

Motion Denoising with Application to Time-lapse Photography

Michael Rubinstein

Ce Liu Microsoft Research NE

Peter Sand

Fredo Durand

Bill Freeman

Time-lapse Videos

Construction

Medical

Biological/Botanical

For Personal Use Too!

9 months

16 years

http://www.danhanna.com/aging_project/p.html

Source: YouTube

"Stylized Jerkiness"

Motion Denoising

Motion Denoising

Motion denoising

Time-lapse in Vision/Graphics Research

• Video summarization (video \rightarrow time-lapse)

[Bennett and McMillan 2007]

[Pritch et al. 2008]

Time-lapse editing

Motion Denoising is Challenging!

- Naïve low-pass (temporal) filtering
 - Pixels of different objects are averaged

- Smoothing motion trajectories
 - Motion estimation in time-lapse videos is hard!
 - * Motion discontinuities
 - * Color inconsistencies

KLT tracks

Formulation

- Key idea: long-term events in videos can be statistically explained within some local spatiotemporal support, while shortterm events are more distinctive
 - Assumption: world is smooth
 - Short-term variation = *noise*, long-term variation = *signal*
- Our algorithm <u>reshuffles</u> the pixels in both space and time to maintain long-term events in the video, while removing shortterm noisy motions

Formulation

$$\begin{split} E(w) &= \sum_{p} |I(p+w(p)) - I(p)| & \text{Fidel} \\ &+ \alpha \sum_{p,r \in N_t(p)} ||I(p+w(p)) - I(r+w(r))||^2 & \text{Temp}_{(q)} \\ &+ \gamma \sum_{p,q \in N(p)} \lambda_{pq} |w(p) - w(q)| & \text{Regu}_{(of t)} \end{split}$$

Fidelity (to input)

Temporal coherence (of the result)

Regularization (of the warp)

$$\begin{aligned} p &= (x, y, t) \\ I - \text{input video}, \ I(p + w(p)) - \text{output video} \\ N_t(p) &- \text{Temporal neighbors of } p, \ N(p) - \text{Spatiotemporal neighbors of } p \\ w(p) &\in \left\{ \left(\delta_x, \delta_y, \delta_t \right) : |\delta_x| \leq \Delta_s, \left| \delta_y \right| \leq \Delta_s, |\delta_t| \leq \Delta_t \right\} - \text{displacement field} \\ \lambda_{pq} &= \exp(-\beta \|I(p) - I(q)\|^2), \ \beta = (2\langle \|I(p) - I(q)\|^2 \rangle)^{-1} \end{aligned}$$

Optimization

Optimized discretely on a 3D MRF

- Nodes represent pixels
- state space of each pixel = volume of possible spatiotemporal shifts

Complicated (huge!) inference problem

- E.g. 500^3 nodes, 10^3 states per node
- Optimize using Loopy Belief Propagation

Optimization

need

Potential functions •

message passing - Message structure stored on disk; read and write message chunks on

$$\psi_p(w(p)) = |I(p+w(p)) - I(p)|$$

Linear in state space + **Pre-compute**

$$\psi_{pr}^{t}(w(p), w(r)) = \alpha \left\| I(p + w(p)) - I(r + w(r)) \right\|^{2} + \gamma \lambda_{pr} |w(p) - w(r)|$$

Quadratic in state (non convex)

$$\psi_{pq}^t(w(p), w(q)) = \gamma \lambda_{pq} |w(p) - w(q)|$$

Quadratic in state space But can be computed in linear time (distance transforms)

space

Multi-scale Processing

- Spatiotemporal video pyramid
 - Smooth spatially
 - Sample temporally
- Displacements in the coarse level used as centers for the search volume in the finer level

Results

y**′**

Comparing with Other Optimization Techniques

ICM

GCUT

LBP

Spatial Displacement

Results

Results

Comparison with Naïve Temporal Filtering

Support Size

Figure 7. Zoom-in on the rightmost plant in the sprouts sequence in four consecutive frames shows that enlarging the search volume used by the algorithm can greatly improve the results. "Large support" corresponds to a $31 \times 31 \times 5$ search volume, while "small support" is the $7 \times 7 \times 5$ volume we used in our experiments.

Motion-scale Decomposition

Motion-scale Decomposition

Other Scenarios

Future Work

User-controlled motion scales

- Not necessarily binary decomposition into long-term and short-term
- Modify the time-lapse capturing process to help postprocessing
 - E.g. use short videos instead of still images and find best "path" through the video
- Explore motion-denoising with time-lapse from other domains
 - Embryos research, satellite imagery

Thank you!

http://csail.mit.edu/mrub/timelapse

