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Motivation
Feature vectors

Pattern recognition
Clustering
Metrics (distances), similarities

High dimensionality
Images – large windows
Text – large vocabulary
…

Drawbacks
Computation
Noise
Sparse data
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Dimensionality reduction 
methods

Feature selection
Adapted to nature of data. E.g. text:

Stemming (going go, Tom’s Tom)
Remove low frequencies

Not generally applicable
Feature transformation / Multidimensional scaling

PCA
SVD
…
Computationally costly

Need for faster, generally applicable method
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Random mapping

Almost as good: Natural similarities / 
distances between data vectors are 
approx. preserved
Reasoning

Analytical
Empirical
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Related work
Bingham, Mannila, ’01: results of applying RP on 
image and text data
Indyk, Motwani ’99: use of RP for approximated NNS, 
a.k.a Locality-Sensitive Hashing
Fern, Brodley ’03: RP for high dimensional data 
clustering
Papadimitriou ’98: LSI by random projection
Dasgupta ’00: RP for learning high dimensional 
Gaussian mixture models
Goel, Bebis, Nefian ’05: Face recognition experiments 
with random projection 

Thanks to Tal Hassner
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Related work

Johnson-Lindenstrauss lemma (1984):
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Johnson-Lindenstrauss Lemma

Any n point set in Euclidian space can be 
embedded in suitably high (logarithmic in 
n, independent of d) dimension without 
distorting the pairwise distances by more 
that a factor of )1( ε±
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Random mapping method
Let 
Let R be dxn matrix of random values 
where ||ri||=1 and each rij∈R is normally 
i.i.d with mean 0
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Random mapping method
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Similarity

( , ) cos
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Random mapping method
How will it affect the mutual similarities
between the data vectors?
As R is more orthonormal the better. 
however 
R is generally not orthogonal
Hecht-Nielsen [4]: in a high dimensional 
space, there exists a much larger number of 
almost orthogonal than orthogonal directions
So, R might be sufficiently good 
approximation for a basis
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Transformation of similarities

Similarity measure:

Properties of  ε:

( , ) cos   for unit vectors
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Recall

Pearson correlation coefficient

Sample correlation 

Geometric interpretation

,
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Recall
Fisher (r2z) Transformation

Variance of z is estimate of the variance of the 
population correlation

Let X, Y normally distributed
and let r be correlation of sample of size N from X,Y

1 1log
2 1

then  is approximately normally distributed with
1standard deviation 
N-3
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Transformation of similarities

Properties of ε:
εij is an estimate of the correlation coefficient 
between two normally i.i.d random variables ri
and rj

2
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Transformation of similarities
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Transformation of similarities

Statistical properties
Let , ,  and assume ,  are normalized
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Transformation of similarities
Variance of δ:
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Transformation of similarities
Variance of δ:
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Transformation of similarities
Variance of δ:

That is, the distortion of the inner products as a
result of applying random mapping is 0 on average
and its variance is proportional to the inverse of
the dimensionality of the reduced space (x 2)
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( ) 1 by Cauchy-Schwartz ( ,  normalized)
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Sparsity of the data
Say we constrain the input vectors to have L 1’s, 
and say K of those occur in same position in both 
vectors

( ) 1
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dimenstions, each with value 

=[1+( ) 2 ] [1 ( ) 2( )]

1         =[1 ( ) 2( ) ]

T

k k k k
k k

K Kn m
LL L
n m

L
K Kn m n m
L L

K K
L L L

δ ε ε

ε

σ σ σ

σ

−

⇒ = =

⇒ − = + −

+ −

∑ ∑

Sparser data smaller variance of error!
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Till now

1
Error matrix

Expected = 0
Variance proportional to 1/d

Added distortion
Expected = 0
Variance is O(2/d)

Behaves better on sparse data

T T Tx y n R Rm=
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Self Organizing Maps



© Miki Rubinstein

Self Organizing Maps
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Self Organizing Maps

Kohonen Feature Maps
Usually 1D or 2D
Each map unit associated with an Rn

vector
Unsupervised, Single layer, Feed-
Forward network
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SOM algorithm
Initialization

Random
Pattern

For each sample vector n
Find winner, or BMU

Update rule:  

Where hc(n),i is the 
neighborhood kernel and α(t) is 
the learning rate factor

( ),( 1) ( ) ( ) ( )[ ( )]i i c n i im t m t h t t n m tα+ = + −

( ) arg min{|| ||}i
i

c n n m= −
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SOM visualization

wsom
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Back to Random Mapping

SOM should not be too sensitive to 
distortions by random mapping

Small neighborhoods in Rn will be mapped 
to small neighborhoods in Rd will 
probably be mapped to single MU or a set 
of close-by MUs
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WEBSOM document 
organizing system

Vector space model (Salton 1975)
Vectors are histograms of words

i’th element indicates (function of) frequency of 
the i’th vocabulary term in the document 

Direction of vector reflects doc context
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WEBSOM – example?

http://websom.hut.fi/websom/comp.ai.neural-nets-new/html/root.html
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WEBSOM – experiment setup
Intput

18000 articles
20 Usenet newsgroups
Different topic areas

Vectorizing
After removing outliers n = 5781
Each word weighted entropy based

SOM
768 MUs
MUs labeled according to dominated group

Separability measure
Percentage of articles falling into MU labeled with their own class 
as majority

7 experiments for each dimension
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WEBSOM - results
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heuristics
Distance metric:

=  expected norm of projection of unit vector to 
random subspace through the origin (JL scaling term)
Image data

Constructing R:
Set each entry of the matrix to an i.i.d. N(0,1) value
Orthogonalize the matrix using the Gram-Schmidt 
algorithm
Normalize the columns of the matrix to unit length

1 2 1 2|| || / || ||x x n d Rx Rx− ⇒ −
/n d
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heuristics

Achlioptas [2]:
Simpler distributions that are JL compatible

Only 1/3 of the operations

1     with probability 1/6
3 0       with probability 2/3

1     with probability 1/6
ijr

+⎧⎪= ⋅⎨
⎪−⎩

1      with probability 1/2     
1      with probability 1/2ijr +⎧= ⎨−⎩
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RP vs. SVD - Bingham [10]

n = 5000
2262 newsgroup documents
Randomly chosen pairs of data vectors 
u, v
Error = uv – (Ru)(Rv)
95% confidence intervals over 100 pairs 
of (u,v)
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RP vs. SVD - Bingham [10]
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RP on Mixture of Gaussians

data from a mixture of k Gaussians can be 
projected into O(logk) dimensions while still 
retaining the approximate level of separation 
between the clusters

Projected dimension independent of number of 
points and original dimension
Empirically shown for 10lnk
Decision of reduced dimension is highly studied

Dasgupta [9] – for further details!



© Miki Rubinstein

RP on Mixture of Gaussians

The dimension is drastically reduced 
while eccentric clusters remain well 
separated and become more spherical
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RP ensembles – Fern [7]

Experience of distorted, unstable clustering 
performance
Different runs may uncover different parts of 
the structure in the data that complement 
one another
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RP ensembles
Multiple runs of RP + EM: 

Project to lower subspace d
Use EM to generate a probabilistic model of a mixture of k 
Gaussians

Average the Pijs across n runs
Generate final clusters based on P

Can iterate of different (reduced) subspaces
Fern [7] - for more details!

1
( | , ) ( | , )
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ij
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P P l i P l jθ θ θ
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Face recognition with RP –
Goal [11]

Training set: M NxN vectors (each represents a 
face)

Algorithm:
1. compute average face:

2. Subtract mean face from each face: 

3. Generate random operator R
4. Project normalized faces to random subspace:

1

1 M

i
iM =

Ψ = Γ∑

i iΦ = Γ − Ψ

i iw R= Φ
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Face recognition with RP

Recognition:
1. Normalize
2. Project to same random space
3. Compare projection to database
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Face recognition with RP

Face representations need not be 
updated when face database changes
Using ensembles of RPs seems 
promising
Goel [11] – for more details!



© Miki Rubinstein

Face recognition with RP –
example results
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Conclusions
Computationally much simpler

k data vectors, d << N
RP: O(dN) to build, O(dkN) to apply

If R has c nonzero entries: O(ckN) to apply
PCA: O(kN2)+O(N3)

Independent of the data
Has been applied on various problems and shown 
satisfactory results:

Information retrieval
Machine learning
Image/text analysis
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Conclusions

Computation vs. Performance
Bad results?
Applying Johnson-Lindenstrauss on 
Kaski’s setup yields k~2000 (?)
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?

Sanjoy Dasgupta
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