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Problem Statement 
Motions can occur over both short and long time scales. We present motion denoising – the process of 

decomposing videos into long-term and short-term motions, with applications in time-lapse videos. 

 

 

 

 

 

 

 

Main contributions: 

1. A computational approach to motion denoising without explicit motion analysis 

2. A novel application for re-synthesizing time-lapse videos with typical jerky motions removed and long-

term changes in the scene preserved 

Formulation 
 Key idea: long-term events in videos can be statistically explained within some local spatiotemporal 

support, while short-term events are more distinctive 

 Our algorithm reshuffles the pixels in both space and time to maintain long-term events in the 

video, while removing short-term noisy motions 
 
 

 

 

 

 

 

 

 

 

 

 

      

 

     𝑝 = (𝑥, 𝑦, 𝑡),   𝑰 – input video,   𝑱 𝑝 = 𝑰 𝑝 + 𝒘 𝑝  – output video,   𝑁 𝑝 ,𝑁𝑡(𝑝) – spatiotemporal, temporal neighbors resp. 

     𝒘 𝑝 ∈ 𝛿𝑥, 𝛿𝑦, 𝛿𝑡 : |𝛿𝑥| ≤ Δ𝑠, 𝛿𝑦 ≤ Δ𝑠, 𝛿𝑡 ≤ Δ𝑡  – displacement field 

    𝜆𝑝𝑞 = exp −𝛽 𝑰 𝑝 − 𝑰 𝑞
2 ,   𝛽 =  2 𝑰 𝑝 − 𝑰 𝑞 2 −1 

 

 

 

Motion Re-synthesis 

 

Experimental Results   
We present results on time-lapse sequences of different nature and scenes. All videos and results can 

be found on our project website http://csail.mit.edu/mrub/timelapse. 
 

Capture (sampling) Time-lapse Motion denoising World 

Optimization 
 Massive discrete MRF inference (huge grid graph and state space) 

• State space size relates to the space-time extent of events captured 

 Pairwise potentials partially non-metric 

 Space-time optimized Loopy Belief Propagation 

• Sequential message passing backed by the disk 

• Spatial messages in linear time (in the support size) 

 using 3D distance transforms 

• Multi-scale: spatial smoothing, temporal sampling 
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𝐸 𝒘 = 𝑰 𝑝 +𝒘 𝑝 − 𝑰 𝑝 + 𝛼  𝑰 𝑝 +𝒘 𝑝 − 𝑰 𝑟 + 𝒘 𝑟
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Temporal neighbor 

𝜓𝑝 𝒘 𝑝 = 𝑰 𝑝 + 𝒘 𝑝 − 𝑰 𝑝  

𝜓𝑝𝑟
𝑡 𝒘 𝑝 ,𝒘(𝑟) = 𝛼 𝑰 𝑝 + 𝒘 𝑝 − 𝑰 𝑟 + 𝒘 𝑟

2
 

                    +𝛾𝜆𝑝𝑟 𝒘 𝑝 −𝒘(𝑟)  
𝜓𝑝𝑞
𝑠 𝒘 𝑝 ,𝒘(𝑞) = 𝛾𝜆𝑝𝑞 𝒘 𝑝 − 𝒘(𝑞)  


