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Abstract--We propose a nonparametric, probabilistic model for the automatic segmentation of medical images, 
given a training set of images and corresponding label maps. The resulting inference algorithms rely on pair 
wise registrations between the test image and individual training images. The training labels are then transferred 
to the test image and fused to compute the final segmentation of the test subject. Such label fusion methods have 
been shown to yield accurate segmentation, since the use of multiple registrations captures greater inter-subject 
anatomical variability and improves robustness against occasional registration failures. To the best of our 
knowledge, this manuscript presents the first comprehensive probabilistic framework that rigorously motivates 
label fusion as a segmentation approach. The proposed framework allows us to compare different label fusion 
algorithms theoretically and practically. In particular, recent label fusion or multitask segmentation algorithms 
are interpreted as special cases of our framework. We conduct two sets of experiments to validate the proposed 
methods. In the first set of experiments, we use 39 brain MRI scans with manually segmented white matter, 
cerebral cortex, ventricles and sub cortical structures—to compare different label fusion algorithms and the 
widely-used Free Surfer whole-brain segmentation tool. Our results indicate that the proposed framework yields 
more accurate segmentation than Free Surfer and previous label fusion algorithms. In a second experiment, we 
use brain MRI scans of 282 subjects to demonstrate that the proposed segmentation tool is sufficiently sensitive 
to robustly detect hippocampus volume changes in a study of aging and Alzheimer’s Disease. 
 
Index Terms—Image percolation, image registration, image segmentation. 
 
 
I. INTRODUCTION 
THIS paper investigates a probabilistic modeling 
framework to develop automatic segmentation 
tools that delineate anatomical regions of interest in 
a novel medical image scan. The objective is to 
learn a segmentation protocol from a collection of 
training images that have been manually labeled by 
an expert. This protocol is then employed by the 
algorithm to automatically segment a new (test) 
image. Such supervised segmentation tools are 
commonly used in many medical imaging 
applications, including surgical planning and the 
study of disease progression, aging or healthy 
development [23], [50], [74]. As an application 
domain, this paper focuses on magnetic resonance 
(MR) imaging of the brain. However, most of the 
ideas we discuss here can be easily extended to 
other modalities and applications, particularly with 
the recent development of fast algorithms for 
pairwise registration in other imaging domains We 
will thus consider the problem of segmenting the 
MRI volume scan of a novel subject, based on 
other subjects’ MRI scans that have been 
delineated by an expert. Early MR segmentation 
algorithms mainly dealt with the problem of tissue 
classification, where local image intensity profiles 
contain a significant amount of the relevant 

information [10], [15]. A detailed parcellation of 
the brain anatomy into structurally or functionally 
defined regions of interest (ROI) typically requires 
supervision, commonly in the form of labeled 
training data, since the local appearance of most 
such structures is not easily distinguishable]. The 
training data is commonly obtained via a time-
consuming and/or expensive procedure such as 
manual delineation, histology or functional 
localization experiments Automating the 
painstaking procedure of labeling improves the 
reliability and repeatability of the study, while 
allowing for the analysis of large pools of subjects. 
One of the simplest ways to automatically segment 
an image using a single training dataset is to 
perform a nonrigid, dense registration between the 
labeled image and test image. The resulting warp 
can then be used to map the training labels onto the 
coordinates of the test image [16]. The qualityof 
such a registration-based approach is limited by the 
accuracy of the pairwise registration procedure and 
the anatomical similarity between the labeled and 
test subjects. To reduce the bias due to the labeled 
subject and to model anatomical variability, 
multiple subjects can be employed in the training 
phase. A common method is to use a parametric 
model to summarize the training data in a common 
coordinate system [8]. In this approach the training 
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data are co-registered to compute probability maps 
that encode the prior probability of observing a 
particular label at each point in the common (atlas) 
coordinates. The test subject is then normalized to 
the atlas coordinates through a pairwise registration 
with a template image that represents the average 
subject. This registration can be completed as a 
preprocessing step, or can be unified with the 
segmentation procedure, as in [8]. Once the test 
subject is spatially  ormalized, one can use a 
variety of models of shape and appearance to 
devise a segmentation algorithm. Traditionally, 
generative models have been popular, where simple 
conditionally independent Gaussian models are 
used for appearance [24], [48]. More sophisticated 
shape models that encourage certain  opological 
properties have also been proposed to improve 
segmentation quality. 
 
The central contribution of this paper is to propose 
and investigate a generative model that leads to 
label fusion style image segmentation algorithms. 
Within the proposed framework, we derive several 
methods that combine transferred training 
labelsinto a single segmentation estimate. Using a 
dataset of 39 brain MRI scans and corresponding 
label maps obtained from an expert, we 
experimentally compare these segmentation 
algorithms. Additionally, we compare against other 
benchmarks includingv FreeSurfer’s whole brain 
segmentation tool, which has been widely used in a 
large number of studies , and STAPLE [67], a 
method that combines multiple segmentation 
estimates based on a probabilistic performance 
model. Our results suggest that the proposed 
framework yields accurate and robust segmentation 
tools that can be employed on large multisubject 
datasets. In a second experiment, we used one of 
the proposed egmentation 
algorithms to compute hippocampal volumes in 
MRI scans of 282 subjects. A comparison of these 
measurements across clinical groups indicate that 
the proposed algorithm is sufficiently sensitive to 
robustly detect hippocampal volume differences 
associated with aging and early Alzheimer’s 
Disease. 
 
The generative model described in this paper is an 
extension of the preliminary ideas we presented in 
recent conference papers. The present paper offers 
detailed derivations, discussions and experiments 
that were not contained in those papers. The 
remainder of the paper is organized as follows. 
Sections II and III present the generative model and 
its instantiation, respectively. In Section IV, we 
develop several label fusion style segmentation 
algorithms based on the proposed generative 
model. Section V presents empirical results. In 
Section VI, we discuss the contributions of the 
paper along with the drawbacks of the proposed 

algorithms, while pointing to future research 
directions. Section VII concludes with a summary. 
 
II. GENERATIVE MODEL 
 
In this section, we present the probabilistic model 
that forms the core of this paper.We use  to 
denote training images with corresponding label 
maps , . We assume the label maps take discrete 
values from 1 to (including a “background” or 
“unknown” label) at each spatial location. While 
the training images are defined on a discrete grid, 
we treat them as spatially continuous functions on 
by assuming a suitable interpolator. Let be a finite 
grid where the test subject is defined.We denote to 
be the spatial mapping (warp) from the test subject 
coordinates to the coordinates of the th training 
subject. For simplicity, we assume that have been 
precomputed using a pairwise registration 
procedure, such as the one described in Appendix 
A. This assumption allows us to shorthand and with 
and , respectively, where we drop to indicate that 
we know the transformation that maps the training 
data into the coordinates of the test subject. The 
goal of segmentation is to estimate the label map 
associated with the test image . This can be 
achieved via maximum-a-posteriori (MAP) 
estimation  
 
L=argmax p(L|I; {Ln, Ĩn, Фn}) 
         L 
  =argmax p(L,I; {Ln, Ĩn })                          (1) 
         L 
 
where denotes the joint probability of the label map 
and image given the training data. Instead of using 
a parametric model for , we employ a 
nonparametric estimator, which is an explicit 
function of the entire training data, not a statistical 
summary of it, as shown in Fig. 1. The model 
assumes that the test subject is 
generated from one or more training subjects, the 
index or indices of which are unknown. This 
modeling strategy is parallel to Parzen 
windowdensity estimators, where the density 
estimate can be viewed as a mixture distribution 
over the entire training data, and each new sample 
is associated with a single training 
sample, the index of which is unknown and thus is 
marginalized over. In dealing with images, we may 
want to allow for this membership index to vary 
spatially. Therefore we introduce to denote the 
latent random field that specifies for each voxel in 
the test image , the (membership) index of the 
training image it was generated from. 
 
Squares indicate nonrandom parameters, circles 
indicate random variables. Replications are 
illustrated with. The in the corner of the plate 
indicates the variables inside are replicated that 
many times (i.e., once for each voxel), and thus are 
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conditionally independent. Shaded variables are 
observed. 
 

 
Fig. 1. Graphical model that depicts the 
relationship between the variables. 
 
 
In the following, we make the assumption that the 
image intensity values and labels at each voxel are 
conditionally independent (as illustrated with a 
plate around these variables in Fig. 1), given the 
random field , and the training data . Furthermore, 
we assume that each voxel is generated from a 
single training subject indexed, which we will 
shorthand with and  respectively. We can thus 
construct the conditional probability of generating 
the test image and label map. 
 
P(L,I|M;{Ln, In}) 
=Π p(L(x), I(x)|M(x); {Ln,In})                     (2) 
=Π pM(x) (L(x); Lm(x))pM(x)(I(x);IM(x))   (3) 
 
Given a prior on , we can view the image and label 
map as generated from a mixture model 

 
P(L,I|M;{Ln, In})= ∑p(L(x), I(x)|M(x); {Ln,In})   (4) 
 
where denotes the marginalization over the 
unknown random field . Substituting (3) into (4) 
yields the final cost function 
 
The conditional independence assumption between 
the label map and image may seem simplistic at 
first. Yet conditional independence does not imply 
independence and the relationship between and is 
given by marginalizing over the unknown as in (4). 
Therefore, our model implicitly includes complex 
dependencies between labels and intensity values. 
For instance , a term commonly modeled explicitly 
in the segmentation literature can be expressed as 
 
Thus, given a model instantiation, the conditional 
intensity distribution of a particular label at a 
location of interest can be estimated by examining 
the training subjects that exhibit that label in the 
proximity of the location of interest. This is exactly 
what atlas-based segmentation algorithms do, 
which underscores the similarity between the 
proposed probabilistic model and parametric 
models used in the literature. But  nlike atlas-based 
methods that use a parametric model for ,the 

proposed framework explicitly employs the entire 
training data set. 
 
III. MODEL INSTANTIATION 
 
This section presents the specific instantiations of 
the individual terms in  that we use in this work to 
derive segmentation algorithms. 
A. Image Likelihood 
We adopt a Gaussian distribution with a stationary 
variance as the image likelihood term 

 
For ,  reduces to an improper distribution , where is 
a constant. As we discuss in Section IV-B, this 
simple model leads to the Majority Voting strategy 
in label fusion, whereas for a finite , yields a 
weighted averaging strategy. 
 
B. Label Prior 
In this work, we investigate two representations to 
define the label prior term . One representation uses 
the logarithm of odds (LogOdds) model based on 
the signed distance transform [49]. Let denote the 
signed distance transform of label in training 
subject (in the native coordinates), which is 
assumed to be positive inside the structure of 
interest.We define the label prior as 
 
where is the slope constant, is the partition 
function, and is the total number of labels including 
the background label. The prior encodes the 
conditional probability of observing label at voxel 
of the test 
image, given that it was generated from the th 
training image. The second representation, 
commonly used in the literature, employs the 
probability vector image of : each voxel is a length- 
binary vector with the th entry equal to 1 if and 0 
otherwise. To define the label prior , the 
transformation is applied to the  robability vector 
image of In this method, non-grid locations need to 
be interpolated using a suitable method (e.g., 
trilinear or nearest neighbor) that ensures positive 
and normalized probability values. In general, it is 
well known that trilinear interpolation yields better 
segmentation results than nearest neighbor 
interpolation [51], [55]. The LogOdds model of (7) 
has the advantage of yielding nonzero probabilities 
everywhere, which makes the use of the 
logarithmof the probability numerically more 
stable.  As discussed in our 
experiments presented in Section V-A, we find that 
the LogOdds model produces more accurate 
results. 
 
C. Membership Prior 
The latent random field encodes the 
local association between the test image and 
training data. We employ a Markov random field 
(MRF) prior on M 
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where is a scalar parameter, is a spatial 
neighborhood of voxel , is the partition function 
that only depends 
on , and is the Kronecker delta. This particular type 
of MRF is often referred to as the Potts model. In 
our implementation, includes the immediate six 
neighbors of each voxel. Similar models have been 
used in the segmentation literature, mainly as priors 
on label maps to encourage the spatial relationships 
of labels observed in the training data. In contrast, 
we use the MRF prior to (indirectly) pool local 
intensity information from within a neighborhood 
in determining the association between the test 
subject and the training data. Here we adopt a 
simple form of the MRF that does not include 
singleton and/or spatially varying terms. This is 
unlike the common usage of MRFs in the 
segmentation literature where the label prior 
typically varies spatially.  
 
The parameter influences the average size of the 
local patches of the test subject that are generated 
from a particular training subject. In this work, we 
consider three settings of the parameter . With , the 
model assumes that each test image voxel is 
generated from the training subjects with equal 
probability and that the membership is voxel-wise 
independent. forces the membership of all voxels to 
be the same and corresponds to assuming that the 
whole test subject is generated from a single 
unknown training subject, drawn from a uniform 
prior. A positive, finite encourages local patches of 
voxels to have the same membership. 
 
IV. LABEL FUSION BASED IMAGE 
SEGMENTATION 
 
In this section, we derive several label fusion style 
image segmentation algorithms based on the model 
and MAP formulation described above. These 
algorithms correspond to variations in the image 
likelihood, label prior and membership prior 
models described in Section III.  A. Local 
Weighted Voting 
Let us assume , which, thanks to the adopted 
simple MRF form, implies that is independent and 
identically 
distributed according to a uniform distribution over 
all labels for all  

 
where is the cardinality of the image domain (the 
number of voxels). Using the image likelihood 
term of (6), the segmentation problem in (5) 
reduces to 
 
This optimization problem can be solved by simply 
comparing numbers at each voxel: the fused label 
of each voxel is computed via a local weighted 
(fuzzy) voting strategy. The local image likelihood 

terms serve as weights and the label prior values 
serve as votes. Therefore, at each voxel, training 
images that are more similar to the test image at the 
voxel after registration are weighted more. 
Interestingly, a similar approach was recently 
proposed in the context of CT cardiac segmentation 
by Isgum et al. where the transferred training labels 
are fused in a weighted fashion. The heuristic 
weights proposed in that paper have a  different 
form however and are spatially smoothed with a 
Gaussian filter to pool local neighborhood 
information. In Section IV-D, we discuss a more 
principled approach to aggregate statistical 
information from neighboring voxels into the 
weighted label fusion procedure.  
 
B. Majority Voting 
Majority voting, which has been widely used as a 
label fusion method can be derived as a special 
case of Local Weighted Voting. The key modeling 
assumption is to set in the image likelihood term,  
effectively using an improper distribution and 
assigning equal weight to all training subjects, 
which reduces (10) to 
 
If we use the probability vector image of to define 
the label prior,we arrive at the traditional 
ajorityVoting algorithm where each training image 
casts a single, unit vote, with no regards to the 
similarity between the training image and the test 
image. If one uses nearest neighbor interpolation, 
each vote corresponds to one particular label , 
whereas tri-linear interpolation yields a fuzzy 
voting strategy with each vote  otentially spread 
over multiple labels . 
 
C. Global Weighted Fusion 
Here, we consider . As we now show, this results in 
an algorithm where, at each voxel, training images 
that are globally more similar to the test image 
after registration are weighted more. With , the 
membership prior defined in (8) only takes nonzero 
values if membership values at all voxels are equal, 
i.e., 
 
Thus, (4) is equivalent to a mixture model where 
the test subject is assumed to be generated from a 
single, unknown training subject 
 
The segmentation problem in  reduces to Equation 
(14) cannot be solved in closed form. However, an 
efficient solution to this MAP formulation can be 
obtained via expectation maximization (EM) [20]. 
Appendix B contains the derivations of the 
algorithm. Here, we present the summary. 

1) E-Step 
2)  M-Step 

 
The variational EM algorithm consists of two 
levels of iterations: the inner loop that repeatedly 
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computes (19) in the E-step and the outer loop that 
alternates between the E- and M-steps, until 
convergence. In the inner loop, at each iteration all 
’s are updated using (19) and the neighboring 
values from the previous iteration. Once this inner 
loop converges, the algorithm updates the 
segmentation using (21). To determine the 
convergence of the outer loop, one can monitor the 
change in the segmentation estimate. In practice, 
we terminate the algorithm when less than a 
predetermined fraction, e.g., 0.01% of voxels 
change their segmentation estimate from one 
iteration to the next. Typically convergence is 
achieved in fewer than 10 iterations.  
 
V. EXPERIMENTS 
 
In this section, we present two sets of experiments. 
In the first experiment we compare automatic 
segmentation results against manual delineations to 
objectively quantify the accuracy of segmentation 
algorithms. The second experiment employs a 
separate collection of brain MRI scans from 282 
subjects to demonstrate that hippocampal volume 
measurements obtained using the proposed label 
fusion framework can detect subtle volume 
changes associated with aging and Alzheimer’s 
disease.  
 
A. Experiment I: Comparison Against Manual 
Segmentation 
The first set of experiments employs 39 brain MRI 
scans and corresponding manual delineations of 
nine anatomical regions of interest (ROI) in two 
hemispheres. The images were selected from a 
large data set, including an Alzheimer’s cohort, the 
recruitment of which is described elsewhere. The 
39 subjects were selected to span a wide age range 
and reflect a substantial anatomical variation due to 
dementia pathology. We note that these are the 
same subjects used to construct FreeSurfer’s 
released probabilistic segmentation atlas. Out of the 
39 subjects, 28 were healthy and 11 were patients 
with questionable ( , Clinical Dementia Rating 0.5) 
or probable Alzheimer’s ( , CDR 1). Ten of the 
healthy subjects were young (less than 30 years), 
nine middle-aged (between 30 and 60 years), and 
nine old (older than 60 years). The MRI images are 
of dimensions 256 256 256, 1 mm isotropic voxels 
and were computed by averaging three or four 
scans. Each scan was a T1-weighted MP-RAGE, 
acquired on a 1.5 T Siemens Vision scanner. All 
scans were obtained in a single session. Acquisition 
details are as follows: TR 9.7 ms, TE 4.0 ms, TI 20 
ms, Flip angle 10 . These high quality images were 
then gain-field corrected and skull-stripped. All the 
preprocessing steps were carried out using 
FreeSurfer tools [69]. The anatomical ROIs we 
used1 are white matter (WM), cerebral cortex (CT), 
lateral ventricle (LV), hippocampus (HP), thalamus 

(TH), caudate (CA), putamen (PU), pallidum (PA), 
and amygdala (AM). The labeling protocol we 
employed was developed by the Center for 
Morphometric Analysis and has been published 
and validated elsewhere [13]. An example 
segmentation obtained via the local weighted 
voting method of Section IV-A is visualized in Fig. 
2.  
 

 
Fig. 2. A typical segmentation obtained with the 
local mixture model. 2D slices are shown for 
visualization only. All computations are done in 
3D. 
 
where denotes set cardinality. The Dice score 
varies between 0 and 1, with 1 indicating a perfect 
agreement between the two segmentations. 
 
1) Setting the Free Parameters Through 
Training: The proposed label fusion algorithms 
have two stages, registration and label fusion, each 
with several input parameters. To set these 
parameters properly, we initially performed 
training on nine out of the 39 subjects. These nine 
subjects were then only used as training subjects 
during the testing phase. Therefore, all results 
reported in this paper are on the remaining 30 
subjects and reflect generalization performance. 
The registration stage has two independent 
parameters (as described in Appendix A): controls 
the step size in the Gauss–Newton optimization and 
determines the smoothness of the final warp. We 
registered 20 random pairs of the nine training 
subjects for a range of values of and . For each pair 
of subjects, we measured pairwise overlap by 
computing the Dice score between the warped 
manual labels of the “moving” subject and the 
manual labels of the “fixed” subject. We then 
selected that resulted in the best registration quality 
as measured by the average pairwise label overlap. 
The label fusion stage also has several independent 
parameters, depending on the method used. These 
include the standard deviation of the image 
likelihood in (6), the slope of the distance 
transform used to compute the label prior in (7), 
and the Markov weight which is nonzero for the 
semi-local method in Section IV-D and controls the 
average size of the image patches associated with 
the same training subject. 
To determine , we performed nine leave-one-out 
segmentations on the training subjects using the 
Majority Voting method of Section IV-B and label 
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prior model of (7) for a range of values. The value 
that achieved the best segmentation accuracy was . 
We employed Local Weighted Voting (Section IV-
A) and  lobalWeighted Fusion (Section IV-C) to 
determine a local and global optimal value for (10 
and 30), respectively. The optimal standard 
deviation for the local model was then used to 
determine the optimal value for (0.75) for the semi-
local model.  
 
We performed leave-one-out cross-validation on 
the 30 test subjects using these optimal parameters. 
For each test subject, all remaining 38 subjects 
were treated as training subjects.  
2) Comparison of Label Prior Models: Using the 
Majority Voting method (Section IV-B), we 
compare three different label 
 
prior models (Section III-B): the LogOdds (based 
on the signed distance transform) model of (7) and 
two instantiations of the common approach that 
interpolates the vector image of indicator 
probability vectors, based on nearest neighbor 
interpolation (e.g., [30]) or tri-linear interpolation 
Fig. 3 shows a box-plot of Dice scores for these 
three different models and all the ROIs. These 
results indicate that the LogOdds representation 
provides a significantly better label prior for the 
label fusion framework. 
 
3) Comparison of Label Fusion Methods and 
Benchmarks: 
In this section we provide a comparison between 
the three weighted label fusion algorithms we 
derived in our framework and four benchmarks. 
The second benchmark is the Majority Voting 
scheme based on the LogOdds prior, which is 
similar to the shape averaging method proposed in 
[52] and other voting based algorithms. 
 
The whiskers extend to 2.7 standard deviations 
around the mean, and outliers are marked 
individually as a “*.” 
 
Finally, the training subjects that had the smallest 
SSD were used for majority voting. In the results 
we present here, we fix the number of training 
subjects that were used to 10 and call the algorithm 
“Majority10.” Later in this section, we investigate 
the effects of varying the number of training 
subjects. 
 
Majority Voting which has gained recent 
popularity [1], performs significantly worse than 
the weighted label fusion methods. 
This result highlights the importance of 
incorporating image similarity information into the 
label fusion framework.  
 

We note, however, that the results we report for our 
Majority Voting implementation are lower than the 
ones reported in. This might be due to differences 
in the data and/or registration 

 
Fig. 5. Average Dice scores for each algorithm (FS: 
FreeSurfer,Majority: Majority Voting, STAPLE, 
Majority10, Global: Global Weighted Fusion, 
Local: Local Weighted Voting, and Semi-Local: 
Semi-local Weighted Fusion). Error bars show 
standard error. Each subject and ROI was treated as 
an independent sample with equal weight. 
 
algorithm. Specifically, normalized mutual 
information (NMI) was used as the registration cost 
function in. Entropy-based measures such as NMI 
are known to yield more robust alignment results. 
We leave a careful analysis of this issue to future 
work. 
 
Fig. 6. Average Dice differences: Semi-Local 
Weighted Fusion minus Local Weighted Voting. 
Overall, Semi-Local Weighted Fusion achieves 
better segmentation. Error bars show standard 
error. 
 

 
Majority10 performs slightly better than Majority 
Voting. The improvement is particularly significant 
in subcortical ROIs such as the caudate. STAPLE, 
an alternative weighted fusion strategy, also yields 
slightly better average segmentation accuracy than 
Majority Voting. STAPLE’s performance, 
however, is significantly worse than the three 
weighted label fusion algorithms derived based on 
the proposed probabilistic framework. Once again, 
this difference underscores the importance of 
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employing the MRI intensity information in 
determining the weights for label fusion. 
FreeSurfer, which we consider to represent the 
state-of-the art atlas based segmentation, on 
average, yields better segmentation accuracy than 
our remaining benchmarks. Yet we stress that 
FreeSurfer integrates registration and segmentation, 
while the performance of the remaining 
benchmarks were limited by our choice of the 
pairwise registration preprocessing 
step.

 
Fig. 7. The segmentations of the subject that Semi-
localWeighted Fusion performed the worst on. Left 
to right: FreeSurfer, Global and Semi-
localWeighted Fusion. Common mistakes 
(indicated by arrows): (A) Global Weighted Fusion 
tends to over-segment complex shapes like the 
cortex. (B) Semi-localWeighted Fusion does not 
encode topological information, as FreeSurfer does. 
Hence it may assign an “unknown” or 
“background” label (white) in between the 
pallidum (blue), putamen (pink), and white matter 
(green). 
 

 
Fig. 8. The average Dice score for Majority Voting 
(Majority) and Local Weighted Voting (Local) as a 
function of the number of training subjects. We 
consider two strategies to select the training 
subjects: (1) randomly selecting a set of training 
subjects (Rand), (2) selecting the best training 
subjects that are globally most similar to the test 
subject (Best). The average Dice score reaches 
83.9% for Majority Voting and 87.8% for Local 
Weighted Voting, when all 38 subjects are used. 
 
4) The Effect of the Number of Training Subjects: 
In theprevious section, for all the algorithms we 
employed a leaveone out validation strategy, where 
for each test subject all remaining 38 subjects were 
treated as the training data. In this section, we 
explore how the accuracy results vary as one varies 
the number of training subjects. This point has 
received considerable attention in prior work. 

 

 
Fig. 9. Average Dice scores for different values in 
the MRF membership prior of (8). Error bars show 
standard error. 
 
5) The Effect of the MRF Prior: To investigate the 
effect of the MRF membership prior we applied the 
Semi-local Weighted Fusion method with four 
different values of to the 30 test subjects. Note that 
during the training phase, we established as 
optimal. Fig. 9 reports the average Dice scores for 
Semi-local Weighted Fusion with these values, 
Global Weighted Fusion, which corresponds to , 
and Local Weighted Voting, which corresponds to 
B. 
 
 
6) Runtime: Table II lists the average run-times for 
the seven algorithms compared above. Majority10 
and FreeSurfer are the fastest algorithms with less 
than 10 h of CPU time required for each test 
subject.  ajority10 uses only 10 training subjects, 
which are globally most similar to the test subject 
as measured by the sum of squared differences after 
affine-normalization. The initial training subject 
selection stage takes about an hour.  
 
The remaining three algorithms (STAPLE, Global 
and Semi-localWeighted Fusion) employ iterative 
optimization methods (EM,EMand variational EM, 
respectively) and require longer run-times. It is 
important to note that these run times can be 
reduced substantially using the same preselection 
strategy as 
Majority10. In particular, our experiments with 
LocalWeighted Voting suggest that we can lower 
the run time of this method by at least a half with 
almost no reduction in accuracy. 
 
B. Experiment II: Hippocampal Volumetry 
In a second set of experiments, we aim to 
demonstrate that the proposed label fusion 
framework yields accurate volumetric 
measurements of the hippocampus. Hippocampal 
volume has been shown to correlate with aging and 
predict the onset of probable Alzheimer’s Disease. 
 
where denotes the computed volume of label in 
label map . These results indicate that both Local 
Weighted Voting and Semi-local Weighted Fusion 
provide more accurate hippocampal volume 
measurements than Global Weighted Fusion and 
Majority Voting 
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Fig. 10. Hippocampal volume differences on the 
data from Experiment 1. On each box, the central 
mark is the median, the edges of the box are the 
25th and 75th percentiles. The whiskers extend to 
2.7 standard deviations around the mean. (a) 
Automatic minus Manual volumes. (b) Relative 
volume differences [(23)]. 
 

 
Fig. 11. Age histogram of 282 subjects in 
Experiment 2. 
 
. 
 

 
Fig. 12. Hippocampal volumes for five different 
groups in Experiment 2.Error bars indicate standard 
error across subjects. Stars indicate that the volume 
measurements in the present group are statistically 
significantly smaller than the measurements in the 
neighboring group to the left. (Unpaired, single-
sided t-test. (a) Left hippocampus. (b) Right 
hippocampus. 
 
Fig. 12 shows the average hippocampal volume 
measurements for these five groups. Volumetric 
reduction due to aging and AD can be seen from 
this figure. These findings are in agreement with 
known hippocampal volume changes in AD and 
aging and demonstrate the use of the proposed 
label fusion method on a large pool of subjects, for 
which manual segmentation may not be practical. 
 

VI. DISCUSSION 
 
Our experiments demonstrate the accuracy and 
usefulness of the label fusion framework as a 
segmentation tool. The proposed framework yields 
better accuracy than current state-of-the-art atlas-
based segmentation algorithms, such as FreeSurfer.  
 
The proposed framework should be viewed as an 
initial attempt to generalize segmentation 
algorithms based on label fusion, or a multi-atlas 
approach, which have recently shown promise and 
gained popularity with hardware advancements and 
developments of fast registration algorithms. In this 
paper, we investigated several modeling 
assumptions and derived four different 
instantiations of label fusion, one of which is the 
popular Majority Voting.  
 
Majority Voting simply determines the most 
frequent label at each voxel, where each training 
subject gets an equal vote. Yet, recent work 
suggests that incorporating the similarity between 
the test image and training subjects can improve 
segmentation quality. For example, [1] employs a 
subset of training subjects 
that are close in age to the test subject. Alternative 
strategies include using an image-based measure to 
quantify anatomical similarity, either at a local or 
global level. This similarity can then weigh the 
label votes during fusion, where more similar 
training subjects are given a larger weight. 
 
Our theoretical development based on the proposed 
nonparametric probabilistic model yields three such 
algorithms, which solve the same problem for 
different settings of a single model parameter . This 
parameter controls the interactions between 
neighboring voxels in the Markov prior we 
construct on the latent membership random field 
encoding the (unknown) association between the 
test subject and training data. Smaller values allow 
for this association to vary more locally. 
Specifically, treats each voxel independently, 
whereas corresponds to assuming a single 
association for the whole image. A finite, 
 onzero encourages local patches of voxels to have 
the same membership. 
 
These three cases are solved with different 
inference algorithms. The most efficient case 
corresponds to , where the global optimum can be 
computed via simple voxelwise counting. The other 
two cases are solved with more expensive iterative 
optimization methods, such as Expectation 
Maximization and Variational EM. Exact inference 
for the finite, nonzero case is intractable, yet our 
experiments suggest that approximate numerical 
solutions yield good segmentation accuracy.  
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The development of the proposed framework 
makes several simplifying assumptions. In the 
following, we discuss a number of directions that 
can be explored to relax these assumptions.We 
consider these as important avenues for future 
research, which promise to improve the 
performance of label fusion style segmentation. 
 
1) In the graphical model of Fig. 1, we made the 
convenient assumption that the transformations are 
known and solved for these in a preprocessing 
pairwise registration step (see Appendix A). 
Ideally, however, one would like to integrate over 
all possible transformations, which has a 
prohibitively high computational cost. Recent work 
attempted to approximate this integration for a 
single registration [3]. A more practical approach is 
to compute the registrations jointly with the 
segmentations, cf. [8]. Here, we avoided this 
particular route, since the multiple registrations 
performed between the test subject and training 
data were already computationally challenging.  
 
2) The simple additive Gaussian noise model 
presented in Section III-A has two crucial 
consequences: 1) the registration cost function is a 
sum of squared intensity differences, and 2) in 
weighted label fusion, the  eights are a function of 
sum of squared intensity differences, i.e., 
anatomical similarity is measured based on squared 
differences of intensity values. This model makes 
the algorithm sensitive to intensity variations due to 
imaging artifacts. Thus, the presented algorithms 
are only suitable for intensity-normalized images. 
An alternative strategy is to employ a more 
sophisticated image likelihood model that would 
motivate 
information theoretic similarity measures, such as 
mutual information. 
 
3) The main drawback of label fusion style 
algorithms is the computational complexity 
introduced by the multiple pairwise registrations 
and the manipulation of the entire training data. 
Traditional atlas-based segmentation approaches 
avoid this problem by using parametric models of 
anatomical variation in a single coordinate system. 
In recent work, we used a mixture modeling 
strategy, called iCluster, to model anatomical 
heterogeneity with multiple atlases. We believe a 
combination of the label fusion framework 
presented in this paper and iCluster can be 
employed to reduce the computational burden by 
summarizing the training data with a small number 
of templates. 
 
4) An alternative strategy to reduce the 
computational demand of label fusion is to employ 
a nonparametric model in a single coordinate 
system, to which the test subject is normalized with 

a single registration procedure. This approach, 
which entails the co-registration of the training 
subjects akin to atlas-based segmentation, was 
recently shown to produce accurate segmentation 
[5], [17]. The application of this strategy within the 
proposed label fusion framework is a direction to 
be explored. 
 
5) Another strategy to reduce computational burden 
is to preselect the most useful training subjects and 
apply label fusion on these, as recently proposed by 
Aljabar et al. [1]. We explored one particular 
instantiation of this approach, where the subset of 
training subjects was selected to include the 
training subjects globally most similar to the test 
subject after affine normalization. It is clear that 
this criterion to preselect the most relevant training 
subjects is related to our definition of the image 
likelihood term . Yet, a crucial difference is that the 
image likelihood term is computed by nonlinearly 
registering the training and test images, while the 
preselection is done based on an affine 
normalization. Alternative preselection strategies 
should also be investigated. 
 
VII. CONCLUSION 
 
In this paper, we investigated a generative model 
that leads to label fusion style image segmentation 
methods. Within the proposed framework, we 
derived several algorithms that combine transferred 
training labels into a single segmentation 
estimate.With a dataset of 39 brainMRIscans and 
corresponding label maps obtained from an expert, 
we empirically compared these segmentation 
algorithms with FreeSurfer’s widely-used atlas-
based segmentation tool. Our results demonstrate 
that the proposed framework yields accurate and 
robust segmentation tools that can be employed on 
large multi-subject datasets. In a second 
experiment, we employed one of the developed 
segmentation algorithms to compute hippocampal 
volumes inMRIscans of 282 subjects. A 
comparison of these measurements across clinical 
and age groups indicate that the proposed 
algorithms are sufficiently sensitive to detect 
hippocampal volume differences 
associated with early Alzheimer’s Disease and 
aging. 
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