measurement Z, and need to
approximate p(x,, |z, ) using new set of samples

* We choose g such that

A% | Zx) = A(X [ Xoge 11 Ziy ) AKX 1 | Zie 1)

And we can generate new particles

X|I< - q(Xk | X(I):k—u Zl:k)

© Michael Rubinstein

Sequential derivation 2

e For the weight update equation, it can be
shown that

P(Xox | Zux) = Pz [ %) PO | %)

p(XO:k—l | Zl:k—l)

P(Zy | 2y 1)
o P(Z, | %) PX [ X 1) PCoe s | 23 4)
And so
Wi = P(Xgu | Z15) _ P(zi | %) P(xi | X1) P(Xose s | Zisa)
A(Xox | Z1x) A% | Xox-1s Zu ) A Koxe 1 | Zue 1)

_wi P@AX)POG %)
T k-l i i
q(xk | XO:k—l’ Z1:k)

© Michael Rubinstein
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Sequential derivation 3

o Further, if a0 | Xox1r Zu) = A(X, | X1, 24)

* Then the weights update rule becomes

o —w, PEIX) PO IX)
q(xk | Xk—l’ Zk)

©)

(and need not store entire particle paths and full history of
observations)

e Finally, the (filtered) posteriomdensity is
approximated by p(x, | z,) > ws(x - )

i=1

© Michael Rubinstein

Choice of importance density

e Choose g to minimize variance of weights
* Optimal choice: q(x, | Xli—l’_zk)opt = p_(xk |X|i<—1’ Z,)
= W o W, P(Z, [ X )
— Usually cannot sample from g, or solve for w,
(in some specific cases is works)
¢ Most commonly used (suboptimal)
alternative: A4 | X1 2o = P | %)
= W o W1 P(Z, [ %)

— i.e. the transitional prior

© Michael Rubinstein
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Generic PF

e Resampling reduces degeneracy, but new
problems arise...

1. Limits parallelization

2. Sample impoverishment: particles with high
weights are selected many times which leads
to loss of diversity

— if process noise is small — all particles tend to
collapse to single point within few interations

— Methods exist to counter this as well...

© Michael Rubinstein
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