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i Motivation

= Feature vectors
= Pattern recognition
= Clustering
= Metrics (distances), similarities

= High dimensionality
= Images — large windows
= Text — large vocabulary

= Drawbacks
= Computation
= Noise
= Sparse data
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Dimensionality reduction
methods

s Feature selection

= Adapted to nature of data. E.g. text:
= Stemming (going - go, Tom’s > Tom)
= Remove low frequencies

= Not generally applicable

= Feature transformation / Multidimensional scaling
= PCA
= SVD

= Computationally costly

=> Need for faster, generally applicable method
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i Random mapping

= Almost as good: Natural similarities /
distances between data vectors are
approx. preserved

= Reasoning
= Analytical
=« Empirical
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i Related work

= Bingham, Mannila, '01: results of applying RP on
Image and text data

= Indyk, Motwani '99: use of RP for approximated NNS,
a.k.a Locality-Sensitive Hashing

= Fern, Brodley '03: RP for high dimensional data
clustering

= Papadimitriou '98: LSI by random projection

= Dasgupta '00: RP for learning high dimensional
Gaussian mixture models

= Goel, Bebis, Nefian '05: Face recognition experiments
with random projection

= [ hanks to Tal Hassner
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i Related work

m Johnson-Lindenstrauss lemma (1984):

forany 0 < & <1 and any integer n, let k be
a positive integer such that

4Inn
> =0(&Inn
e?12-£°13 ( ) _
Then for any set P of n points in R?, there is
amap f : R — R" such that for all p,g e P

A=)l p-al’ <l f(p)- f(@IF<A+e)ll p-qlf

= Dasqgupta [3]
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i Johnson-Lindenstrauss Lemma

= Any n point set in Euc
embedded Iin suitably

idian space can be
nigh (logarithmic in

n, /ndependent of d) dimension without
distorting the pairwise distances by more

that a factor of (1t¢)
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i Random mapping method

s Let XeR"

= Let #be dxn matrix of random values
where ||r;]|=1 and each r;eR is normally
I.I.d with mean O

Yioar = Rioe Xm0 <<N
n

— Z I X
i=1
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i Random mapping method

(1) (0) (0) (Xl\

0 1 0 X,
X Pt L X =] =X
0/ 0, 1) Xy
/rll /r12\ /rln\ (yl\

r r r

Iy 4 2:2 X, oot 2:n X = y:2 _y
\Jar ) a2 ) \Tan / \Ya /
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i Similarity

. u-v
sim(u,v) =cosé =

ull vl
if ||ull=1v|=1

then cos@=u-v
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i Random mapping method

s How will It affect the mutual similarities

b

etween the data vectors?

s As /IS more orthonormal =2 the better.

N

owever

= R is generally not orthogonal

s H
S
a

B S

echt-Nielsen [4]: in a high dimensional
nace, there exists a much larger number of
most orthogonal than orthogonal directions

0, A might be sufficiently good

appm)(/maz‘/on for a basis
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i Transformation of similarities

= Similarity measure:

sim(u,v) =cosé = =u-v for unit vectors

u-v
[ull fiv]]
T TpT n
X'y=n R Rm wherenmeR

R'R=1+¢ where ¢, =r'r, fori= jand g =0

= Properties of «: d
" E(gij):E(riTrj):E(Zrikrjk]:Z[E(rik)E(rjk)}:O

d
k=1 k=1
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i Recall

s Pearson correlation coefficient
Cov(X,Y)

Oy Oy

Pxy =

= Sample correlation
_r = Y[(Xi _7)(yi _7)]
N N D 0%

= Geometric interpretation

5

Cos@ =

Xy
VX XYy
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i Recall

= Fisher (r2z) Transformation

Let X, Y normally distributed
and let r be correlation of sample of size N from X,Y

1 1+r
z=—log, —
2 1-r

then z Is approximately normally distributed with

standard deviation
N-3

= Variance of z is estimate of the variance of the
population correlation
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Transformation of similarities

= Properties of :

= g; IS an estimate of the correlation coefficient
between two normally i.i.d random variables r;
and r;

1. 1+¢;

5 In——= is approximately normally distributed

1—5ij

1

with variance o> =——~1/d for large d

— asd 5o, R'TR—> |
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i Transformation of similarities

-1 —-08 -06 -04-02 0 02 04 06 08 1
Distribution of €;;




i Transformation of similarities

= Statistical properties
Letn,meR", and assume n,m are normalized

X y=n"R'Rm=n"(l +&)m=n"m+n'em

=n'm+> gynm  (recall e, =0)
k=l

let 5= gynm

k =l

- E(5):E(Z‘gklnkmljzznkmlE(‘gkl):O

€5 k=l
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i Transformation of similarities

= Variance of 9&:

0, =E(6°) = (E(8))" = E[(X, anem (X £5gNM;)] -0 =

k=l p=q

=> > nmnmE[&.&,]

k=l p=q

E[gklgpq] =E {Z rkirliz Vi rqj:| =E {ZZ N li T rqj:|

Ele,e,,]# 0 only for (k=pandl=q)or(k=qandl=p)

denote ¢, = (k = p,I =q),c, =(k=q,I = p)
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i Transformation of similarities

= Variance of 9&:

= Z nim’o? + Z nmnmuo?  (corresponds to c,, ¢, respectively)
k;tl k#l

anZm +Zn menm}
E E

an(l_mlf)+znkmk£2nlml_nkmkﬂag ([In]l=1|Im{=1)

|k k |

1—an2mlf+(anmk)2—2nk2mf}a§

| k k k

1+(Z Ny mk) 22 MM :|©‘K/||k| Rubinstein
i k

N




i Transformation of similarities

= Variance of &:

(Z n,m, ) <1 by Cauchy-Schwartz (n,m normalized)
K
— G§ < 2052 ~2/d

That is, the distortion of the inner products as a
result of applying random mapping is O on average
and i1ts variance is proportional to the inverse of
the dimensionality of the reduced space (x 2)
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i Sparsity of the data

= Say we constrain the input vectors to have L 1's,

and say K of those occur in same position in both
vectors

K K
JLJL L
Now, let's normalize n,m and we get K corresponding
-1
dimenstions, each with value (\/E )

—n'm=

K K
= o=[1+(E 0, - 25 wnlo? =[1+ (1 -2l
K K

(K o Ki1o
—[1+(f) Z(L)L]Gg

- Sparser data = spgller variance of error!



= Error matrix
= Expected =0
= Variance proportional to 1/d

= Added distortion
= Expected =0
= Variance is O(2/d)

= Behaves better on sparse data
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Self Organizing Maps
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i Self Organizing Maps




i Self Organizing Maps

= Kohonen Feature Maps
= Usually 1D or 2D

= Each map unit associated with an R"
vector

= Unsupervised, Single layer, Feed-
Forward network
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SOM algorithm

= Initialization
= Random
s Pattern

= For each sample vector n
= Find winner, or BMU

c(n) =argmin{|[n—m, ||}
= Update rulle:
m; (t+1) = m;(t) + h,; (D () [n—m(t)]

&000

o e modes”
Where h.,; Is the
nelghborhood kernel and a(t) is oo OONIOEREOO ..
the learning rate factor gvemot %
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i SOM visualization

m WWSOM
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i Back to Random Mapping

= SOM should not be too sensitive to

distortions by random mapping
= Small neighborhoods in R" will be mapped
to small neighborhoods in R? =» will

probably be mapped to single MU or a set
of close-by MUs
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WEBSOM document
i organizing system

= Vector space model (Salton 1975)

= Vectors are histograms of words

= I'th element indicates (function of) frequency of
the I'th vocabulary term in the document

= Direction of vector reflects doc context

Document j Map of the document
collection

ki sk Vector

r— Document

s ™ encoding [ 1

'\:.':I.!I': rl.l'?"..lI'l. Map |ng
?__E_F;-F_-;:ﬂ-f function
-:;-rT aaaaa -

NNT




i WEBSOM — example?

http://websom.hut.fi/websom/comp.ai.neural-nets-new/html/root.html
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WEBSOM — experiment setup

= Intput
= 18000 articles
= 20 Usenet newsgroups
= Different topic areas
= Vectorizing
= After removing outliers > n = 5781
= Each word weighted entropy based
= SOM
= 768 MUs
= MUs labeled according to dominated group
= Separability measure
= Percentage of articles falling into MU labeled with their own class
as majority
= 7 experiments for each dimension
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i WEBSOM - results
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heuristics

= Distance metric: || X —X, |=>vn/d || RX, = RX, ||

= VN/d = expected norm of projection of unit vector to
random subspace through the origin (JL scaling term)

= Image data

= Constructing R:
= Set each entry of the matrix to an i.i.d. M0,1) value

= Orthogonalize the matrix using the Gram-Schmidt
algorithm

= Normalize the columns of the matrix to unit length
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i heuristics

= Achlioptas [2]:
= Simpler distributions that are JL compatible

. +1  with probability 1/2
"7 1-1  with probability 1/2

(+1  with probability 1/6
r,=+3-10  with probability 2/3
(-1 with probability 1/6

= Only 1/3 of the operations
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i RP vs. SVD - Bingham [10]

= N = 5000
= 2262 newsgroup documents

= Randomly chosen pairs of data vectors
u, v
= Error = uv — (Ru)(Rv)

= 95% confidence intervals over 100 pairs
of (u,v)
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RP vs. SVD - Bingham [10]

Average error using RP and SVD
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i RP on Mixture of Gaussians

= data from a mixture of k Gaussians can be
projected into O(logk) dimensions while still
retaining the approximate level of separation
between the clusters

= Projected dimension independent of number of
points and original dimension

=« Empirically shown for 10Ink
= Decision of reduced dimension is highly studied

= Dasgupta [9] — for further details!

© Miki Rubinstein



i RP on Mixture of Gaussians

= The dimension Is drastically reduced
while eccentric clusters remain well
separated and become more spherical



RP ensembles — Fern [7]

= EXxperience of distorted, unstable clustering
performance

= Different runs may uncover different parts of
the structure in the data that complement

one another

w (a)Scatter plot of the mixture of Gaussians

= 20 =" ]
PCA

(b)Clustering result of a single RP+EM

(c)Clustering result of a single RP+EM

Cluster 1

1 1 1 1 1 1
—30 —20 -10 10 20 )

[
PCA




i RP ensembles

= Multiple runs of RP + EM:
= Project to lower subspace d

= Use EM to generate a probabilistic model of a mixture of k
Gausslans

! =Y P(11.6)P(] .6)

= Average the Pijs across n runs
= Generate final clusters based on P

= Can iterate of different (reduced) subspaces
= Fern [7] - for more details!
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Face recognition with RP —

i Goal [11]

= Training set: M NxN vectors (each represents a

face)
Algorithm:
1. compute average face:M
Y= ﬁZri
2. Subtract mean face fr(')?n each face:
O =T -Y¥

5. Generate random operator R
2. Project normalized faces to random subspace:
W, = RO,
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i Face recognition with RP

Recognition:

1. Normalize

2. Project to same random space
3.  Compare projection to database
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i Face recognition with RP

= Face representations need not be
updated when face database changes

= Using ensembles of RPs seems
promising
= Goel [11] — for more detalls!
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Face recognition with RP —
example results

Training Set with Different Subjects as in the Gallery set
1|]:| | | I 1 I I I

. R
wimdaf s Bty S D0
) i b LR I'|Iv )

Recognition Rate
S8

0k ’ ORL database:

F Training Set: 130 Images
0} Gallery Set: 108 Images
'II' Test Set: 162 Images
20 RP Majority Voting
. ---- RP
10 — PCA

0 20 40 B0 80 100 120 140 160 180
Dimensions



Conclusions

= Computationally much simpler
= Kk data vectors, d << N
= RP: O(dN) to build, O(dkN) to apply
= If R has c nonzero entries: O(ckN) to apply
= PCA: O(kN?)+O(N?3)
= Independent of the data

= Has been applied on various problems and shown
satisfactory results:
= Information retrieval
= Machine learning
= Image/text analysis
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i Conclusions

= Computation vs. Performance
= Bad results?

= Applying Johnson-Lindenstrauss on
Kaski's setup yields k—2000 (?)
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Sanjoy Dasgupta
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